

TRAVEL SPEED PREDICTION BASED ON

LEARNING METHODS FOR HOME

DELIVERY

Maha Gmira

Michel Gendreau

Andrea Lodi

Jean-Yves Potvin

November 2018

DS4DM-2018-012

POLYTECHNIQUE MONTRÉAL

DÉPARTEMENT DE MATHÉMATIQUES ET GÉNIE INDUSTRIEL

Pavillon André-Aisenstadt
Succursale Centre-Ville C.P. 6079
Montréal - Québec
H3C 3A7 - Canada
Téléphone: 514-340-5121 # 3314

Travel Speed Prediction based on Learning
Methods for Home Delivery

Maha Gmira †§¶, Michel Gendreau †¶
Andrea Lodi †§¶, Jean-Yves Potvin ‡¶

†Département de mathématiques et de génie industriel
Polytechnique Montréal,

C.P. 6079, succ. Centre-Ville, Montréal, Québec, Canada H3C 3A7.

‡Département d’informatique et de recherche opérationnelle
Université de Montréal,

C.P. 6128, succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7.

§Chaire d’excellence en recherche du Canada sur la science des données
pour la prise de décision en temps réel

Polytechnique Montréal,
C.P. 6079, succ. Centre-Ville, Montréal, Québec, Canada H3C 3A7.

¶Centre interuniversitaire de recherche
sur les réseaux d’entreprise, la logistique et le transport,

Université de Montréal,
C.P. 6128, succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7.

Abstract. The travel time required to get from one location to another in a network is
an important performance measure in intelligent transportation and advanced traveler
information systems. Accordingly, accurate travel time predictions are of foremost
importance. In an urban environment, vehicle speed and consequently travel time can
be highly variable due to congestion caused, for example, by accidents or bad weather
conditions. At another level, one also observes daily patterns (e.g., rush hours),

1

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

weekly patterns (e.g., weekdays versus weekend), and seasonal patterns. Capturing
time-varying features when modeling travel speeds provide an immediate benefit to
commercial transportation companies that distribute goods, since it allows them to
better optimize their routes and reduce their environmental footprint.

This paper presents a travel speed prediction methodology based on data collected
from mobile location devices installed inside commercial delivery vehicles. An analysis
is conducted using unsupervised learning to cluster data, dimensionality reduction
techniques and imputation methods to fill missing values and a Long Short-Term
Memory neural network to forecast travel speeds.

1 Introduction
Traffic congestion can be classified as recurrent (due to well-known patterns) and
non-recurrent (due to accidents, construction, emergencies, special events and bad
weather, among others). Accordingly, there is a need for models that can derive future
values from observed trends, in order to provide accurate predictions under recurrent
and non-recurrent congestion. With the increasing amount of available data collected
from probe vehicles, smartphone’s applications and other location technologies, the
challenge is no longer related to the quantity of data but rather to the modeling and
extraction of useful information from such data. This information can be of great
value for transportation companies operating in urban areas.

Given the variability of travel speeds due to usual and unusual traffic situations,
the objective of this research is to make better travel speed predictions, which should
ultimately help to generate better vehicle delivery routes. This will be done with
a neural network model that uses information extracted from data collected from
mobile location devices. The data for this study come from a software development
company located in Montreal that produces vehicle routing algorithms to plan the
home delivery of large items (appliances, furniture) to customers. This partner has
delivery routes with more than 2,500,000 delivery points, serviced by nearly 200,000
routes. Data are collected using Automatic Vehicle Location (AVL) systems where
GPS receivers are usually interfaced with Global System for Mobile Communications
(GSM) modems. The system records point locations as latitude-longitude pairs, in-
stantaneous speed, date and time. Our challenge here was to develop techniques for
the management of big data that would allow prediction algorithms to perform well.

In the following, a review of the scientific literature related to our work is first
presented in Section 2. Then, our methodology for travel speed prediction is reported.
The creation of a database of speed patterns from GPS traces is described in Section
3. Then, techniques to reduce the size of the database and cluster arcs into similarity
classes are explained in Section 4. This is followed by the neural network model used

2

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

to predict travel speeds in Section 5. Computational results are finally reported in
Section 6.

2 Literature review
Most urban traffic control systems rely on short-term traffic prediction and a huge
literature has been published on this topic in the last decades due, in particular, to
the advent of Intelligent Transportation Systems (ITS). Given that these systems are
highly dependent on accurate traffic information, they must collect a large amount
of data (locations, speeds and individual itineraries).

Travel speed prediction at a given time typically relies on historical travel speed
values and a set of exogenous variables. Methods to predict traffic information are
classified in [49] as 1) naive (i.e., without any model assumption), 2) parametric, 3)
non-parametric and 4) a combination of the last two, called hybrid methods. The
first three methods are described in the following.

2.1 Naive methods
Naive methods are by far the easiest to implement and to use because they do not
require an underlying model. However, one main drawback is their lack of accuracy. In
[49], naive methods are divided into instantaneous methods (based on data available
at the instant the prediction is performed), historical methods (based on historical
data) and mixed methods, where the latter combine characteristics of historical and
instantaneous methods. As a baseline for comparison with other parametric methods,
the work reported in [44] uses a simple hybrid method where the travel speed forecast
is a function of the current traffic flow rate, as well as its historical average at a given
time of the day and day of the week. In [57], the authors compare two methods for
travel time prediction, one based on data available at the instant the prediction is
performed and one based on historical data. Using the Relative Mean Error (RME)
and the Root Mean Squared Error (RMSE), these two approaches showed similar
performance, but were clearly outperformed by a more sophisticated approach called
Support Vector Regression (see Section 2.3).

2.2 Parametric methods
Parametric methods use data to estimate the parameters of a model, whose structure
is predetermined. The most basic model is linear regression, where the traffic variable
Vt to be predicted at a given time t is a linear function of independent variables:

Vt = β0 + β1X1 + β2X2 + ...+ βnXn . (1)

3

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

Different techniques are available to estimate the parameters βi, i = 1, ... n. Among
parametric methods, we consider the Autoregressive Moving Average model (ARMA)
and its Integrated variant (ARIMA), different smoothing techniques and the Kalman
filter. They are presented below.

(a) Kalman Filter
The Kalman filter is a very popular short-term traffic flow prediction method. It
allows the state variables to be updated continuously, which is very important
in time-dependent contexts. Some works related to traffic state estimation
are based on the original Kalman filter [28], as well as its extension for non-
linear systems called the Extended Kalman Filter (EKF) [27]. The latter is
particularly relevant since the travel times depend on traffic conditions that
are highly non-linear and dynamic, changing over time and space. In [55], a
freeway state estimator is obtained by solving a macroscopic traffic flow model
with EKF. A new EKF based on online-learning is used in [50] to provide travel
time information on freeways. Also, a dynamic traffic assignment model, which
is a non-linear state-space model, is solved by applying three different extensions
of the Kalman filter [1].
In [26], the authors use traffic data on California highways to predict travel
times on arcs and estimate the arrival time at a destination. First, travel times
on arcs are predicted by feeding the Kalman filter with historical data. Then,
this prediction is corrected and updated with real time information using the
Kalman filter’s corrector-predictor form.

