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Abstract

This paper presents two exact algorithms based on Benders decomposition for solving
the multicommodity uncapacitated fixed-charge network design problem. The first is a
branch-and-cut algorithm based on a Benders reformulation enhanced with an in-tree
matheuristic to obtain improved feasible solutions and valid inequalities in the projected
master problem space to close the linear programming gap. In addition, implementation
details crucial to the algorithm’s efficiency such as cut and core point selection criteria are
addressed. The second exact algorithm exploits the problem’s structure to combine a cut-
and-solve strategy with Benders decomposition. Extensive computational experiments
show both exact algorithms provide a speedup of between one and two orders of magnitude
compared to a state-of-the-art general-purpose MIP solver.
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1. Introduction

Network design problems (NDPs) lie at the heart of designing and operating efficient
systems in several sectors such as personnel scheduling (Bartholdi et al. 1980, Balakrishnan
and Wong 1990), service network design (Crainic 2000, Andersen et al. 2009, Crainic and
Rousseau 1986), logistics network design (Geoffrion and Graves 1974, Santoso et al. 2005,
Cordeau et al. 2006), and transportation (Magnanti and Wong 1984, Minoux 1989). They
are able to capture the system-wide interactions between strategic and operational deci-
sions, namely arc activation and routing, to ensure cost-effective paths among a selected
set of nodes. NDPs can be classified into single and multicommodity variants depending
on the characteristics of the demand. In single-commodity problems, the demand at each
node can be satisfied by any of the other nodes’ supply since they all route the same com-
modity. In multicommodity problems, demand is expressed as origin-destination (OD)
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pairs where a destination node’s demand must be satisfied by a corresponding origin
node’s supply.

In this paper we focus on a fundamental NDP: the multicommodity uncapacitated fixed-
charge network design problem (MUFND). The problem is defined on a directed graph
and considers a set of commodities modeled by OD pairs, each with an origin node, a
destination node, and a demand quantity. The objective is to install a subset of arcs
to route all commodities from their origins to their destinations at minimal cost. The
MUFND is NP-hard (Johnson et al. 1978) and generalizes a large class of well-known
problems such as the traveling salesman problem, the uncapacitated lot-sizing problem,
and the Steiner network design problem (Ortega and Wolsey 2003).

At the same time, the MUFND is generalized by the multicommodity capacitated
fixed-charge network design problem. The latter has been extensively studied from dif-
ferent research directions. Some authors have approached this problem from a polyhe-
dral perspective, proposing new families of valid inequalities that strengthen well-known
mixed integer formulations (Bienstock and Günlük 1996, Günlük 1999, Atamtürk 2002,
Atamtürk and Rajan 2002, Raack et al. 2011). Recently, Chouman et al. (2017) provided
insight on the computational impact that commodity representations have on the effi-
ciency of five families of these valid inequalities. Others have focused on the development
of decomposition methods (Cruz et al. 1998, Randazzo and Luna 2001, Crainic et al. 2001,
Frangioni and Gendron 2009, 2013, Frangioni and Gorgone 2014) that exploit the prob-
lem structure to decompose the model into smaller subproblems. Despite the significant
contributions presented in these papers, solving the capacitated network design problem
to proven optimality in reasonable time still remains an open problem.

Another line of research for solving the capacitated variant is the use of heuristic al-
gorithms to obtain high quality solutions. Among these are the slope scaling heuristics
(Kim and Pardalos 1999, 2000, Crainic et al. 2004, Katayama et al. 2009); cycle-based
and other neighbourhood searches (Ghamlouche et al. 2003, 2004, Yaghini et al. 2015,
Paraskevopoulos et al. 2016); and matheuristics that exploit available mathematical pro-
gramming software (Hewitt et al. 2010, Rodŕıguez-Mart́ın and Salazar-González 2010,
Mungúıa et al. 2017, Gendron et al. 2018).

In the case of the MUFND, the first proposed solution algorithm is an add-drop
heuristic by Billheimer and Gray (1973). Other heuristics are those of Dionne and Flo-
rian (1979), Boffey and Hinxman (1979), Los and Lardinois (1982), and Kratica et al.
(2002). Lamar et al. (1990) proposed a novel form of iteratively obtaining strengthened
dual bounds from a weaker formulation by adjusting artificial capacity constraints. Bal-
akrishnan et al. (1989) presented a dual ascent algorithm and a primal heuristic to obtain
solutions for large-scale instances with up to 600 arcs and 1,560 commodities. Their
method obtains solutions that are between 1% and 4% away from optimality in less than
150 seconds of computing time. With respect to exact methods, Magnanti et al. (1986)
developed a tailored Benders decomposition for the variant with undirected design de-
cisions of the MUFND. They were able to solve instances with up to 130 arcs and 58
commodities to proven optimality. Holmberg and Hellstrand (1998) used a Lagrangean
branch-and-bound algorithm to solve directed instances with up to 1,000 arcs and 600
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commodities. Recently, Fragkos et al. (2017) used Benders decomposition to solve a multi-
period extension of the MUFND. They experimented with the use of Pareto-optimal cuts
and with the unified cut approach of Fischetti et al. (2010), obtaining significant compu-
tational gains with the latter on instances with up to 318 arcs, 100 commodities and 108
time periods. To the best of our knowledge, these are the current state-of-the-art exact
methods for the undirected and directed variants of the MUFND.

Benders decomposition has been an effective tool for solving several classes of net-
work design problems with various applications (Costa 2005). Some fields in which it has
recently been applied are closed loop supply chains (Jeihoonian et al. 2016), hazardous
material transportation (Fontaine and Minner 2018), and health services (Zarrinpoor et al.
2018). It has also recently been proven effective in solving fundamental network design
problems such as the optimum communication spanning tree problem (Zetina et al. 2018)
and extensions such as the multi-layer (Fortz and Poss 2009), hop-constrained (Botton
et al. 2013), and multi-period (Fragkos et al. 2017) network design problems. In the
last few years, it has also been applied to NDPs with parameter uncertainty as in Lee
et al. (2013), Keyvanshokooh et al. (2016) and Rahmaniani et al. (2018). Other applica-
tions of Benders decomposition to fixed-charge NDPs can be found in Costa (2005) while
Rahmaniani et al. (2017) provides a survey on the algorithm and its use in optimization
problems.

This paper revisits the use of Benders decomposition proposed by Magnanti et al.
(1986) to solve the undirected design variant of the MUFND. As in Fischetti et al. (2017),
our purpose is to redesign this once discarded approach for solving the MUFND to exploit
the state-of-the-art of algorithmic and computational resources. The resulting Benders
algorithms use branch-and-cut (Padberg and Rinaldi 1991), local branching (Fischetti
and Lodi 2003), and cut-and-solve (Climer and Zhang 2006) procedures implemented
within the cut callback framework available in today’s general purpose mixed integer
programming solvers. We present, in detail, the nuances of adopting these tools and
propose novel refinements to reduce the computation time required to solve the MUFND
with directed arc design decisions.

We present two exact algorithms based on the Benders reformulation of a well-known
mixed integer programming model of the directed MUFND. Both algorithms solve the
linear relaxation of the Benders reformulation with a cutting-plane procedure to obtain
Pareto-optimal cuts and cutset inequalities at each node of the enumeration tree. To
accelerate the algorithms’ convergence we introduce new valid inequalities referred to as
Benders lift-and-project cuts to improve the linear programming relaxation and an in-tree
matheuristic that finds better feasible solutions by using path information generated while
exploring the branch-and-bound tree.

