Dr. Daniel Aloise
Polytechnique Montréal
Dr Daniel Aloise is an assistant professor at the Computer Engineering Department at Polytechnique Montréeal. He obtained his PhD in Applied Maths from Polytechnique Montréeal in 2009 and he has been assistant professor at Universidade Federal do Rio Grande do Norte, Brazil, in 2009-2016. His research interests include data mining, optimization, mathematical programming and how these disciplines interact to tackle problems in the Big Data era. Daniel has published in leading operations research and data mining journals including Machine Learning, Pattern Recognition, European Journal of Operational Research, Mathematical Programming and Journal of Global Optimization.

Articles

  • Pinheiro, D. N., Aloise, D. & Blanchard, S. J. (2020) Convex fuzzy k-medoids clustering. IN Fuzzy Sets and Systems, 389.66-92.
    [Bibtex]
    @article{pinheiro2020convex,
    title={Convex fuzzy k-medoids clustering},
    author={Pinheiro, Daniel N and Aloise, Daniel and Blanchard, Simon J},
    journal={Fuzzy Sets and Systems},
    year={2020},
    volume={389},
    pages = {66-92},
    publisher={Elsevier}
    }
  • Costa, L. R., Aloise, D., Gianoli, L. G. & Lodi, A. (2020) The Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds: A Distributed 3D Mapping Use-case. IN arXiv preprint arXiv:2004.11837, ..
    [Bibtex]
    @article{costa2020,
    title={The Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds: A Distributed 3D Mapping Use-case},
    author={Costa, Leandro R and Aloise, Daniel and Gianoli, Luca G and Lodi, Andrea},
    journal={arXiv preprint arXiv:2004.11837},
    year={2020}
    }
  • Džamić, D., Aloise, D. & Mladenović, N. (2019) Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization. IN Annals of Operations Research, 272.273–287.
    [Bibtex]
    @article{dvzamic2019ascent,
    title={Ascent--descent variable neighborhood decomposition search for community detection by modularity maximization},
    author={D{\v{z}}ami{\'c}, Du{\v{s}}an and Aloise, Daniel and Mladenovi{\'c}, Nenad},
    journal={Annals of Operations Research},
    volume={272},
    number={1-2},
    pages={273--287},
    year={2019},
    publisher={Springer}
    }
  • Aloise, D. & Contardo, C. (2018) A sampling-based exact algorithm for the solution of the minimax diameter clustering problem. IN Journal of Global Optimization, 71.613–630.
    [Bibtex]
    @article{aloise2018sampling,
    title={A sampling-based exact algorithm for the solution of the minimax diameter clustering problem},
    author={Aloise, Daniel and Contardo, Claudio},
    journal={Journal of Global Optimization},
    volume={71},
    number={3},
    pages={613--630},
    year={2018},
    publisher={Springer}
    }
  • Gonçalves-e-Silva, K., Aloise, D. & Xavier-de-Souza, S. (2018) Parallel synchronous and asynchronous coupled simulated annealing. IN The Journal of Supercomputing, 74.2841–2869.
    [Bibtex]
    @article{gonccalves2018parallel,
    title={Parallel synchronous and asynchronous coupled simulated annealing},
    author={Gon{\c{c}}alves-e-Silva, Kayo and Aloise, Daniel and Xavier-de-Souza, Samuel},
    journal={The Journal of Supercomputing},
    volume={74},
    number={6},
    pages={2841--2869},
    year={2018},
    publisher={Springer}
    }
  • de Pessoa, B. J. S., Aloise, D. & Cabral, L. A. (2018) The Weighted Fair Sequences Problem. IN Computers & Operations Research, 91.121–131.
    [Bibtex]
    @article{pessoa2018weighted,
    title={The Weighted Fair Sequences Problem},
    author={Pessoa, Bruno Jefferson de S and Aloise, Daniel and Cabral, Lucidio AF},
    journal={Computers \& Operations Research},
    volume={91},
    pages={121--131},
    year={2018},
    publisher={Elsevier}
    }
  • Mariz, F. B., Almeida, M. R. & Aloise, D. (2018) A review of dynamic data envelopment analysis: state of the art and applications. IN International Transactions in Operational Research, 25.469–505.
    [Bibtex]
    @article{mariz2018review,
    title={A review of dynamic data envelopment analysis: state of the art and applications},
    author={Mariz, Fernanda BAR and Almeida, Mariana R and Aloise, Daniel},
    journal={International Transactions in Operational Research},
    volume={25},
    number={2},
    pages={469--505},
    year={2018},
    publisher={Wiley Online Library}
    }
  • Pyatkin, A., Aloise, D. & Mladenović, N. (2017) NP-Hardness of balanced minimum sum-of-squares clustering. IN Pattern Recognition Letters, 97.44–45.
    [Bibtex]
    @article{pyatkin2017np,
    title={NP-Hardness of balanced minimum sum-of-squares clustering},
    author={Pyatkin, Artem and Aloise, Daniel and Mladenovi{\'c}, Nenad},
    journal={Pattern Recognition Letters},
    volume={97},
    pages={44--45},
    year={2017},
    publisher={Elsevier}
    }
  • Blanchard, S. J., Aloise, D. & DeSarbo, W. S. (2017) Extracting summary piles from sorting task data. IN Journal of Marketing Research, 54.398–414.
    [Bibtex]
    @article{blanchard2017extracting,
    title={Extracting summary piles from sorting task data},
    author={Blanchard, Simon J and Aloise, Daniel and DeSarbo, Wayne S},
    journal={Journal of Marketing Research},
    volume={54},
    number={3},
    pages={398--414},
    year={2017},
    publisher={SAGE Publications Sage CA: Los Angeles, CA}
    }
  • [DOI] Costa, L. R., Aloise, D. & Mladenović, N. (2017) Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. IN Information Sciences, 415-416.247-253.
    [Bibtex]
    @article{costa2017,
    title = "Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering",
    journal = "Information Sciences",
    volume = "415-416",
    pages = "247 - 253",
    year = "2017",
    issn = "0020-0255",
    doi = "https://doi.org/10.1016/j.ins.2017.06.019",
    url = "http://www.sciencedirect.com/science/article/pii/S0020025517307934",
    author = "Leandro R. Costa and Daniel Aloise and Nenad Mladenović",
    keywords = "Balanced clustering, Minimum sum-of-squares, Optimization"
    }