(b) ARMA
To predict short-term traffic characteristics such as speed, flow or travel time,
time series models based on ARMA(p,q) (which is a combination of p autore-
gressive terms AR and q moving average terms MA) have been widely used. If
we consider travel time prediction, the general formulation of ARMA(p,q) is:

T (t)−
p∑

i=1
αiT (t− i) = Z(t) +

q∑
j=1

βjZ(t− j) , (2)

where the travel time T (t), given departure time t, is a linear function of the
travel times at previous instants, Z(t− 1), , Z(t− q) are noise variables and
(αi, βj) are parameters.
ARIMA models generalize ARMA models for non-stationary time series. They
rely on stochastic system theory since the processes are non-deterministic. In
[22], the authors use the Box-Jenkins approach [4] to develop a forecasting model

4

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

based on ARIMA from data collected in urban streets (i.e., 1-minute traffic-
volume on each street during peak periods). After comparing several ARIMA
models, the one of order (0,1,1) yielded the best results in terms of traffic volume
forecasts, where the values of 0, 1 and 1 refer to the order of the autoregressive
model (number of time lags), number of differentiation steps (number of times
the values in the past are subtracted) and moving-average terms, respectively.
The authors in [44] compare a seasonal ARIMA model, called SARIMA, with
a non-parametric regression model where the forecast generation method and
neighbor selection criteria are heuristically improved. The tests showed that
SARIMA performed better than the improved non-parametric regression.
In [56], the authors model traffic flow with SARIMA (1,0,1) and SARIMA(0,1,1)
models. Another SARIMA model is reported in [20] to forecast traffic conditions
over a short-term horizon, based on 15-minute traffic flow data. In this case,
SARIMA outperformed the K-nearest neighbor method.

2.3 Non-parametric methods
Non-parametric methods include non-parametric regression and different types of
neural networks. Non-parametric methods are also known as data-driven methods,
because they need data to determine not only the parameters but also the model
structure. Thus, the number and types of parameters are unknown a priori. The
main advantage of these methods is that they do not require expertise in traffic the-
ory, although they need a lot of data.

The most popular non-parametric methods for traffic prediction are the support
vector machine, neural networks and non-parametric regression.

(a) Support Vector Machine
The Support Vector Machine (SVM) was first introduced in [51, 52] and used
in many classification and regression studies. SVM is popular because it guar-
antees global minima, it deals quite well with corrupted data and works for
complex non-linear systems. Support Vector Regression (SVR) is the applica-
tion of SVM to time-series forecasting.
In [57], the authors analyze the application of SVR for travel time prediction.
They used traffic data, obtained from an Intelligent Transportation System, over
a five weeks period. The first four weeks correspond to the training set and the
last week corresponds to the testing set. Using a Gaussian kernel function and
a standard SVR implementation, their method improved the RME and RMSE
when compared to instantaneous and historical travel time prediction methods.

5

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

Due to its promising results, SVR has been used to predict traffic parameters
such as traffic flow or travel time. However, the classical SVR, like the one used
in [57], cannot be applied in real time because it requires a complete model
training each time a new record (data) is added. There are also some variants
of SVM for traffic prediction. In [54], the authors report a hybrid model called
the chaos-wavelet analysis SVM that overcomes the need to choose a suitable
kernel function. In the context of traffic flow prediction for a large-scale road
network [58], SVM parameters are optimized by a parallel genetic algorithm,
thus yielding a Genetic Algorithm-Support Vector Machine (referred to as GA-
SVM).

(b) Neural networks
When considering data-driven methods, neural networks are among the best
for traffic forecasting because of their ability to learn non-linear relationships
among different features without any prior assumption.
The most widely used neural networks are called Multi-Layer Perceptrons (MLPs).
They are typically made of an input layer, one hidden layer and an output layer,
where each layer contains one or more units (neurons). The units in the input
layer are connected to those in the hidden layer, while the units in the hidden
layer are connected to those in the output layer. The weights on these con-
nections are adjusted during the learning process using (input, target output)
example pairs, so as to produce an appropriate mapping between the inputs and
the target outputs. In [8], a MLP is used to predict traffic flow from input data
(speed, flow, occupancy) collected by detection devices on a highway around
the city of London. In that application, the MLP and a radial basis function
network performed better than all ARIMA models considered. In [53], the au-
thors exploit a genetic algorithm to fine tune the parameters and the number of
hidden units in a MLP. Their model showed better generalization abilities when
tested with new inputs. More recently, the authors in [21] report the perfor-
mance of a MLP with 15 hidden units, trained with the Levenberg-Marquardt
backpropagation algorithm. Based on different error performance indicators,
the MLP showed good accuracy when predicting road speeds. In [34], a MLP
is used to predict the time needed to cross the Ambassador bridge, one of the
busiest bridges at the Canada-US border. A database of GPS records for a full
year was used to train and test the neural network.
As indicated in [32], Recurrent Neural Networks (RNNs) are better suited for
traffic forecasting tasks due to their ability to account for sequential time-
dependent data. Typically, the signal sent by the hidden layer to the output
layer at some time t is also sent back to the hidden layer. This signal is pro-

6

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

cessed with the input signal at time t + 1 to determine the internal state of
the hidden layer. This internal state acts as a memory and remembers useful
time-dependent relationships among data.
A specific class of RNNs, called Long Short-Term memories (LSTM), is now
widely used in the literature due to its proven ability to learn long-term rela-
tionships in the data. In [32], LSTM is compared to various RNNs and other
statistical methods, namely: Elman neural network, non-linear autoregressive
with exogenous inputs (NARX) neural network, Time-Delay Neural Network
(TDNN), SVM, ARIMA and Kalman filter. The LSTM achieved the best per-
formances in terms of accuracy and stability. The work in [48] proposes a LSTM
model for short-term traffic flow prediction and compared it with Random Walk
(RW), SVM, MLP and Stacked Autoencoder (SAE). The results showed the
superiority of LSTM in terms of prediction accuracy, ability to memorize long-
term historical data and generalization capabilities. In [15], LSTM and a neural
network model made of Gated Recurrent Units (GRUs) [9] are applied to traffic
data in California. The study showed that GRUs behave slightly better than
LSTM, while both outperformed an ARIMA model in terms of Mean Squared
Error (MSE) and Mean Absolute Error (MAE).