The first algorithm, referred to as a branch-and-Benders-cut algorithm, solves the Ben-
ders reformulation in one enumeration tree. We address critical implementation details
that should be considered when separating cuts at fractional and integer points such as
core point selection for Pareto optimal cuts and propose a tailored core point selection
criterion that provides a significant speed-up for solving the MUFND.

The second method is based on the combination of a modified cut-and-solve scheme
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(Climer and Zhang 2006) and our branch-and-Benders-cut algorithm. The method itera-
tively restricts the potential design arcs to solve smaller problems that produce a sequence
of feasible solutions with non-increasing objective function value. The algorithm also al-
lows for the recycling of Benders cuts generated in previous iterations thereby saving
computational effort.

We report computational experience on several sets of benchmark instances to assess
the performance of our algorithms. The proposed exact methods are up to three orders
of magnitude faster than the state-of-the-art MIP solver CPLEX 12.7.1 and solve in-
stances of larger size than those previously presented. This computational contribution
is accompanied by methodological insights such as the simultaneous use of a path and
arc-based formulation for the MUFND, the introduction of Benders lift-and-project cuts
to reduce the linear programming gap, and the hybridization of two well-known mixed
integer programming tools.

The remainder of the paper is organized as follows. Section 2 provides a formal def-
inition of the MUFND and presents the arc-based formulation. Section 3 describes the
Benders reformulation for the MUFND while Section 4 details the enhancements imple-
mented in our branch-and-cut algorithm. In Section 5, we present our second algorithmic
framework, a hybrid cut-and-solve Benders algorithm. Summarized results of our compu-
tational experiments are given in Section 6, while Section 7 presents concluding remarks
and future lines of research.

2. Problem definition

The MUFND is defined on a directed graphG = (N,A) whereN is a set of nodes, A is a
set of arcs and K is a set of commodities each defined by the tuple (ok, dk,Wk) representing
the origin, destination, and demand quantity of a commodity k ∈ K, respectively. The
key feature of this problem is its use in evaluating the trade-off between infrastructure
investment and operational costs. The former is modeled by the fixed cost paid for using
an arc fij joining node i to node j. The latter is modeled by a linear transportation cost
ckij paid per unit of commodity k routed on arc (i, j). The goal is to route all commodities
from origins to destinations at minimal cost.

Two well-known mixed integer models for this problem are the aggregated and disag-
gregated arc-based formulations. Both use a set of binary variables yij to model whether
arc (i, j) is installed or not and a set of continuous variables xkij to represent the fraction
of commodity k’s demand routed on arc (i, j). In this study, we use the disaggregated
formulation since its tighter linear programming (LP) relaxation is preferred when apply-
ing Benders decomposition (Magnanti and Wong 1981). The MUFND can be formulated
as follows:
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(P) minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

W kckijx
k
ij (1)

subject to
∑
j∈N

xkji −
∑
j∈N

xkij =


−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N, k ∈ K (2)

xkij ≤ yij ∀(i, j) ∈ A, k ∈ K (3)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (4)

yij ∈ {0, 1} ∀(i, j) ∈ A. (5)

The objective function (1) is the total cost of the network including both the instal-
lation and routing costs for all arcs and commodities. Flow conservation constraints (2)
ensure that the demand for all commodities is routed from origin to destination. Con-
straint set (3) assures that no flow is sent through an arc that has not been installed, while
(4) and (5) are the non-negativity and integrality conditions on x and y, respectively.

Note that depending on the instance data, P is a valid formulation for the Steiner
tree problem (all commodities share the same origin and no transportation costs exist)
or the travelling salesman problem (all arcs have the same fixed cost, the underlying
graph is complete, and commodities are sent between every pair of nodes) (Holmberg
and Hellstrand 1998). This shows the wide range of special cases generalized by the
MUFND and as such the inherent difficulty in developing an efficient exact algorithm for
this general model.

3. Benders decomposition for the MUFND

Benders decomposition is a well-known solution method for mixed integer program-
ming problems (Benders 1962). It splits large formulations into two problems, an integer
master problem and a linear subproblem. The principle behind Benders decomposition
is the projection of a large problem into a smaller subspace, namely the space of the
integer constrained variables. As a consequence, the projected model contains an expo-
nential number of constraints known as Benders cuts, indexed by the extreme points and
extreme rays of a special linear programming problem known as the dual subproblem
(DSP) or slave problem. Noting that not all Benders cuts are necessary to obtain the
optimal solution, Benders (1962) proposed to relax these and iteratively solve the integer
master problem to obtain a lower bound on the integral optimal solution value and then
substitute the solution into the dual subproblem thereby obtaining an upper bound and
a Benders cut to be added to the master problem. This is to be repeated until the upper
and lower bounds are within a given optimality tolerance ε. In this section, we present the
derivation of the Benders reformulation of P and the use of cutset inequalities to replace
the classic Benders feasibility cuts.
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3.1. Benders reformulation

The following steps describe the process of applying Benders decomposition to formu-
lation P of the MUFND. Note that by fixing y = ȳ, where ȳ ∈ Y and Y = B|A| denotes
the set of binary vectors associated with the yij variables, we obtain a linear program in x
that is easily solved. This new linear program will be denoted as the primal subproblem
(PSP) and has the following form:

(PSP) minimize
∑
k∈K

∑
(i,j)∈A

W kckijx
k
ij

subject to
∑
j∈N

xkji −
∑
j∈N

xkij =


−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N, k ∈ K (6)

xkij ≤ ȳij ∀(i, j) ∈ A, k ∈ K (7)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K.

Note that PSP can be split into |K| subproblems PSPk, one for each commodity. Let
λ and µ denote the dual variables of constraints (6) and (7), respectively. From strong
duality, each PSPk can be substituted by its linear programming dual, denoted as DSPk,
of the form:

(DSPk) maximize λkdk − λ
k
ok
−

∑
(i,j)∈A

µkij ȳij (8)

subject to λkj − λki − µkij ≤ W kckij ∀(i, j) ∈ A
µkij ≥ 0 ∀(i, j) ∈ A
λki ∈ R ∀i ∈ N.

From Farkas’ Lemma, we know that for a given k ∈ K, PSPk is feasible if and only if

ȳ ∈ Rk =

y ∈ Y | 0 ≥ λkdk − λ
k
ok
−

∑
(i,j)∈A

µkij ȳij, ∀(λk, µk) ∈ Θ

 ,

where Θ is the recession cone of DSPk. The inequalities that define Rk are known as
Benders feasibility cuts and, although by Farkas’ Lemma there exists an infinite number of
them, only those associated with the (finite) set of extreme rays are necessary. Therefore,
we use the representation of each polyhedron associated with each DSPk in terms of its
extreme points and extreme rays to determine whether PSP is infeasible or feasible and
bounded.

Let Ext(DSPk) and Opt(DSPk) denote the sets of extreme rays and extreme points of
DSPk, respectively. If, for a given y ∈ Y , there exists at least one k ∈ K and one extreme
ray (λ, µ) ∈ Ext(DSPk) for which

0 < λkdk − λ
k
ok
−

∑
(i,j)∈A

µkij ȳij,
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then DSPk is unbounded and PSP is infeasible. However, if

0 ≥ λkdk − λ
k
ok
−

∑
(i,j)∈A

µkij ȳij,

for each k ∈ K and each extreme ray (λ, µ) ∈ Ext(DSPk), then all DSPk are bounded
and the PSP is feasible. The optimal value of each DSPk is then equal to

max
(λ,µ)∈Opt(DSPk)

λkdk − λ
k
ok
−

∑
(i,j)∈A

µkij ȳij.

