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Abstract

The resolution of some Mixed-Integer Linear Programming
(MILP) problems still presents challenges for state-of-the-art
optimization solvers and may require hours of computations,
so that a time-limit to the resolution process is typically pro-
vided by a user. Nevertheless, it could be useful to get a sense
of the optimization trends after only a fraction of the specified
total time has passed, and ideally be able to tailor the use of
the remaining resolution time accordingly, in a more strategic
and flexible way. Looking at the evolution of a partial branch-
and-bound tree for a MILP instance, developed up to a certain
fraction of the time-limit, we aim to predict whether the prob-
lem will be solved to proven optimality before timing out.
We exploit machine learning tools, and summarize the devel-
opment and progress of a MILP resolution process to cast a
prediction within a classification framework. Experiments on
benchmark instances show that a valuable statistical pattern
can indeed be learned during MILP resolution, with key pre-
dictive features reflecting the know-how and experience of
field’s practitioners.

Introduction
Within the realm of discrete optimization, we consider
Mixed-Integer Linear Programming (MILP) problems, of
the form

min{cTx : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (1)

where A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn and I ⊆ {1, . . . , n}
is the set of indices of variables that are required to be in-
tegral. We do not assume A, b having any special structure
(as it is, e.g., for Traveling Salesman Problem instances).
Models like (1) can be used to mathematically describe a
number of different real-world problems, and are daily de-
ployed across a wide spectrum of applications – network,
scheduling, planning and finance, just to mention a few.

Despite being NP-hard problems, MILPs are nowadays
solved in very reliable and effective ways, ultimately based
on the divide-and-conquer paradigm of Branch and Bound
(B&B) (Land and Doig 1960). State-of-the-art optimization
solvers, such as IBM-CPLEX (2018), experienced a dra-
matic performance improvement over the past decades, due
to both hardware and software advances (see, e.g., Achter-
berg and Wunderling; Lodi). Nonetheless, the resolution of
some MILPs can prove to be challenging for solvers, and

may require hours of computations, so that the experimental
practice of imposing a time-limit (TL) to the MILP resolu-
tion process is not only very reasonable, but well established
too. However, it would be useful to get a sense of the opti-
mization trends after only a fraction of the specified TL has
passed, and ideally be able to tailor the usage of the remain-
ing resolution time in a more strategic and flexible way.

We aim to predict whether a generic MILP instance will
be solved before timing out, only relying on information
from a first portion of the resolution process. More specif-
ically, given P and a time-limit TL, we look at the partial
resolution of P , up to a certain time τ , 0 < τ < TL, and
ask whether P will be solved to proven optimality within
TL. We summarize the partial resolution of P , and exploit
machine learning (ML) tools to cast a prediction about it be-
ing solved or not before TL. Thus, the prediction we aim
at is one that takes as input (a summary of) the evolution of
a partial MILP run, up to time τ , and outputs a yes/no re-
sponse, in the framework of binary classification. Note the
inherent difference between our approach and the problem
of directly predicting the “difficulty” of a MILP instance –
e.g., in terms of runtime prediction, the latter being a com-
mon interest for both the optimization and the ML communi-
ties since the work of Knuth (1975) (a more recent approach
can be found in Hutter et al.).

If, on the one hand, the sequential nature of B&B makes
it natural to interpret our question as a sequence classifica-
tion task, on the other hand the transformation of a stream
of data from the MILP resolution process into a valid input
for traditional classification algorithms cannot be performed
with off-the-shelf techniques. To this end, we design spe-
cific features to describe the development and behavior of a
MILP run in a quantitative way, taking into account the com-
plex interplay between the solver’s components. The broad
generality of the proposed features makes them apt to be
re-used every time one needs to evaluate the B&B develop-
ment of a general MILP, thus conferring even more impact to
this contribution, especially given that applications of ML to
discrete optimization have lately been flourishing. For exam-
ple, in the context of MILP, ML has been proposed to estab-
lish good solver’s parametric configurations (Hutter, Hoos,
and Leyton-Brown 2010); learn heuristics for B&B (see
Lodi and Zarpellon for a survey); choose resolution options
(Kruber, Lübbecke, and Parmentier; Khalil et al.; Bonami,
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Lodi, and Zarpellon), and also predict solution-related out-
comes (Fischetti and Fraccaro; Larsen et al.). Our work rep-
resents a novel contribution in this thread of research: ML
is employed to provide an accurate prediction on the resolu-
tion outcome of MILPs, which can readily be implemented
within solvers to enable tailored optimization and enhance
the comprehension of the resolution process, too often hard
to unravel given the solver’s complexity. In fact, despite the
abundance of data and events in the MILP resolution frame-
work, to the best of our knowledge no statistical analysis
presently happens within the solver; in particular, informa-
tion is not exploited in any structural way via ML algorithms
to make decisions. Applying to generic MILP problems and
opening new opportunities on the solvers’ side, our results
affect a broad audience and assume greater methodological
relevance for the discrete optimization community.