(c) Non-parametric regression
Another class of non-parametric methods is called Non-Parametric Regression
(NPR). It is suitable for short-term traffic prediction since it can deal with the
uncertainty in traffic flows. The objective of NPR is to estimate a regression
function without relying on an explicit form, unlike the traditional parametric
regression models (where the model parameters are estimated). The forecasting
ability of NPR relies on a database of past observations. It applies a search
procedure to find observations in this database that are similar to the current
conditions. Then, it transfers these observations to the forecast function to
estimate the future state of the system.
The k-Nearest Neighbor (k-NN) is a widespread class of non-parametric regres-
sion methods made of two components:

(i) Search procedure: the nearest neighbors (historical data most similar to the
current input) are the inputs to the forecast function aimed at generating
an estimate. The nearest neighbors are found using a similarity measure,
which is usually based on the Minkowski distance metric:

Lr =
(

n∑
i=1
|pi − qi|r

)1/r

, (3)

7

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

where n is the dimension of the state vector, pi is the ith element of the
historical record currently considered, qi is the ith element of the current
conditions, and r is a parameter with values between 1 and 2. The most
common implementation uses a sequential search procedure. However,
as the number of historical observations increases, the sequential search
becomes very time consuming.

(ii) Forecast function: the most general approach to generate a prediction is
to compute an average of the dependent variable values over the nearest
neighbors. However, this approach ignores the information provided by the
distance metric (i.e., past observations closer to the current input should
have more impact on the forecast).

The authors in [10] were among the first to use NPR to estimate short-term
traffic flows. Their work highlighted the importance of a large and represen-
tative dataset. NPR was then applied to estimate traffic volumes from two
sites located in Northern Virginia Capital Beltway, based on five months of
observations [42]. The results showed that the proposed method can gener-
ate more accurate predictions than the other tested approaches (including a
neural network model). The work in [43] compares historical averages, time
series, back-propagation neural networks and non-parametric regression models
using a performance index that includes absolute error, error distribution, ease
of model implementation and model portability. Overall, NPR proved to be
better than the other models and was also easier to implement.

The interested reader is referred to [13] for a more exhaustive review on traf-
fic forecasting. The following sections will now describe the various steps that we
performed to produce travel speed predictions from our huge database.

3 Deriving speed patterns from GPS traces
Our industrial partner provided us with one year and a half of GPS data transmit-
ted by mobile devices installed in delivery vehicles (extending over the years 2013,
2014 and 2015). These GPS points were first mapped to the underlying Montreal
Metropolitan Community (MMC) network to generate daily speed patterns for each
individual arc, where a daily speed pattern for a given arc is made of 96 average
speeds taken over time intervals of 15 minutes.

In the following, the main issues related to the derivation of speed patterns from
GPS traces are briefly discussed.

8

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

3.1 Data preparation
The record of each GPS point contains an identifier, a latitude-longitude pair, an
instantaneous speed, a mobile identifier, a driver identifier, a date and a time stamp
(Figure 1).

record
identifier latitude longitude speed mobile

identifier
driver
identifier

date
time

Figure 1 – Record structure of a GPS point

The available data had first to be cleaned by deleting GPS points with aber-
rant speeds (values less than 0 km/h or greater than 150 km/h), aggregates of GPS
points associated, for example, with parking stops for deliveries, etc. Then, the map-
matching algorithm was applied to the remaining GPS points, as described below.

3.2 Map-matching algorithm
Due to the relatively low accuracy of GPS systems, assigning a GPS point to an arc
of the underlying network is a difficult problem, particularly in dense urban road
networks. Thus, a good map-matching algorithm is required. To this end, we used
a recent algorithm reported in [23] which was slightly adapted to our context. The
algorithm works as follows:

Step 1. Identification of trips. A total of 170 and 327 different vehicle and driver
identifiers were found over all GPS points. Within a single day, it is possible to find
one driver associated with one vehicle, one driver associated with two vehicles or
more, and two drivers or more associated with one vehicle. Thus, there are clearly
different trips within a day, where a trip corresponds to a vehicle/driver pair.

Step 2. For each trip, all GPS points associated with it are considered for assignment
to arcs of the network. This is done in three main phases:

2.1 In the initialization phase, candidate arcs are those that are adjacent to the
three nearest nodes of the first GPS point. A score is calculated for each arc
based on their closeness to the GPS point, and the arc with the best score is
selected. Then, a confidence level is calculated for the selected arc to account
for the uncertainty of that choice (due to inherent uncertainty in positioning
sensors and digital maps). Here, the confidence level is based on the difference
between the score of the selected arc and the second best score. Clearly, a larger
difference implies a higher confidence level. If the confidence level is above a

9

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

given threshold, the GPS point is assigned to the selected arc, otherwise it is
skipped and the next GPS point is considered. Once a GPS point is assigned
to the first arc, the same-arc phase starts.

2.2 In the same-arc phase, the next GPS point is assigned to the same arc than
the previous one, unless some conditions are not satisfied anymore (e.g., when
crossing an intersection). In the latter case, the algorithm switches to the next-
arc phase.

2.3 In the next-arc phase, candidate arcs are those connected to the previously
selected arc plus those that are adjacent to the three nearest nodes of the current
GPS point. A score is calculated for each arc based on its closeness to the GPS
point and the difference in direction between the arc and the line connecting
the previous GPS point to the current one. Again, the arc with the best score
is selected, its confidence level is calculated, and topological constraints are
checked (e.g., arc not connected to the previous one, turn restrictions, etc.).
Depending on the confidence level and satisfaction of the topological constraints,
the current GPS point can either be skipped or assigned to the new arc. In the
latter case, the algorithm returns to the same-arc phase. It should be noted that
considering arcs that are close to the current GPS point, but not necessarily
connected to the previous arc, allows the algorithm to account for discontinuities
in GPS traces due to obstacles (e.g., tunnels, bridges).

The interested reader is referred to [23] for details about this algorithm.

When the assignment of GSP points to arcs is completed for each day, average
travel speeds can be calculated over time slots of 15 minutes. Thus, a new database
is obtained where each record has the structure shown in Figure 2. The next section
will now explain how this database was exploited to fit our purposes.

arc
identifier date day season 00:00AM 11:45PM

96 avg. speed valuestemporal characteristics
Figure 2 – Database structure after geomatic analysis

10

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

4 Size reduction and clustering
Due to the size of our database, size reduction techniques were applied. After elim-
inating speed patterns and hours with too many missing data, a “prediction-after-
classification” approach was used to cluster arcs with similar speed patterns into
classes before predicting travel speed values. This is explained in the following.

4.1 Database reduction
With 233,914 arcs and 515 days in the database, we have a total of 233,914 × 515
= 120,506,910 speed patterns. Originally, the database was constructed with time
intervals of 15 minutes. That is, a speed pattern for a given arc on a given day is
made of 96 average speed values taken over time intervals of 15 minutes, thus covering
an horizon of 24 hours. Furthermore, the speed limit was stored when no observation
was recorded within a 15-minute time interval.

An elimination procedure was first applied to get rid of speed patterns or time
intervals with too few data, as described below.

(a) Speed patterns. To keep only average speed values based on real observations,
the speed limit values were removed from the database. Given that a significant
proportion of the resulting speed patterns now contained missing data, a speed
pattern was automatically discarded when the proportion of real average speed
values over the 96 time intervals was less than 5% (note that this threshold is
often suggested in the literature). In other words, a speed pattern with only 4
average speeds or less was eliminated. Through this process, we ended up with
a total of 6,667,459 speed patterns. It should be noted that only 3,485 arcs still
had at least one representative speed pattern in this database. The fact that
the original GPS traces have been collected from delivery routes in particular
sectors of an urban area explains this large reduction in the number of arcs and
speed patterns. Finally, the 96 time intervals of 15 minutes of each remaining
speed pattern were aggregated into 24 one-hour time intervals, to allow the
calculation of average speed values based on more observations in each time
interval, see Figures 3 and 4.