Using continuous variables zk for the transportation cost of each commodity k ∈ K,
the Benders reformulation of P is

(MP0) minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

zk (9)

subject to zk ≥ λkdk − λ
k
ok
−

∑
(i,j)∈A

µkijyij ∀k ∈ K, (λ, µ)k ∈ Opt(DSPk) (10)

0 ≥ λ̄kdk − λ̄
k
ok
−

∑
(i,j)∈A

µ̄kijyij ∀k ∈ K, (λ̄, µ̄)k ∈ Ext(DSPk) (11)

z ∈ R|K|

y ∈ {0, 1}|A|.

MP0, also known as the Benders master problem, exploits the decomposability of the
subproblems by disaggregating the feasibility and optimality cuts per commodity. This
type of multi-cut reformulation leads to a better approximation of the transportation costs
at each iteration, which has been empirically shown to improve solution times (Magnanti
et al. 1986, Contreras et al. 2011).

Exploiting the structure of the MUFND, we replace the Benders feasibility cuts (11)
with cutset inequalities which are sufficient to guarantee the feasibility of PSP (Costa
et al. 2009). The advantage of using cutset inequalities is that they can be efficiently
separated by solving a minimum cut problem over an auxiliary network. Algorithms such
as the Edmonds-Karp algorithm (Edmonds and Karp 1972) and breadth first search are
efficient in separating cutset inequalities for fractional and integer solutions, respectively.
With this in mind, we substitute the use of Benders feasibility cuts with cutset inequalities
yielding the following final Benders reformulation:
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(MP) minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

zk (12)

subject to zk ≥ λkdk − λ
k
ok
−

∑
(i,j)∈A

µkijyij ∀k ∈ K, (λ, µ)k ∈ Opt(DSPk) (13)

∑
(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ∆K (14)

z ∈ R|K|

y ∈ {0, 1}|A|,

where δ(S) = {(i, j) ∈ A|i ∈ S, j ∈ N\S} and ∆K is the set of subsets S ⊂ N such that
ok ∈ S and dk /∈ S for some k ∈ K.

4. A branch-and-Benders-cut algorithm for the MUFND

Since its introduction, Benders decomposition has been successfully used to solve
several difficult problems such as airline scheduling (Cordeau et al. 2001, Papadakos 2009),
facility location (Geoffrion and Graves 1974, Fischetti et al. 2017, Ortiz-Astorquiza et al.
2017), hub network design (Contreras et al. 2011), and fixed-charge network design (Costa
2005). Although the initially proposed algorithm suffered from slow convergence, through
the years researchers have devised enhancements to significantly increase its speed. Recent
implementations of Benders decomposition incorporate additional strategies such as the
generation of strong cuts, cut selection, stabilization, lower bound reinforcing, and solving
one enumeration tree (Botton et al. 2013, Naoum-Sawaya and Elhedhli 2013, Adulyasak
et al. 2015, van Ackooij et al. 2016, Fischetti et al. 2017, Rahmaniani et al. 2017, Bodur
and Luedtke 2017, Ortiz-Astorquiza et al. 2017). Choosing the best enhancements for
a given problem is not a trivial task since each improves the performance in a different
manner.

Our branch-and-Benders-cut algorithm employs the following algorithmic features: a
preprocessing routine to solve the linear relaxation, the generation of Pareto-optimal cuts,
a core point selection criterion, lower bound strengthening via lift-and-project cuts, an in-
tree matheuristic, and fine-tuning of cut parameters. In the following sections we explain
each of the aforementioned enhancements.

4.1. Preprocessing

Since MP is a Benders reformulation of the original formulation P, by relaxing the
integrality constraints and adding all Benders cuts to MP, we would obtain the LP relax-
ation solution of P. This is particularly important to note when implementing Benders
decomposition in a single enumeration tree. One of the recent common practices is to
solve MP as a linear program with a cutting plane algorithm and use the Benders cuts
generated as part of the problem definition declared to the MIP solver. General-purpose
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solvers use this information to increase lower bounds, infer good branching rules, and fix
variables in their preprocessing routine to reduce the underlying linear program’s size.

In our algorithm, we solve MP as a linear program before declaring it within the MIP
framework. However, instead of defining the problem with all Benders cuts generated
so far, we only include the Benders cuts that are binding at the optimal LP solution as
in Fischetti et al. (2017) and in Bodur and Luedtke (2017). This guarantees that we
obtain the LP optimal value before attempting to separate Benders cuts but pass on only
the essential information to the general-purpose solver and avoid declaring an excessively
large problem. This step, while obvious, significantly helps the solution process.

4.2. Pareto-optimal cut separation

Since the seminal paper on cut selection for Benders decomposition by Magnanti and
Wong (1981), Pareto-optimal cuts have become a standard practice. The approach applies
to problems for which there is an infinite number of alternative optimal solutions to DSPk

and therefore Benders optimality cuts. This is particularly the case in network design
problems known for their primal degeneracy. For a minimization problem, the authors
define cut dominance as follows. Given two cuts defined by dual solutions u and u1 of
the form z ≥ f(u) + yg(u) and z ≥ f(u1) + yg(u1), respectively, the cut defined by u
dominates that defined by u1 if and only if f(u) + yg(u) ≥ f(u1) + yg(u1) with strict
inequality holding for some feasible y of MP . If a cut defined by u is not dominated by
any other optimality cut, then this cut is said to be a Pareto-optimal Benders cut.

In general, to obtain Pareto-optimal Benders cuts an additional linear program must
be solved at each iteration. This additional linear program is the same as the dual
subproblem with two exceptions. The first is that a point y0 in the relative interior of the
master problem space, known as a core point, replaces the master problem solution ȳ in
the objective function (8). The second is that an equality constraint is added to ensure
that the obtained solution belongs to the set of alternative optimal solutions of DSPk

for the current master problem solution ȳ. In most cases, these modifications break the
structure of the dual subproblem exploitable by an efficient combinatorial algorithm. This
leads to having to solve an additional linear program. Papadakos (2008) addresses this
issue and presents a modified procedure that does not require solving an additional linear
program. The modified dual subproblem uses a point that must satisfy characteristics
that are more relaxed than Magnanti and Wong’s conditions.

In our algorithm, we use the “tailored” subproblem for the MUFND as presented in
Magnanti et al. (1986). The authors point out that the additional linear program for
each commodity k ∈ K in the classic Pareto-optimal approach is equivalent to solving
the following parametric minimum cost flow problem:
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(MCFk) minimize
∑

(i,j)∈A

W kckijx
k
ij −DSPk(ȳ)x0 (15)

subject to
∑
j∈N

xkji −
∑
j∈N

xkij =


−(1 + x0) if i = ok

1 + x0 if i = dk
0 otherwise

∀i ∈ N (16)

xkij ≤ y0
ij + x0ȳij ∀(i, j) ∈ A (17)

xkij ≥ 0 ∀(i, j) ∈ A
x0 ∈ R.

The problem can be interpreted as that in which a rebate of DSPk(ȳ) is given for
each additional unit of the commodity routed on the network with demand and capacities
defined by (16) and (17), respectively (Magnanti et al. 1986). The authors show that any
fixed value x0 ≥

∑
(i,j)∈A y

0
ij is optimal for MCFk, leaving a minimum cost flow problem

to be solved for each commodity k ∈ K.
As a result of fixing x0, it is no longer necessary to solve DSPk(ȳ) since it is now

multiplied by a constant in MCFk. This observation allows us to save computational time
by solving MCFk directly as the separation problem rather than as a complementary
problem for Pareto-optimal Benders cuts.