In Collections

  • Pereira, T., Aloise, D., Brimberg, J. & Mladenović, N. (2018) Review of basic local searches for solving the minimum sum-of-squares clustering problem. IN Open Problems in Optimization and Data Analysis..
    [Bibtex]
    @incollection{pereira2018review,
    title={Review of basic local searches for solving the minimum sum-of-squares clustering problem},
    author={Pereira, Thiago and Aloise, Daniel and Brimberg, Jack and Mladenovi{\'c}, Nenad},
    booktitle={Open Problems in Optimization and Data Analysis},
    pages={249--270},
    year={2018},
    publisher={Springer}
    }

In Proceedings

  • Pinheiro, D. N., Xavier-de-Souza, S. & Aloise, D. (2020) Scaling Optimizations for Large-Scale Distributed Data with Lightweight Coresets , 426–429.
    [Bibtex]
    @inproceedings{pinheiro2020scaling,
    title={Scaling Optimizations for Large-Scale Distributed Data with Lightweight Coresets},
    author={Pinheiro, Daniel N and Xavier-de-Souza, Samuel and Aloise, Daniel},
    booktitle={2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)},
    pages={426--429},
    year={2020},
    organization={IEEE}
    }
  • Fournier, Q., Ezzati-jivan, N., Aloise, D. & Dagenais, M. R. (2019) Automatic Cause Detection of Performance Problems in Web Applications , 398–405.
    [Bibtex]
    @inproceedings{fournier2019automatic,
    title={Automatic Cause Detection of Performance Problems in Web Applications},
    author={Fournier, Quentin and Ezzati-jivan, Naser and Aloise, Daniel and Dagenais, Michel R},
    booktitle={2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)},
    pages={398--405},
    year={2019},
    organization={IEEE}
    }
  • Fournier, Q. & Aloise, D. (2019) Empirical comparison between autoencoders and traditional dimensionality reduction methods , 211–214.
    [Bibtex]
    @inproceedings{fournier2019empirical,
    title={Empirical comparison between autoencoders and traditional dimensionality reduction methods},
    author={Fournier, Quentin and Aloise, Daniel},
    booktitle={2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)},
    pages={211--214},
    year={2019},
    organization={IEEE}
    }
  • Randel, R., Aloise, D., Mladenović, N. & Hansen, P. (2018) On the k-Medoids Model for Semi-supervised Clustering , 13–27.
    [Bibtex]
    @inproceedings{randel2018k,
    title={On the k-Medoids Model for Semi-supervised Clustering},
    author={Randel, Rodrigo and Aloise, Daniel and Mladenovi{\'c}, Nenad and Hansen, Pierre},
    booktitle={International Conference on Variable Neighborhood Search},
    pages={13--27},
    year={2018},
    organization={Springer}
    }
  • Hulot, P., Aloise, D. & Jena, S. D. (2018) Towards station-level demand prediction for effective rebalancing in bike-sharing systems , 378–386.
    [Bibtex]
    @inproceedings{hulot2018towards,
    title={Towards station-level demand prediction for effective rebalancing in bike-sharing systems},
    author={Hulot, Pierre and Aloise, Daniel and Jena, Sanjay Dominik},
    booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
    pages={378--386},
    year={2018}
    }