(b) One-hour time intervals. After reducing the number of speed patterns in the
database, as well as the number of average speed values stored in a pattern, we
then examined more closely the one-hour time intervals.

11

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

0 50000 100000 150000 200000

00:00AM
00:15AM
00:30AM
00:45AM
01:00AM
01:15AM
01:30AM
01:45AM
02:00AM
02:15AM
02:30AM
02:45AM
03:00AM
03:15AM
03:30AM
03:45AM
04:00AM
04:15AM
04:30AM
04:45AM
05:00AM
05:15AM
05:30AM
05:45AM
06:00AM
06:15AM
06:30AM
06:45AM
07:00AM
07:15AM
07:30AM
07:45AM
08:00AM
08:15AM
08:30AM
08:45AM
09:00AM
09:15AM
09:30AM
09:45AM
10:00AM
10:15AM
10:30AM
10:45AM
11:00AM
11:15AM
11:30AM
11:45AM
00:00PM
00:15PM
00:30PM
00:45PM
01:00PM
01:15PM
01:30PM
01:45PM
02:00PM
02:15PM
02:30PM
02:45PM
03:00PM
03:15PM
03:30PM
03:45PM
04:00PM
04:15PM
04:30PM
04:45PM
05:00PM
05:15PM
05:30PM
05:45PM
06:00PM
06:15PM
06:30PM
06:45PM
07:00PM
07:15PM
07:30PM
07:45PM
08:00PM
08:15PM
08:30PM
08:45PM
09:00PM
09:15PM
09:30PM
09:45PM
10:00PM
10:15PM
10:30PM
10:45PM
11:00PM
11:15PM
11:30PM
11:45PM

Number of observations

Figure 3 – Number of observations per time interval of 15 minutes

12

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

0 250000 500000 750000

00:00AM

01:00AM

02:00AM

03:00AM

04:00AM

05:00AM

06:00AM

07:00AM

08:00AM

09:00AM

10:00AM

11:00AM

00:00PM

01:00PM

02:00PM

03:00PM

04:00PM

05:00PM

06:00PM

07:00PM

08:00PM

09:00PM

10:00PM

11:00PM

Number of observations

Figure 4 – Number of observations per time interval of 1 hour

13

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

Clearly, there are intervals with no or very few observations over the entire
database, like night hours (although some observations can be found in the
database because the vehicles are sometimes moved during the night from one
location to another). Accordingly, we discarded hours where the proportion of
real average speed values over the 6,667,459 speed patterns in the database was
under 5%. After this elimination process, the number of one-hour time intervals
was reduced from 24 to 13. More precisely, only one-hour time intervals starting
from 7:00 AM to 7:00 PM were kept in every speed pattern.

4.2 Clustering
When this step is reached, we have a database of 6,667,459 speed patterns, where
each pattern is associated with a given arc and a given date. A speed pattern can
be seen as a vector of 13 average speed values, one for each one-hour time interval
starting from 7:00 AM to 7:00 PM. This number of speed patterns is still too large to
be processed by a learning-based prediction algorithm, so we had to group arcs with
similar patterns into a number of classes. For this purpose, an average speed pattern
was calculated for each arc over all its corresponding speed patterns in the database.
Since 3,485 arcs are represented in the database, this led to N = 3,485 average speed
patterns.

In the following, the clustering methods used to identify classes of arcs are de-
scribed.

4.2.1 K-means

To cluster arcs based on their average speed pattern with the K-means algorithm,
the distance between two patterns was calculated using the Euclidean metric (see, for
example, [33]). At the end, K cluster centroids (classes) were obtained and the speed
pattern of each arc was assigned to the closest centroid. Since the number of classes
must be fixed in advance, the latter was purposely set to a large value, i.e., K =
200. Then, the output of the K-means algorithm was fed to a hierarchical clustering
method to further reduce the number of classes (see Section 4.2.2).

The problem solved by the K-means algorithm is summarized below, where Ck

stands for class k. The objective is to minimize the sum of the squares of the Euclidean
distance between speed pattern xi of arc i and its closest centroid µk, over all arcs.
In this objective, the variables are the µk’s.

Min
K∑

k=1

∑
xi∈Ck

‖xi − µk‖2 , (4)

14

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

where:
Ck = {xi : ‖xi − µk‖ = min

l=1,...,K
‖xi − µl‖} , (5)

µk = 1
|Ck|

∑
xi∈Ck

xi . (6)

An iterative method known as Lloyd’s algorithm was used to converge to a local
minimum, given that solving the problem exactly is NP-hard. In this algorithm,
starting from K randomly located centroids, the following two steps are performed
repeatedly until convergence is observed: 1) Cluster assignment: construct the set of
classes by assigning each arc to the cluster centroid that is closest to the arc’s speed
pattern and 2) Update centroids: update the centroid of each cluster by averaging
over all speed patterns assigned to it.

4.2.2 Affinity propagation algorithm

The Affinity Propagation (AP) algorithm is a clustering procedure proposed in [14].
As opposed to K-means, every data point is considered as a potential centroid.
Through the propagation of so-called affinity values among pairs of data points, which
reflect the current affinity (or consent) of one data point to consider the other data
point as its centroid, some data points accumulate evidence to be centroids. The
reader will find in [14] the exact mathematical formulas that are used to guide the
transmission of affinity values and the accumulation of evidence in data points. At
the end, evidence is located only on a certain number of data points that are chosen
as cluster centroids. Then, the set of classes is constructed by assigning each data
point to its closest centroid. It should be noted that the centroids necessarily cor-
respond to data points and that the number of classes does not need to be fixed in
advance. That is, the number of classes will automatically emerge as the algorithm
unfolds. The authors in [14] also show that AP approximately minimizes the sum
of the squares of the Euclidean distance between each data point and its assigned
centroid.

AP was applied using the centroids of the 200 classes produced by K -means as
data points. At the end, these 200 classes were aggregated into 21 different classes,
labeled from 0 to 20. Figures 5 and 6 show the number of arcs and observations,
respectively, in each class.

It should be noted that it was not possible to apply AP directly to the N = 3,485
average speed patterns, which proved to be too large. This is the reason for the two-
phase process, where K-means is applied first to reduce the problem size, followed by
AP in the second phase. We also tested another clustering algorithm, known as the
Mean Shift Algorithm [16], but since it proved to be worse than AP, we will omit its
description.