Magnanti and Wong (1981) note that the selection of different core points y0 leads to
varied Pareto-optimal cuts. To the best of our knowledge, the question of selecting an
adequate y0 has not been addressed before in the literature. We provide some guidelines
and computationally test different strategies for this in Section 6.2.

4.3. Benders lift-and-project cuts

With the current trend of implementing Benders decomposition within a branch-and-
cut framework, the need for problem formulations to have a strong LP relaxation has
become more important. Unfortunately, several problems do not satisfy this property.
Recently, Bodur and Luedtke (2017) and Bodur et al. (2017) proposed the use of general
mixed integer cuts such as mixed integer rounding and split cuts, respectively, within a
branch-and-Benders-cut algorithm to improve the LP relaxation. Their results show a
significant decrease in the LP gap leading to faster solution times.

Although Hellstrand et al. (1992) show that the polytope defined by P is quasi-integral,
the use of modified pivots for integral basic solutions is impractical due to P’s degeneracy
(Balas and Padberg 1972). In addition, modified integral pivots require the complete
formulation whereas our Benders reformulation is a projection into the smaller subspace
of the integer variables. As a result, we must find a way to close the LP gap within
the Benders decomposition framework. To do this, we adopt the lift-and-project cuts
proposed by Balas et al. (1993) to strengthen the master problem LP relaxation.

Lift-and-project cuts, a result of disjunctive programming theory (Balas 1979), were
initially proposed as a cutting plane algorithm by Balas et al. (1993) but were later
extended to the branch-and-cut framework (Balas et al. 1996) by proving the ability to

10



find globally valid cuts at nodes within the enumeration tree by means of a closed form
lifting procedure. The framework is as follows.

Given P = {x ∈ Rn|Ãx ≥ b̃} with inequalities of the form 1 ≥ x ≥ 0 included in
Ãx ≥ b̃ and PD = conv{x ∈ P |xj ∈ {0, 1},∀j = 1...p} where p < n, lift-and-project cuts
can be obtained by:

1 Selecting an index ̂ ∈ {1...p}. Multiplying Ãx ≥ b̃ by (1− x̂) and x̂.

2 Linearizing the obtained system by substituting yi = x̂xi and xi = xixi.

3 Projecting the system back into the original space by means of a cone projection.

Balas (1979) shows that it is possible to obtain the “deepest” lift-and-project cut of
the form

∑
i∈I αixi ≥ β that cuts off the LP optimum x̄ for a given ̂ ∈ {1...p} by solving

the following linear program:

(CGLP̂) minimize
∑
i∈I

αix̄i − β

subject to α− uA+ u0ê ≥ 0

α− vA− v0ê ≥ 0

− β + ub = 0

− β + vb+ v0 = 0

u, v ≥ 0,

where ê is the vector of all 0s except for a 1 in the ̂-th component.
The feasible space of CGLP̂ is a convex cone. Therefore, a normalization constraint

must be added to ensure a finite optimal solution. It has been shown (Balas and Perre-
gaard 2002) that varied normalizations lead to significantly different cuts. In our imple-
mentation, we use the following normalization constraint:∑

i

ui + u0 +
∑
i

vi + v0 = 1.

The resulting cut can be strengthened by using a closed formula derived by imposing
integrality constraints of other {0, 1} variables (Balas and Perregaard 2002). We adopt
this strengthening procedure in our algorithm. For a given variable xk, its coefficient αk
in the lift-and-project cut can be replaced by α′k = min{uak + u0dmke, vak − v0bmkc},
where

mk =
vak − uak
u0 + v0

.

While solving our Benders reformulation we do not have the complete polyhedral de-
scription of P since there would be exponentially many constraints. We resort to defining
Ã as the feasibility and optimality cuts that are binding at the LP relaxation and the
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1 ≥ x ≥ 0 constraints. Although this is known to give a weaker lift-and-project cut, we
also highlight its role in significantly reducing the size of CGLP̂ leading to times of less
than 0.02 seconds to obtain a cut. A similar strategy is used by Balas and Perregaard
(2002) outside the context of Benders decomposition. Another important factor in the
lift-and-project process is selecting the index ̂. In our implementation we choose the
fractional variable of the LP solution with highest fixed cost.

During our experiments we noted that these lift-and-project cuts are very dense and
often with small, numerically unstable coefficients. This led to numerical issues when
too many were added to the master problem at the same time. To circumvent this, we
ensure that at most seven lift-and-project cuts are added. We use an additional stopping
criterion of increase in the LP optimal value. In other words, if the effect of adding a
Benders lift-and-project cut is negligible, we then stop generating them. Note that the
effect of the lift-and-project cut is highly dependent on the variable ̂ chosen. However,
we found this criterion to be an effective rule to prevent numerical instabilities in our
algorithm.

4.4. An in-tree matheuristic
An important factor in solving difficult optimization problems, in particular when

using branch-and-bound methods, is obtaining high quality feasible solutions. Finding
these early in the enumeration process often leads to smaller search trees since they
provide better bounds for pruning and a guide for selecting variables to branch on. If
found in a preprocessing stage, they can be used to perform variable elimination tests
as in Contreras et al. (2009, 2011). Preliminary tests showed that the latter approach
eliminated few variables from the problem even if the optimal solution value was used
for these variable elimination tests. We therefore propose an in-tree matheuristic that
exploits the information generated during the enumeration process. Our algorithm uses
the paths obtained while solving the Benders subproblems as variables in a path-based
formulation of the MUFND.

Let Θµ
k denote a binary variable whose value is 1 if path µ is used for commodity k

and 0 otherwise, while yij denotes the network design variables as in P. Define parameter
vµk (i, j) = 1 if arc (i, j) belongs to path µ for commodity k, and 0 otherwise. Finally, let
Ωk denote the set of paths from o(k) to d(k) and Ω represent the union of these sets over
K. With this notation we have the following path-based formulation for the MUFND:

(PHeur) minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
µ∈Ωk

[W k
∑

(i,j)∈A

ckijv
µ
k (i, j)]Θµ

k (18)

subject to
∑
µ∈Ωk

Θµ
k = 1 ∀k ∈ K (19)∑

µ∈Ωk

vµk (i, j)Θµ
k ≤ yij ∀(i, j) ∈ A, k ∈ K (20)

Θµ
k ∈ {0, 1} ∀k ∈ K,µ ∈ Ωk. (21)

yij ∈ {0, 1} ∀(i, j) ∈ A. (22)
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The objective function (18) represents the total cost of routing the commodities on
the network, including design and transportation costs. Constraints (19) ensure that each
commodity is routed by exactly one path while (20) force the design variables of the arcs
used in a path to take value 1 if the path is used to route a commodity. We note that (20)
can be disaggregated to provide a tighter formulation. However, preliminary tests showed
it to have a negative effect on the computation time due to the increase in problem size.