15

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clusters

N
um

be
r o

f a
rc

s

Figure 5 – Number of arcs in each class generated by AP

16

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

3701992

116521

1589576

16192

216027

459612

57439
6720 11448

366715

27900 19300 39390
4012 7645 1947 8280 2204 7363 2360 48160e+00

1e+06

2e+06

3e+06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clusters

N
um

be
r o

f o
bs

er
va

tio
ns

Figure 6 – Number of observations in each class generated by AP

4.3 Evaluation metrics
After clustering the arcs into 21 classes, the quality of these classes was evaluated
using two well-known metrics, namely the Silhouette coefficient and the Calinski-
Harabasz score.

The Silhouette coefficient [37] associates a value between -1 and 1 with each data
point. It can be interpreted as follows: if the coefficient is close to 1, then the data
point is associated with the right cluster; if it is close to 0, then it lies between two
clusters; and if it is close to -1, then the point is not associated with the right cluster.
Assuming that a data point corresponds to the average speed pattern associated with
an arc, this coefficient is calculated as follows:

17

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

• for every arc i, calculate the average distance between its speed pattern and the
speed pattern of all other arcs in the same class; we call this value ai.

• for every arc i, calculate the average distance between its speed pattern and the
speed patterns of all arcs in the closest cluster; we call this value bi.

• the silhouette coefficient si of arc i is then:

si = bi − ai

max(ai, bi)
. (7)

At the end, the final value is the average of those si coefficients over all arcs.

The Calinski-Harabasz score [7] is another measure that provides a ratio between
intra-class and inter-classes dispersion values. The clusters are better defined when
the score is higher. The score is computed as follows:

CH(K) = Tr(B(K))
Tr(W (K)) ∗

N −K
K − 1 , (8)

where

W (K) =
K∑

k=1

∑
x∈C(k)

(x− c(k))(x− c(k))ᵀ , (9)

B(K) =
K∑

k=1
n(k)(c(k) − c)(c(k) − c)ᵀ . (10)

In these equations, a vector should be viewed as a column. Also, K is the number
of clusters or classes, N is the number of speed patterns (arcs), W (K) is the intra-
cluster dispersion matrix, B(K) is the inter-cluster dispersion matrix, Tr(M) is the
trace of matrix M , C(k) is the set, of cardinality n(k), of speed patterns (arcs) in class
k, c(k) is the centroid of speed patterns in class k and c is the centroid of all speed
patterns.

Note that each entry (i, j) in matrices W (K) and B(K) corresponds to:

W
(K)
ij =

K∑
k=1

∑
x∈C(k)

(xi − c(k)
i)(xj − c(k)

j) , (11)

B
(K)
ij =

K∑
k=1

n(k)(c(k)
i − ci)(c(k)

j − cj) . (12)

18

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

When the Silhouette coefficient was evaluated on the 21 classes produced by AP,
a value of 0.85 was obtained. This is quite good, given that 1 is the best possible
value (note that the coefficient for the clusters produced by the Mean Shift algorithm
was equal to 0.67). Concerning the Calinski-Harabasz score, a value of 10.52 was
obtained, which is to be compared with 3.39 for the Mean Shift algorithm.

By focusing on the four classes with the largest number of observations, namely
classes 0, 2, 5 and 9, we observed that the average speeds of classes 0, 2 and 5 are
very different, ranging from approximately 25 to 45 km/hour. The average speed of
class 9 is similar to the one of class 2, but it does not evolve in the same way over
the day. When we looked at more detailed data, we observed that the arcs of class
9 are not affected by the congestion observed during weekdays. That is, as opposed
to classes 0, 2 and 5, there is no significant difference between the weekday average
speeds and the weekend average speeds. Thus, the clustering algorithm was successful
in identifying classes of arcs with different characteristics.

5 Speed prediction
This section describes the supervised neural network model for predicting travel
speeds based on the classes generated by the AP clustering algorithm. Since a data
missing issue emerges in this context, we will first explain how this problem is handled.
Then, the neural network model will be described.

5.1 Missing data
Given that input vectors for the neural network model are obtained by averaging
speeds over all arcs in a class produced by our clustering methodology, there is no
missing data in the input (see Section 6.1). However, each target output vector
corresponds to one of the 6,667,459 speed patterns in the database. Thus, it is likely
for a target output to have one or more missing values.

To handle missing values, we must input plausible estimates drawn from an ap-
propriate model. In this process, the following variables will be accounted for: day
(Monday, Tuesday, ..., Saturday, Sunday), season (Spring, Summer, Fall, Winter),
the arc’s class label, and most importantly, the average speed in each time interval
which corresponds to the variables with missing values. Different Multiple Imputa-
tion (MI) methods will be applied [38]. These methods generate multiple copies of
an incomplete database and replace the missing values in each replicate with esti-
mates drawn from some imputation method. An analysis is then performed on each
complete database and a single MI estimate is calculated for each missing value by
combining the estimates from the multiple complete databases [31, 38]. The meth-

19

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

ods considered here are: Multivariate Imputation via Chained Equation (MICE) [6],
missForest (which relies on a Random Forest imputation algorithm [46]) and Amelia
[25].

Figure 7 – Correlation matrix

5.1.1 MICE

This algorithm can be described as follows:

1. Perform a mean imputation for every missing speed value by setting it to the
average over observed speeds in the same time interval.

2. Select the time interval variable with the largest proportion of missing speed
values.

3. Select the explanatory variables from those with a correlation greater than 0.5
with the selected time interval variable (see, e.g., the correlation matrix in
Figure 7).

4. Perform linear regression.

5. Replace the missing speed values for the selected time interval with estimates
obtained from the regression model. If this time interval is subsequently used as

20

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

an explanatory variable in the regression model of other time interval variables,
both observed and imputed values are used.

6. Repeat steps 2 to 4 for each remaining time interval with missing values (cycling
through each variable stands for one iteration).

7. Repeat the entire procedure for a number of iterations to obtain multiple esti-
mates.

At the end, the multiple estimates obtained over the iterations are averaged to
obtain a single estimate for each missing value.

5.1.2 Random Forest

The Random Forest (RF) algorithm [5] is a machine learning technique that does not
require the specification of a particular regression model. It has a built-in routine to
handle missing values by weighting the observed values of a variable using a matrix
of proximity values, where proximity is defined by the proportion of trees in which
pairs of observations share a terminal node. It works as follows:

1. Replace missing values by the average over observed values in the same time
interval.

2. Repeat until a stopping criterion is satisfied:

(a) Using imputed values calculated so far, train a random forest.
(b) Compute the proximity matrix.
(c) Using proximity as a weight, impute missing values as the weighted average

over observed values in the same time interval.

Typically, the algorithm stops when the difference between the new imputed values
and the old ones increases for the first time. Note that, by averaging over multiple
random trees, this method implicitly behaves according to a multiple imputation
scheme. The RF algorithm was implemented using the randomForest R-package [30].

5.1.3 Amelia

Amelia imputes missing data based on different bootstrapped samples drawn from
the database (bootstrapped data samples are large numbers of smaller samples of the
same size that are repeatedly drawn, with replacement, from a single original sample,
see [12]). It basically applies the Expectation Maximization (EM) method [11] to find
the maximum likelihood estimates for the parameters of a distribution. Namely,

21

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

1. M samples are drawn from the original database.

2. M estimates of the mean and variance are calculated for each sample with EM.

3. Each estimate of the mean and variance is used to impute the missing data.

At the end, we have M different complete databases, where the missing values in
each database have been filled with one of the M estimates of the mean and variance.

Each complete database produced by MICE, RF and Amelia is used to provide
target outputs during the training and testing phases of our neural network model.
The accuracy of the travel speed predictions made by the neural network will be
compared for the three imputation methods considered.

5.2 LSTM
In this section, we briefly describe the supervised neural network model used to predict
travel speeds, once the missing values in the database have been replaced by imputed
ones (either using MICE, RF or Amelia). The neural network model is a Long Short-
Term Memory network (LSTM). This choice was motivated by the ability of the
LSTM to handle sequential data and to capture time dependencies. First introduced
in [24], this special type of Recurrent Neural Network (RNN) alleviates the vanishing
gradient problem [35] (when the gradient of the error function becomes too small with
respect to a given weight, the latter cannot change anymore). It is made of an input
layer, a variable number of hidden layers and an output layer. Each hidden layer is
made of memory cells that store useful information from past input data. Memory
cells in a given hidden layer send signals at time t to the memory cells in the next
hidden layer (or the units in the output layer, if last) but also to themselves. This
recurrent signal is used by the memory cells to determine their internal state at time
t + 1. Thus, there are connection weight matrices from the input to the first hidden
layer, from each hidden layer to itself and to the next hidden layer and from the
last hidden layer to itself and to the output layer. Furthermore, memory cells in a
given layer have three gates: one for the signal sent from the previous layer, one for
the signal sent by the memory cells to themselves and one for the signal sent by the
memory cells to the next layer. Gates can be seen as filters that regulate the signals
by allowing some parts of it to be blocked (or forgotten). Like the weight matrices
mentioned above, the gates have weights that are updated during the learning process.
The interested reader will find more details about the LSTM network model in [19].

In the next section, computational results obtained with LSTM and comparisons
with alternative approaches are reported.

22

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

6 Computational study
In this section, we first define the input and output vectors of the LSTM. Then, we
describe the fine tuning of the LSTM hyperparameters. Finally, LSTM results are
reported.

Our LSTM was implemented in Python 3.5. The hyperparameter tuning experi-
ment was performed on a Dell R630 server with two Intel Xeon E5-2650V4 of 12 cores
each (plus hyperthreading) and 256GB of memory. The server also has 4 NVIDIA
Titan XP GPUs with 3840 CUDA cores and 12GB of memory. However, our code
was limited to only 4 cores and one GPU from the server. To obtain more computa-
tion power, the final LSTM results reported in Sections 6.3 and 6.4 were obtained on
the Cedar cluster of Compute Canada. We requested 6 cores with Intel E5-2650v4
processors, 32GB of RAM and 1 NVIDIA P100 GPU with 12GB of memory.

6.1 Input and output vectors
The input vector for the neural network was first designed as illustrated in Figure 8.
Each vector is associated with a class of arcs produced by AP and is made of: the
class label, the day (Monday, Tuesday, ..., Saturday, Sunday), the season (Spring,
Summer, Fall, Winter) and 13 average speeds over all arcs in the corresponding class,
that is, one speed value for each one-hour time interval starting from 7:00 AM to 7:00
PM. The target output vector corresponds to a speed pattern among the 6,667,459
available speed patterns, where the missing values are filled with one of the three
imputation methods of Section 5.1. Obviously, the target output vector must come
from an arc of the same class, and for the same season and day than the vector
provided in input. We should also note that the speed values in the patterns were
normalized using the scikit-learn object [36].

class
label day season 07:00AM 07:00PM

13 speed values
Figure 8 – Input vector I

Unfortunately, the results obtained with this approach were unsatisfactory. To
better exploit the capabilities of LSTM to handle sequential data, we turned to input
vector II shown in Figure 9. Here, input vector I with 13 speed values is transformed
into 13 input vectors II, each with a single speed value. That is, rather than providing
at once the whole speed pattern for one-hour time intervals starting from 7:00 AM

23

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

to 7:00 PM, a sequence of 13 input vectors from 7:00 AM to 7:00 PM is provided,
where each input vector contains a single speed value. The target output vector is
modified accordingly and also contains a single speed value taken from an arc of the
same class, and for the same season, day and hour than the vector provided in input.

class
label day season xx:00

one speed value
Figure 9 – Input vector II

6.2 Hyperparameter tuning
Our database of 6,667,459 speed patterns was divided into a training set (80% of
the total) and a testing set (20% of the total), where the latter is made of the most
recent observations. Apart from the connection weights, which are adjusted through
learning, a neural network model also relies on a number of other parameters (where
parameter is taken in a broad sense) that must be set before learning takes place.
The following were considered:

• Number of hidden layers;

• Number of units in each hidden layer;

• Batch size: Number of training examples provided to the neural network before
updating the connection weights;

• Training epochs: Number of passes through the set of training examples;

• Learning algorithm: Algorithm used during the training phase to adjust the
weights;

• Weight initialization: Method used to set the initial weights, see [17] for more
details;

• Activation function: Function used to compute the internal state of a unit from
the signal it receives.

A good parameter setting for a neural network has a huge impact on its results,
as discussed in [2]. To determine an appropriate combination of the above parame-
ters, different hyperparameter optimization strategies can be used [45], in particular

24

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

grid search and random search. In grid search, a systematic evaluation of all pos-
sible combinations of parameter values is performed. Random search is much less
computationally expensive, given that only a sample of all possible combinations is
considered (100 combinations, in our case). Due to the curse of dimensionality, the
superiority of random search over grid search is known for high-dimensional param-
eter spaces [3]. Since the number of parameters considered in our study is neither
large nor small, both search methods were applied to our LSTM. The values tested
for each parameter and the final setting obtained by each method are shown in Table
1. Note that the activation function differs depending on the hidden layer considered:
the sigmoid function is used for the first hidden layer while the hyperbolic tangent
(tanh) is used for the second and third hidden layers.

Table 1 – Hyperparameter tuning using grid search and random search

Hyperparameters Values Grid Random
search search

Hidden layers 1,2,3,4,5 3 3
Units in each hidden layer 1,5,10,15,20,25,30,35,40,45,50 20 20
Batch size 10,20,30,40,50,80,100 20 20
Training epochs 5,10,20,30,40,50 10 10
Learning algorithm SGD, RMSprop, Adagrad,

Adadelta, Adam, Adamax, SGD Adam
Nadam

Activation function softmax, softplus, softsign, sigmoid sigmoid
relu, tanh, sigmoid, tanh tanh
hard sigmoid, linear tanh tanh

Weight initialization uniform, lecun uniform,
normal, zero,
glorot normal, glorot uniform, normal normal
he normal, he uniform

Overall, the only difference between the two hyperparameter optimization meth-
ods is the learning algorithm. Grid search suggests Stochastic Gradient Descent
(SGD) while random search suggests Adam. The latter, introduced by [29], is par-
ticularly appropriate for complex neural network structures and large datasets, as
detailed in [39]. To get a better idea, we applied the various tested learning algo-
rithms (see Table 1) with the other hyperparameters fixed at their best value on a
subset of the database. The results obtained with the RMSE metric are shown in

25

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

Figure 10. Based on this preliminary experiment, we decided to go with Adam.