Given the exponential number of paths for a given commodity, PHeur is usually solved
using column generation and branch-and-price when used to represent the MUFND. In
our algorithm, however, we will only use this formulation to solve for improved MUFND
solutions obtained from paths generated while solving the Benders subproblems. This
avoids having to solve several rounds of pricing problems at each branch-and-price node.
The only added computational effort comes from the fact that primal solutions to MCFk,
the Benders subproblem to obtain Pareto optimal cuts, sends different amounts of flow
through several paths from origin to destination. To obtain single paths to be used
in PHeur, we solve a shortest path problem over two networks derived from the primal
solution of MCFk. The first network contains the arcs that send any flow greater than 0.1
in the solution while the second contains arcs that send more than 1 unit of flow. This
provides us with the potential to generate two different paths at a low computational cost
every time the Benders subproblem is solved.

Finally, note that the branching over design variables during the enumeration process
of our Benders algorithm forces the generation of a varied set of paths for the Benders sub-
problems and hence variables for PHeur. The integration of our in-tree matheuristic into
our branch-and-Benders-cut algorithm provides a means of exploiting two formulations of
the same problem simultaneously as in Hewitt et al. (2010) for capacitated multicommod-
ity network design with the difference that our algorithm solves the problem to optimality
whereas theirs finds feasible solutions with a quality certificate.

4.5. Implementation details

We begin our solution process by solving the LP relaxation of MP using our cutset
separating routines and MCFk as our separation oracle to obtain Pareto-optimal Benders
cuts with core points defined as will be described in Section 6.2. Upon confirming that no
more violated Benders cuts exist, we use those that are binding at the optimal solution to
obtain a violated Benders lift-and-project cut. This cut is added to the MP relaxation and
we resume separating violated Benders cuts. We repeat this process until our stopping
criteria are satisfied.

We then define the MIP problem in CPLEX with the active Benders and lift-and-
project cuts as lazy and user constraints. This prevents defining an excessively large
initial problem. Another of the important aspects to consider when implementing this
method is the separation and cut adding frequency. Adding too few cuts leads to an
underestimation of the lower bounds of nodes in the enumeration tree, while adding too
many cuts leads to large LPs that require a longer computation time to solve.

Several cutting frequencies were tested in preliminary experiments. The best of the
tested strategies was separating Benders cuts at all nodes in the first five levels of the
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enumeration tree and then separating at every 100th node. For all these, only one round
of violated Benders cuts are added. For fractional solutions, a minimum violation of 0.01
was required to add the cut to the constraint pool of the node’s linear problem.

Lastly, to prevent executing our in-tree matheuristic too frequently, we limit its use
to only one node at each depth of the enumeration tree greater than ten that is divisible
by five. In addition, to ensure it has the potential to find an improved solution, it is only
called if at least N new paths have been generated since its last execution. Finally, to
avoid spending excessive time in this heuristic process, a time limit of thirty seconds was
set for each execution.

5. A cut-and-solve algorithm for the MUFND

Introduced by Climer and Zhang (2006) in the artificial intelligence community, cut-
and-solve has been used to solve well-known combinatorial optimization problems such as
the travelling salesman problem and the single-source capacitated facility location problem
(Yang et al. 2012, Gadegaard et al. 2018). The cut-and-solve framework is closely related
to local branching (Fischetti and Lodi 2003) in the sense that at each level of the enumer-
ation tree only two child nodes exist, one corresponding to a smaller “sparse” problem
and the other as its complement known as the “dense” problem. However, while in local
branching one begins with a feasible solution and defines the subproblems based on the
Hamming distance, cut-and-solve allows for more generic problem definitions and does not
require an initial feasible solution. Since our proposed framework is more closely aligned
with the latter, we adopt the cut-and-solve terminology and notation for the rest of the
paper. We next provide a brief description of the cut-and-solve procedure as presented
by Climer and Zhang (2006).

The “sparse” and “dense” problems are defined by constraints over a set of variables.
These constraints, known as “piercing” cuts, are of the form

∑
i∈I xi ≤ σ and

∑
i∈I xi ≥

σ + 1 where I ⊂ N is a subset of the problem’s binary variables and σ ∈ Z.
Upon branching, the “sparse” problem is solved to optimality by means of branch-

and-bound or any exact method to obtain a primal bound (UBsparse) on the original
problem. This highlights the need to define sparse problems that are easily solved. Next,
the linear relaxation of the dense problem is solved to obtain a lower bound (LBdense) on
the remaining solution space of the original problem. If LBdense ≥ UBsparse then UBsparse

is optimal for the complete problem. Otherwise, another piercing cut is defined over the
dense problem and the procedure is repeated.

We propose the use of our branch-and-Benders-cut algorithm as the black box MIP
solver within the cut-and-solve algorithm and a tailored rule for selecting the variables
to consider in the “sparse” problems. Two important advantages of using our Benders
algorithm within the cut-and-solve framework are the reduced problem size and the re-
usability of the Benders cuts generated in previous sparse problems. On the other hand,
some advantages to using cut-and-solve over Benders is that piercing cuts significantly
reduce the solution space and the optimal values of previous sparse problems are useful
for pruning branches in the enumeration tree.
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Our cut-and-solve algorithm begins by considering the union of shortest paths, denoted
as ∪k∈KPk, of each commodity using only their transportation costs. The resulting set
contains on average approximately 90% of the arcs open in an optimal solution and is
thus an ideal candidate to define our first “sparse” problem.

For ease of exposition we introduce the following notation. Let (ȳ, z̄)(t) represent the
solution of the t-th sparse problem, I(t) denote the set of indices of arc variables whose
value is 1 in (ȳ, z̄)(t) and χ(ȳ, z̄)(t)) be its objective function value. In particular, (ȳ, z̄)(0)
refers to the objective function value of activating and routing on the arcs of the union of
shortest paths.

At a given t ≥ 1, we define the following sparse problem:

(MPsparse(t)) minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

zk (23)

subject to zk ≥ λkdk − λ
k
ok
−

∑
(i,j)∈A

µkijyij ∀(λ, µ)k ∈ Opt(DSPk), k ∈ K (24)

∑
(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ∆K (25)

z ∈ R|K| (26)

y ∈ {0, 1}|A| (27)∑
(i,j)/∈I(t−1)

yij ≤ t (28)

∑
(i,j)/∈I(s)

yij ≥ s+ 2 ∀s = 0, ..., t− 1 (29)

∑
(i,j)∈A

fijyij +
∑
k∈K

zk ≤ χ((ȳ, z̄)(t− 1)), (30)

where ∆k = {S ⊂ N |∃k ∈ K where ok ∈ S, dk /∈ S}. The constraints (23)-(27) are the
Benders master problem reformulation of the MUFND. Constraint (28) is the piercing
cut that allows at most t variables not in the previous solution to take the value of
1 while constraints (29) are the negations of (28) from previous iterations. The latter
ensure that previously searched areas of the feasible space are not considered in the new
sparse problem. Finally, constraint (30) imposes that the optimal solution of the current
sparse problem has objective value of at most the optimal value of the previous one. This
constraint ensures that the obtained solutions do not worsen after each iteration and saves
computation time since its value is used as a pruning criterion for the enumeration tree.

If MPsparse(t) is feasible, we define MPsparse(t + 1) without solving the LP relaxation
of the corresponding dense problem. In this respect, our algorithm bears resemblance
to local branching as proposed in Fischetti and Lodi (2003). This is done until two
successive optimal solutions to MPsparse(t) are the same or until MPsparse(t) is infeasible,
due to (30). If either occurs, the dense problem, MPdense, is defined. The dense problem
is similar to MPsparse(t) with the exception that (28) is replaced by

∑
(i,j)/∈I(t−1) yij ≥ t+1
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and (ȳ, z̄)(t − 1) in (30) is replaced by the best solution found so far. We then solve
MPdense(t) which will either be feasible and hence provide the true optimal solution or
will be infeasible meaning that the best solution found so far is indeed optimal.