Figure 10 – Initial comparison of different learning algorithms

6.3 LSTM results
Here, we measure the accuracy of the travel speed predictions produced by our LSTM
with three hidden layers. We also compare the results obtained with the three impu-
tation methods of Section 5.1 to fill the missing values.

The root mean squared error and the mean absolute error are used to measure
the accuracy, where:

RMSE =

√√√√ 1
L

L∑
l=1

(yl − ŷl)2 , (13)

MAE = 1
L

L∑
l=1
|yl − ŷl| . (14)

In these equations, L is the number of (input, target output) pairs in the training
or testing set, where the target output corresponds to an observed speed pattern.
In pair l, yl stands for the observed speed pattern and ŷl for the speed pattern
produced by the neural network for input vector l. RMSE and MAE are two error
functions typically used to evaluate how close the output vectors produced by the

26

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

neural network are to the target outputs. Due to the square in the RMSE formula,
large errors have much more impact than small ones. On the other hand, MAE
measures the relative error and is more robust to outliers since there is no square in
its formula.

Table 2 reports the prediction errors of the trained LSTM on the testing set, based
on the RMSE and MAE metrics, using the three different imputation methods and
a variable number of imputations (i.e., 5, 10, 15, 20). Note that the authors in [41]
show that 3 to 5 imputations yield good results. But, more recently, the authors in
[18, 40] proposed 20 imputations. Thus, we chose to vary this number between 5 and
20.

Table 2 – RMSE and MAE metrics with different imputation methods

Method #
Imput. MAE RMSE Running

time (min)
MICE 5 13.71 12.91 429

10 12.84 10.84 450
15 12.52 10.32 1117
20 12.39 10.09 1900

RF 5 13.84 13.28 512
10 13.02 11.38 649
15 12.94 11.08 1640
20 12.68 11.03 2000

AMELIA 5 17.91 17.53 550
10 17.63 16.97 580
15 16.76 16.10 940
20 16.49 16.07 1500

The results show that MICE produces the best results. Although the two error
metrics keep improving with the number of imputations, most of the improvement
occurs between 5 and 10 imputations. Concerning the computing times, a substantial
increase is observed between 10 and 15 imputations for all methods. Overall, MICE
is the least computationally expensive for 5, 10 and 15 imputations. The marginal
improvement obtained with 15 and 20 imputations probably does not justify the
additional computational cost. Thus, MICE-10 seems to be a good compromise.

Figure 11 summarizes the evolution of the MAE and RMSE metrics for LSTM
with MICE-10 over a number of training epochs. We can see that RMSE drops sooner
than MAE and then keeps improving at about the same pace than MAE. Figure 12
then illustrates the differences between the observed speeds and the speeds predicted

27

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

by the trained LSTM on the training and testing (input, target output) pairs on a
sample of observations. This figure shows that, in most cases, the predicted speed
values follow closely the observed ones.

Figure 11 – Evolution of MAE and RMSE during the training phase

Figure 12 – Comparison between observed and predicted speed values

28

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

6.4 Comparison with other models
In this section, LSTM is compared with two alternative approaches based on a trivial
average method and a Multi-Layer Perceptron (MLP) trained with the Levenberg-
Marquardt algorithm [47]. We tested MLP models with one to three hidden layers,
using a variable number of units in the hidden layers. At the end, the error metrics of
the various models were quite close, although a model with three hidden layers and
30 units in each hidden layer proved to be the best. Thus, we only report the results
for the best MLP model in Tables 3 and 4.

The average method is quite simple: if we consider an input vector of type I (II)
for a given class, day and season (and hour), the output is the average speed pattern
(value) over speed patterns (values) of arcs in the same class, for the same day and
season (and hour). The results obtained with the LSTM, MLP and average method
are reported in Tables 3 and 4 using the RMSE and MAE metrics, respectively. The
results for the two input structures are also reported to show the superiority of input
vector II over input vector I, see Section 6.1. Overall, LSTM clearly provides a better
prediction accuracy than the two other models for both the RMSE and MAE metrics.

Table 3 – Comparison of alternative models: RMSE metric

Model Input vector I Input vector II
LSTM 17.22 10.84
MLP 21.92 15.17
Average 38.04 32.04

Table 4 – Comparison of alternative models: MAE metric

Model Input vector I Input vector II
LSTM 22.86 12.84
MLP 29.57 17.40
Average 42.62 36.98

7 Conclusion
In this work, a “prediction-after-classification” approach was proposed, starting from
a large database of GPS traces collected from mobile devices installed inside delivery

29

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

vehicles. We used dimensionality reduction and unsupervised learning techniques to
extract similarity classes of arcs to be used during the following supervised prediction
phase.

Because supervised learning algorithms are sensitive to missing values, different
multiple imputation methods were applied to obtain a complete database. The pre-
diction problem was addressed with a LSTM neural network whose parameters were
adjusted with random search. The LSTM was then compared to two alternative
models and prove to be largely superior.

A natural extension of the work reported in this paper would be to include real-
time data in the prediction process. The ultimate goal is to integrate the current
predictor into a vehicle routing optimization procedure to produce more efficient
delivery routes.

Acknowledgments. Financial support was provided by the Natural Sciences and Engi-
neering Research Council of Canada through the Canada Excellence Research Chair
in Data Science for Real-Time Decision-Making. Also, computing facilities were made
available to us by Compute Canada. This support is gratefully acknowledged. Fi-
nally, we wish to thank Prof. Leandro C. Coelho and his team for their contribution
to the analysis of the GPS data.

References
[1] C. Antoniou, M. Ben-Akiva, and H.N. Koutsopoulos. Nonlinear Kalman filtering

algorithms for on-line calibration of dynamic traffic assignment models. IEEE
Transactions on Intelligent Transportation Systems, 8(4):661–670, 2007.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett,
F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 24, pages 2546–2554. Curran Associates, Inc., 2011.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

[4] George EP Box and Gwilym M Jenkins. Time series analysis: forecasting and
control, revised ed. Holden-Day, 1976.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[6] S. Buuren and K. Groothuis-Oudshoorn. MICE: Multivariate imputation by
chained equations in R. Journal of Statistical Software, 45(3), 2011.

30

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

[7] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Commu-
nications in Statistics, 3(1):1–27, 1974.

[8] H. Chen, S. Grant-Muller, L. Mussone, and F. Montgomery. A study of hybrid
neural network approaches and the effects of missing data on traffic forecasting.
Neural Computing & Applications, 10(3):277–286, 2001.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[10] G.A. Davis and N.L. Nihan. Nonparametric regression and short-term freeway
traffic forecasting. Journal of Transportation Engineering, 117(2):178–188, 1991.