The presented framework provides a novel research direction, different from Rei et al.
(2009), for combining cut-and-solve and Benders decomposition. Below we present the
pseudocode of our cut-and-solve Benders algorithm.

Algorithm 1 Cut-and-solve Benders algorithm for the MUFND

Require: 0: Initialization
(ȳ, z̄)(0) = ∪k∈KPk, t = 1, best = (ȳ, z̄)(0)
Step 1: Define and solve MPsparse(t)
if (MPsparse(t) is feasible ∧ (ȳ, z̄)(t− 1) 6= (ȳ, z̄)(t)) then

best = (ȳ, z̄)(t)
t = t+ 1;
Goto Step 1

else
Goto Step 2

end if
Step 2: Define and solve MPdense

if MPdense is feasible then
Update best

end if
Return best.

6. Computational experiments

We perform extensive computational experiments to evaluate the efficiency of our
proposed methods and the effect of the enhancements implemented. Our analyses focus
on: the LP gap closed by adding Benders lift-and-project cuts to MP’s linear relaxation,
adequate core point selection, and the efficiency of our proposed solution methods versus
the state-of-the-art general-purpose MIP solver CPLEX 12.7.1.

We use the well-known “Canad” multicommodity capacitated network design instances
(Crainic et al. 2001) as our testbed. This dataset consists of 205 instances with arc
capacities. Ignoring the capacity constraints leaves a total of 93 distinct instances for our
experiments. The testbed can be divided into three classes. The first are the 31 “C”
instances with many commodities compared to nodes while the second are eight “C+”
instances with few commodities compared to nodes. Finally, Class III is divided into two
subgroups. Class III-A and III-B are each comprised of 27 “R” instances on small and
medium sized graphs, respectively.

We generate eight large-scale instances, denoted as Class IV, on which we test our
algorithms with a 24-hour time limit. These were generated using the Mulgen generator
(Crainic et al. 2001) available at http://pages.di.unipi.it/frangio/ with sizes of up to 1,500
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arcs and 1,500 commodities. To the best of our knowledge these are the largest instances
of the MUNDP to be solved by an exact algorithm.

Another characteristic of our testbed is the existence of instances that have an LP gap
strictly greater than 0. This is important in our analysis as we need to test our algorithm’s
ability to quickly explore the enumeration tree and the efficiency of our proposed lift-and-
project Benders cuts. The “Canad” testbed contains several instances with this property.
Table 1 details the number of instances for each LP gap range (%) in our testbed.

Table 1: Distribution of “Canad” instances’ LP gaps (%)

Class 0 (0, 1] (1, 2] (2, 3] (3, 4] [4, 7.2] Total
Class I 10 7 2 4 2 6 31
Class II 7 1 8
Class III-A 26 1 27
Class III-B 9 2 2 5 9 27
Class IV 0 3 3 2 8
Total 52 13 6 8 7 15 101

All algorithms were coded in C using the callable library for CPLEX 12.7.1. The
separation and addition of cutset inequalities and Benders optimality cuts is implemented
via lazy cut callbacks and user cut callbacks. For a fair comparison, all use of CPLEX was
limited to one thread and the traditional MIP search strategy. Experiments were executed
on an Intel Xeon E5 2687W V3 processor at 3.10 GHz under Linux environment.

6.1. Impact of lift-and-project cuts on LP gap

As shown in Table 1, Class I, III-B, and IV contain most of the instances with higher
LP gap. Preliminary tests showed these to be the most difficult to solve, in particular when
it came to proving optimality. It is in this spirit that we proposed using lift-and-project
cuts to improve the LP bound at the root node.

Table 2 shows the percentage of the LP gap (LPimp%) closed by applying at most
seven lift-and-project cuts to the linear relaxation of our Benders master problem. This
percentage is calculated as LPimp = 100 × (LPMPLP−LPMP )

Opt−LPMP
where LPMPLP is the optimal

value of the linear relaxation of the master problem with the additional lift-and-project
cuts, LPMP is the optimal value of the linear relaxation of the master problem, and Opt
is the optimal value of the problem.

The average improvement of the LP gap is of 5.26% over the 50 solved instances with
an LP gap. There are many factors that contribute to this behavior. The first is that
lift-and-project cuts as proposed by Balas et al. (1993) require the complete formulation
of the problem. In our implementation, we use a relaxation comprised of only the Ben-
ders cuts that are binding at the LP solution. In Balas et al. (1996), this relaxation is
shown to generate weaker cuts. Second, our stopping criterion for lift-and-project cuts
is conservative, avoiding generating too many of them at the beginning due to their nu-
merical instability. Finally, our simplified variable selection rule also contributes to this
performance.
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Table 2: LP gap (%) closed

Class No. of instances LPimp
Class I 21 6.61
Class II 1 9.07
Class III-A 1 20.45
Class III-B 18 3.65
Class IV 8 2.99
Total 49 5.26

6.2. Impact of core point selection

Despite the use of Pareto optimal Benders cuts being now common practice, little
computational experimentation with core point selection strategies has been done. We
next show how core point selection influences the solution time and that a tailored core
point selection strategy can lead to significant time savings. We test three strategies for
core point selection. The first is the most common practice in the literature while the
second is a novel strategy that can be applied to any Benders reformulation of a mixed
binary program. Finally, the third is a strategy tailor-made for the MUFND and is based
on the union of shortest paths of the commodities k ∈ K, as in the definition of our
initial “sparse” problem. Let y0 and ȳ denote the current core point and master problem
solution, respectively. The details of the three core point selection strategies are as follows:

1 Initialize y0={1}|A| and dynamically update the core point as y0 = 0.5y0 + 0.5ȳ as
in Papadakos (2008) and similar to Fischetti et al. (2017).

2 Initialize a stabilizer point ŷ as ŷ = {1}|A| which will then be updated as better
incumbent solutions are found during the enumeration process. Dynamically update
the core point as y0 = 0.5ŷ + 0.5ȳ.

3 Fix the core point throughout the entire process based on the arcs that are present
in at least one of the commodities’ shortest paths, denoted as ∪k∈KPk. The fixed
core point is defined as y0

ij = 0.7 if (i, j) ∈ ∪k∈KPk and y0
ij = 0.2 if (i, j) /∈ ∪k∈KPk.

These values were chosen after running preliminary experiments with the values of
{0.5, 0.6, 0.7, 0.8, 0.9} for arcs in the routing solution and {0.1, 0.2, 0.3, 0.4, 0.5}
for arcs not in the routing solution.

Note that in all three cases, the proposed core point is in the interior of the {0, 1}|A|
hypercube. However, to solve MCFk, y

0 must not only lie in the interior of the {0, 1}|A|
hypercube but must also define a network through which one unit of demand can be sent
from ok to dk, ∀k ∈ K. Failure to do so could lead to MCFk being infeasible despite
ȳ being a feasible solution for the MUFND. This was observed empirically to have a
particularly pernicious effect on the overall computation time.