[11] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B, pages 1–38, 1977.

[12] B. Efron and R.J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.

[13] A. Ermagun and D. Levinson. Spatiotemporal traffic forecasting: Review and
proposed directions. Transport Reviews, pages 1–29, 2018.

[14] B.J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007.

[15] R. Fu, Z. Zhang, and L. Li. Using LSTM and GRU neural network methods
for traffic flow prediction. In Youth Academic Annual Conference of the Chinese
Association of Automation, pages 324–328. IEEE, 2016.

[16] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density func-
tion, with applications in pattern recognition. IEEE Transactions on Information
Theory, 21(1):32–40, 1975.

[17] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pages 249–256, 2010.

[18] J.W. Graham, A.E. Olchowski, and T.D. Gilreath. How many imputations are
really needed? Some practical clarifications of multiple imputation theory. Pre-
vention Science, 8(3):206–213, 2007.

31

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

[19] K. Greff, R.K. Srivastava, J. Koutńık, B.R. Steunebrink, and J. Schmidhhuber.
LSTM: A search space odyssey. IEEE Trans. on Neural Networks and Learning
Systems, 28(10):2222–2232, 2017.

[20] J. Guo. Adaptive Estimation and Prediction of Univariate Vehicular Traffic
Condition Series. Ph.D. Thesis, North Carolina State University, 2005.

[21] A.B. Habtie, A. Abraham, and D. Midekso. Artificial neural network based
real-time urban road traffic state estimation framework. In Computational In-
telligence in Wireless Sensor Networks, pages 73–97. Springer, 2017.

[22] M.M. Hamed, H.R. Al-Masaeid, and Z.M.B. Said. Short-term prediction of traffic
volume in urban arterials. Journal of Transportation Engineering, 121(3):249–
254, 1995.

[23] M. Hashemi and H.A. Karimi. A weight-based map-matching algorithm for vehi-
cle navigation in complex urban networks. Journal of Intelligent Transportation
Systems, 20(6):573–590, 2016.

[24] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[25] J. Honaker, G. King, and M. Blackwell. Amelia II: A program for missing data.
Journal of Statistical Software, 45(7):1–47, 2011.

[26] H. Jula, M. Dessouky, and P.A. Ioannou. Real-time estimation of travel times
along the arcs and arrival times at the nodes of dynamic stochastic networks.
IEEE Transactions on Intelligent Transportation Systems, 9(1):97–110, 2008.

[27] S.J. Julier and J.K. Uhlmann. New extension of the Kalman filter to nonlinear
systems. In AeroSense’97, pages 182–193. International Society for Optics and
Photonics, 1997.

[28] R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory.
Journal of Basic Engineering, 83(1):95–108, 1961.

[29] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[30] A. Liaw and M. Wiener. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[31] R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. John
Wiley & Sons, 2014.

32

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

[32] X. Ma, Z. Tao, Y.i Wang, H. Yu, and Y. Wang. Long short-term memory
neural network for traffic speed prediction using remote microwave sensor data.
Transportation Research Part C: Emerging Technologies, 54:187–197, 2015.

[33] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, volume 1, pages 281–297. University of California Press,
1967.

[34] M. Moniruzzaman, H. Maoh, and W. Anderson. Short-term prediction of border
crossing time and traffic volume for commercial trucks: A case study for the
Ambassador bridge. Transportation Research Part C: Emerging Technologies,
63:182–194, 2016.

[35] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–
1318, 2013.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[37] P.J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–
65, 1987.

[38] D.B. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley &
Sons, 2004.

[39] S. Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[40] J.L. Schafer and J.W. Graham. Missing data: our view of the state of the art.
Psychological Methods, 7(2):147, 2002.

[41] J.L. Schafer and M.K. Olsen. Multiple imputation for multivariate missing-
data problems: A data analyst’s perspective. Multivariate Behavioral Research,
33(4):545–571, 1998.

[42] B.L. Smith. Forecasting Freeway Traffic Flow for Intelligent Transportation Sys-
tems Application. PhD thesis, Charlottesville, VA, USA, 1995.

33

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

[43] B.L. Smith and M.J. Demetsky. Traffic flow forecasting: comparison of modeling
approaches. Journal of Transportation Engineering, 123(4):261–266, 1997.

[44] B.L. Smith, B.M. Williams, and R.K. Oswald. Comparison of parametric and
nonparametric models for traffic flow forecasting. Transportation Research Part
C: Emerging Technologies, 10(4):303–321, 2002.

[45] J. Snoek, H. Larochelle, and R.P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing
Systems, pages 2951–2959, 2012.

[46] D.J. Stekhoven and P. Bühlmann. Missforest-Non-parametric missing value im-
putation for mixed-type data. Bioinformatics, 28(1):112–118, 2011.

[47] I. Sutskever. Training Recurrent Neural Networks. Ph D. Thesis, University of
Toronto, Toronto, Canada, 2013.

[48] Y. Tian and L. Pan. Predicting short-term traffic flow by long short-term
memory recurrent neural network. In IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), pages 153–158. IEEE, 2015.

[49] C.P. Van Hinsbergen, J.W. Van Lint, and F.M. Sanders. Short term traffic
prediction models. In Proceedings of the 14th World Congress on Intelligent
Transportation Systems (ITS), Bejing, China, 2007.

[50] J.W.C. Van Lint. Online learning solutions for freeway travel time prediction.
IEEE Transactions on Intelligent Transportation Systems, 9(1):38–47, 2008.

[51] V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on
Neural Networks, 10(5):988–999, 1999.

[52] V.N. Vladimir. The Nature of Statistical Learning Theory. Springer Heidelberg,
1995.

[53] E. Vlahogianni, M. G Karlaftis, and J.C. Golias. Optimized and meta-optimized
neural networks for short-term traffic flow prediction: A genetic approach. Trans-
portation Research Part C: Emerging Technologies, 13(3):211–234, 2005.

[54] J. Wang and Q. Shi. Short-term traffic speed forecasting hybrid model based on
chaos–wavelet analysis-support vector machine theory. Transportation Research
Part C: Emerging Technologies, 27:219–232, 2013.

34

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

[55] Y. Wang and M. Papageorgiou. Real-time freeway traffic state estimation based
on extended Kalman filter: A general approach. Transportation Research Part
B: Methodological, 39(2):141–167, 2005.

[56] B.M. Williams and L.A. Hoel. Modeling and forecasting vehicular traffic flow as
a seasonal ARIMA process: Theoretical basis and empirical results. Journal of
Transportation Engineering, 129(6):664–672, 2003.

[57] C.-H. Wu, J.-M. Ho, and D.-T. Lee. Travel-time prediction with support vector
regression. IEEE Transactions on Intelligent Transportation Systems, 5(4):276–
281, 2004.

[58] Z. Yang, D. Mei, Q. Yang, H. Zhou, and X. Li. Traffic flow prediction model for
large-scale road network based on cloud computing. Mathematical Problems in
Engineering, Volume 2014, 2014.

35

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-012