To remedy this we solve a minimum cut for each k ∈ K to check for feasibility when
defining the fixed core point of strategy 3. If there exists a minimum cut δ(S)k = {(i, j) ∈
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A|ok ∈ S and dk ∈ N\S} for a commodity k ∈ K with
∑

(i,j)∈δ(S)k
y0
ij < 1, we then

increase the value of each arc in δ(S)k by [1/|δ(S)k|]+0.01 and check again for a violated
cutset. This is repeated until no such cutset exists. We place a cap on the value of y0

ij

to be at most 0.9999 to ensure y0 remains an interior point. Given that the core point is
fixed throughout the solution process, this verification is only done once at the beginning.
Since the other strategies constantly update the core point, running this procedure every
time proved to be time consuming. To circumvent this we run this procedure only when
MCFk becomes infeasible. The solution times, in seconds, of these strategies implemented
in our branch-and-Benders-cut algorithm are shown in Table 3.

Table 3: Impact of core point selection- time in seconds

Class Nb Strategy 1 Strategy 2 Strategy 3
Class I 31 119.46 286.42 73.74
Class II 8 12.96 6.50 6.91
Class III-A 27 0.03 0.04 0.04
Class III-B 27 227.52 451.77 187.15
Class IV 6 112.17 204.02 67.25

Total 99 107.31 225.80 78.78

The best performing is our tailored core point selection strategy (strategy 3) which
saves over a quarter of the average computation time of the second best performing strat-
egy, the well-known dynamic mid-point update (strategy 1). The worst is the incumbent
stabilizer update (strategy 2). These results show the added value of using core point
selection strategies that exploit problem structure.

6.3. Computation time

We now compare the computation time of each of our proposed algorithms. We begin
by focusing on our branch-and-Benders-cut algorithm since we use the best performing as
the black box solver in our cut-and-solve/local branching algorithm. To show the impact
of each enhancement, we present four versions of our branch-and-Benders-cut algorithm.
The first is without using our in-tree matheuristic nor our lift-and-project cuts (B0). The
second is the same, with the addition of the in-tree heuristic (B1). B2 is the branch-and-
Benders-cut algorithm with lift-and-project cuts added at the root node and the final
version (B3) combines them all. A time limit of 24 hours is set for all algorithms.

The results are presented in Table 4 with the exception of the instances of classes II and
III-A which were all solved in less than a second by our four algorithms and CPLEX. The
first three columns describe the problem class, instance sizes (|N |, |A|, |K|), and number
of instances in each instance group respectively. For each version of the algorithm, two
columns are displayed,“Seconds” which denotes the average solution time in seconds and
“Nodes” which refers to the average number of nodes explored. Finally, we point out
that the averages of class IV and the total test bed are taken only over the instances
with comparable solution times to avoid the averages being skewed by large numbers, i.e.
instance groups 50,1500,1000 and 50,1500,1500 are omitted.
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Table 4: Computational performance of branch-and-Benders-cut algorithm

B0 B1 B2 B3

Class (|N |, |A|, |K|) Nb Seconds Nodes Seconds Nodes Seconds Nodes Seconds Nodes

I

20,230,40 3 0.22 0 0.21 0 0.21 0 0.21 0
20,230,200 4 15.17 274.50 15.65 271.00 21.58 395.00 26.15 496.00
20,300,40 4 0.24 0.25 0.24 0.25 0.28 0.75 0.28 0.75
20,300,200 4 12.11 200.50 12.80 159.00 25.94 371.50 34.67 384.25
30,520,100 4 305.08 3,335.25 157.50 2,456.50 286.05 2,694.75 233.35 4,439.25
30,520,400 4 9.14 35.25 9.06 35.25 12.21 36.75 12.34 36.25
30,700,100 4 8.86 188.25 7.92 162.00 9.42 209.25 8.55 256.25
30,700,400 4 332.35 4,613.25 293.22 5,322.25 254.17 3,800.50 276.19 3,716.75
Sub-Total 31 88.14 1,115.77 64.07 1,084.68 78.68 968.84 76.35 1,203.81

III-B

20,120,40 3 0.11 0 0.10 0 0.10 0 0.11 0
20,120,100 3 1.97 70.67 1.98 70.67 3.42 88.67 3.50 93.00
20,120,200 3 214.59 1,808.00 255.64 1,921.00 166.83 1,062.33 178.16 1,521.67
20,220,40 3 2.00 100.67 1.95 99.00 2.08 111.67 2.34 99.33
20,220,100 3 39.81 688.67 49.54 839.33 177.31 2,548.33 124.55 2,232.33
20,220,200 3 775.17 3,644.67 929.44 3,285.33 1,320.94 3,583.33 1,460.67 3,738.00
20,320,40 3 11.44 876.67 15.14 849.67 12.47 872.00 12.69 832.67
20,320,100 3 6.87 104.33 7.17 104.33 12.50 223.67 11.81 199.33
20,320,200 3 625.82 1,723.00 669.79 2,273.67 1,012.85 2,476.67 1,087.30 3,176.00
Sub-Total 27 186.42 1,001.85 214.53 1,049.22 300.94 1,218.52 320.13 1,321.37

IV

40,1200,400 1 9.19 6.00 8.97 6.00 15.56 7.00 15.68 7.00
40,1200,800 1 53.00 537.00 55.98 669.00 68.69 715.00 63.87 711.00
40,1200,1200 1 57.07 61.00 57.34 61.00 82.95 74.00 86.69 74.00
50,1400,400 1 29.94 649.00 31.70 580.00 34.82 601.00 36.54 597.00
50,1400,800 1 117.31 1,938.00 127.06 1,886.00 177.01 3,860.00 196.47 3,215.00
50,1400,1200 1 201.33 2,162.00 198.49 2,257.00 183.17 1,655.00 208.59 1,929.00
50,1500,1000 1 54,074.52 419,563.00 54,680.74 420,298.00 44,367.11 389,246.00 57,487.39 555,136.00
50,1500,1500 1 69,637.47 262,007.00 69,055.11 262,007.00 time 483,149.00 time 438,179.00
Sub-Total 6 77.97 892.17 79.92 909.83 93.70 1,152.00 101.31 1,088.83

Total 64 128.65 1,046.75 129.03 1,053.33 173.86 1,091.34 181.53 1,242.63

We note that with respect to computation time, implementing Benders without in-
cluding Benders lift-and-project cuts performs on average the fastest. Between the two
versions that exclude it, B0 is on average marginally better than B1 over the instances of
class III-B and IV but 30% slower on average over the instances of class I. This shows that
although in most cases using the in-tree heuristic will increase the solution time, there
are instances for which it pays off significantly, for example instance groups 30,520,100
and 30,700,400 of class I.

While incorporating Benders lift-and-project cuts has a better solution time when
compared to B0 for the instances in class I, it produces on average over a 30% increase
in solution time over the complete testbed. B2 provides the fastest solution time for
instance groups 30,700,400 of class I; 20,120,200 of class III-B; and 50,1500,1000 of class
IV; however, for other instance groups, it can double the solution time despite exploring
fewer nodes (see instance group 20,220,200 of class III-B). An explanation for this is
the density and numerical instability of the Benders lift-and-project cuts. As mentioned
before, these cuts have several non-zero coefficients close to zero. This leads to more
time required to solve the underlying linear programs and in some instances numerical
instability that prevents CPLEX from constructing an advanced basis for nodes in the
tree. We also note that their use rarely leads to a reduction in the size of the enumeration
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tree as both B3 and B4 show a larger average number of nodes explored than B0 and B1.
This indicates that the addition of these cuts negatively influences the branching within
the enumeration tree.

Incorporating both Benders lift-and-project cuts and our in-tree heuristic simultane-
ously is the version that requires the most computation time on average over the entire
test bed. In fact, its solution time is worse than the versions that incorporate them in-
dividually. One of the main factors contributing to this is the increase that comes from
incorporating Benders lift-and-project cuts which as we have seen, also negatively influ-
ences the branching within the enumeration tree. The rest of the solution time increase
can be explained by the additional time the in-tree heuristic required to solve PHeur.

Finally, we note that both B0 and B1 are able to solve the two largest instances that
required significantly more time. In particular, incorporating our in-tree matheuristic
proved marginally beneficial for the largest instance. On the other hand, including Ben-
ders lift-and-project cuts rendered a time saving of one-fifth of the computation time
required by B0 to solve the second largest instance. This again shows the unpredictable
effect of lift-and-project cuts in our branch-and-Benders-cut algorithm.

Considering these results, we choose B0 as the black box solver for our cut-and-solve
algorithm. Figure 1 is the performance profile of our branch-and-Benders-cut algorithm
(BB&C), our cut-and-solve (CS/LB) and solving P with CPLEX 12.7.1’s branch-and-cut
algorithm CPX. We do not compare with CPLEX’s black box Benders implementation
since preliminary results showed it to perform significantly worse than CPLEX’s branch-
and-cut. Figure 1 plots the number of instances solved by each algorithm within a given
number of seconds.
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Figure 1: Number of instances solved in a given time limit

We note that both our proposed methodologies are able to solve more instances in less
time than CPLEX, having solved close to 83% of the instances in less than 100 seconds and
solving all except the two largest instances within 45 minutes. CPLEX on the other hand
manages to solve only 41 instances within 100 seconds; less than the number solved by
our branch-and-Benders-cut algorithm in 20 seconds. CPLEX runs into trouble proving
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optimality for 10 instances requiring over an hour for the least troublesome and over
half a day for the most burdensome. In addition, it is unable to solve the two largest
instances within the one-day time limit while our branch-and-Benders-cut algorithm solves
all instances within twenty hours of CPU time.

When comparing the performance between (CS/LB) and (BB&C), we see from Figure
1 that the latter is faster at solving instances. However, when given additional time, both
algorithms have similar behavior. To make a more precise comparison, Table 5 contains
the average times, in seconds, required for each class and description of our testbed.

Our results show that on average both BB&C and CS/LB are an order of magnitude
faster than CPLEX for instances all three are able to solve. This speedup is even more
significant when limiting our analysis to the large-scale instances. For these, our branch-
and-Benders-cut algorithm is up to three orders of magnitude faster than CPLEX. The
instances of Class III-B also show a significant saving in computation time in favor of
our Benders decomposition-based algorithms. The savings obtained with BB&C can be
largely attributed to solving smaller underlying linear programs in the enumeration tree
and exploring the nodes in significantly less time.

Table 5: Comparison of computation times in seconds

Class (|N |, |A|, |K|) Nb CPX CS/LB BB&C

I

20,230,40 3 0.07 0.21 0.22
20,230,200 4 252.95 34.56 15.17
20,300,40 4 0.17 0.33 0.24
20,300,200 4 303.24 30.35 12.11
30,520,100 4 3,181.33 172.15 305.08
30,520,400 4 95.46 20.61 9.14
30,700,100 4 71.61 19.56 8.86
30,700,400 4 10,479.58 550.03 332.35
Sub-Total 31 1,856.05 106.80 88.14

III-B

20,120,40 3 0.05 0.10 0.11
20,120,100 3 13.42 5.56 1.97
20,120,200 3 361.23 245.47 214.59
20,220,40 3 6.91 6.81 2.00
20,220,100 3 153.86 54.32 39.81
20,220,200 3 1,615.31 1,396.17 775.17
20,320,40 3 27.79 36.06 11.44
20,320,100 3 69.25 29.36 6.87
20,320,200 3 2,592.58 435.30 625.82
Sub-Total 27 537.82 245.46 186.42

IV

40,1200,400 1 59.82 19.95 9.19
40,1200,800 1 4,483.75 141.31 53.00
40,1200,1200 1 1,664.10 110.68 57.07
50,1400,400 1 575.91 68.06 29.94
50,1400,800 1 39,051.12 296.61 117.31
50,1400,1200 1 57071.73 500.18 201.33
50,1500,1000 1 time time 54,074.52
50,1500,1500 1 time time 69,637.47
Sub-Total 6 17,151.07 189.47 77.97
Total 64 2,733.83 173.05 128.65

This is surprising because unlike solving P with CPLEX, our branch-and-Benders-
cut algorithm does not explicitly have a complete description of the problem’s polytope
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but must instead estimate it on the fly by generating Benders cuts. This leads to the
possibility of underestimating the solution of the underlying linear programs at each node
of the enumeration tree, leading to weak dual bounds. This is more likely to occur in
BB&C since we only allow for one round of Benders cuts to be added at non-root nodes
of our enumeration tree. However, due to the enhancements proposed, we leave the root
node with a linear program that captures most of the important characteristics in a smaller
problem.

On the other hand, our modified cut-and-solve algorithm’s performance is also two
orders of magnitude faster than CPLEX for large-scale instances while for Class III-B, it
saves over 50% of the solution time. On average, CS/LB solves five sparse problems before
proving optimality of its obtained solution. Each of these sparse problems are solved up
to three orders of magnitude faster than solving the complete problem with CPLEX and
sometimes in half the time than if solved with branch-and-Benders-cut algorithm. It is
because of these time savings that it outperforms CPLEX in all instances and our branch-
and-Benders-cut algorithm in instance group 20,320,200 of class III-B. The advantage of
this method is that it finds the optimal solution early on and spends the rest of the time
proving optimality by solving another sparse problem followed by the remaining dense
problem.

Finally, we point out that while dimensionality does play a role in the computation
time required to solve these instances, there exist other factors that contribute to the
difficulty of these problems. This can be seen in the difference in solution time between
the instance group 30,520,100 and 30,520,400 of class I where the group with four times
more commodities is solved in significantly less computing time. The same is seen when
comparing differences in number of arcs. Instance group 30,700,100 (class I) requires sig-
nificantly less computing time than the instance group 30,520,100 (class I) which has less
arcs. Identifying the other factors that make some network design instances particularly
difficult for mixed integer programs would allow researchers to devise algorithms with an
improved, more stable performance.

7. Conclusion

We have presented two exact solution algorithms for the multicommodity uncapac-
itated fixed-charge network design problem that significantly outperform the state-of-
the-art general-purpose MIP solver CPLEX. The first exact algorithm is based on imple-
menting Benders decomposition within a branch-and-cut framework using Pareto-optimal
cuts, appropriate core point selection, and an in-tree matheuristic. These additional re-
finements also serve as general guidelines for implementing this algorithm for other mixed
integer problems.

We present a novel strategy for improving the LP bound of our Benders reformulation
by means of Benders lift-and-project cuts applied to the master problem’s feasibility and
optimality cuts. These are obtained using a modified cut generating linear program that
takes less than 0.02 seconds to solve. This procedure extends beyond the MUFND and
can be applied to all problems that allow a mixed integer programming formulation and
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corresponding Benders reformulation.
Finally, we present a strategy that combines ideas from cut-and-solve/local branching

and our proposed branch-and-Benders-cut algorithm. The advantages of this method
are: breaking down the problem into a few sparse MIPs which make it easier to obtain
high quality feasible solutions, the non-increasing optimal values obtained from the sparse
problems, the reduced size of the sparse problem solution space, and the re-usability of
Benders cuts generated in previous iterations. The results of our implementation show
this fusion to be a promising method for solving large-scale MIPs.
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