Background: Solving MILPs
As already mentioned, the resolution of MILPs is fundamen-
tally based on the B&B paradigm. In its basic version, B&B
sequentially partitions the solution space of (1) into sub-
MILPs, which are mapped into nodes of a binary decision
tree. At each node, the integrality requirements xi ∈ Z for
variables i ∈ I are dropped, and a linear continuous relax-
ation (polynomially tractable) of the sub-problem is solved,
providing a valid lower bound to the optimal solution value
of the original MILP. On the other hand, feasible solutions
of (1) provide upper bound values. Global lower and upper
bounds (called best bound and incumbent, respectively) are
maintained throughout the resolution process and smartly
used to prune unpromising regions of the feasible space,
so that the resulting algorithm is only implicitly enumerat-
ing the exponentially many solutions of (1). The normalized
difference between global bounds (known as gap) allows to
measure, at any point in time, the quality of a solution and
the progress of the optimization: a MILP is solved when the
gap is fully closed, i.e., when it reaches 0, with upper and
lower bounds coinciding (up to numerical tolerances). The
branching and bounding operations are combined with other
solver’s building blocks – the cutting planes algorithm (Go-
mory 1960), presolving, primal heuristics – to form a very
rich and interconnected resolution framework (Lodi 2009),
in which single events and data become hard to disentangle.

The ability to analyze the outputs of the B&B algo-
rithm can help identifying causes of performance issues,
and explaining instance-specific trends (Klotz and Newman
2013). In particular, many indicators interact in describing
the progress of the MILP resolution process, and need to be
taken into account when casting a prediction about the reso-
lution outcome. To provide a simple example, we plot in Fig-
ure 1 basic information from the resolution log of CPLEX,
for an “Easy” instance of MIPLIB2010 (Koch et al. 2011).
We report the development of the global bounds and the gap,
the number of nodes left (i.e., the leaves yet to be explored)
and the depth of the nodes as the algorithm traverses the tree.
The interconnection between these figures is, for this easy
case, quite clear to observe: for example, an update of the
incumbent value naturally reduces the gap, triggers a drop
in the number of nodes left (due to pruning by bound), and

possibly ends a (depth-first) dive in the tree traversal explo-
ration, a common practice when looking for initial feasible
solutions with primal heuristics.
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Figure 1: Basic information from the CPLEX log from the
resolution of MIPLIB2010 instance air04. Interpreting the
evolution and interaction of these indicators enables a quan-
titative description of the optimization process.

Problem Formalization
We can re-phrase our question more formally by considering
a MILP P , a time-limit TL, and a certain percentage ratio
ρ ∈ [0, 1] yielding τ = ρ · TL ∈ [0, TL]. We solve problem
P with time-limit TL and take into account the evolution of
its resolution process up to time τ . We denote with tPsol the
moment in which P is fully solved (to proven optimality) by
the solver. We want to describe and evaluate the progress (in
other words, the “work done”) in solving P , given that only
a share of the total available time has passed; ultimately, we
aim at casting a prediction on such description. With respect
to the defined parameters, we achieve 100% of work done at
tPsol, and 100% of available time at TL. In practice, there is
a discrepancy between tPsol and TL, the latter specified by a
user, the former unknown and subject to variability.

Graphically, one could depict the advancement of the
solver with a non-decreasing “progress measure”, describ-
ing the proportion of work done given the proportion of time
passed (Figure 2). Our classification question translates pre-
cisely into predicting whether the 100% of the work will be
done before TL, i.e., whether tPsol ≤ TL, only observing the
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Figure 2: (a) Graphical example of “progress measure” for a
triplet (TL, ρ, P ); we assume a smooth behavior for draw-
ing purposes. The observed portion of the resolution (up to
time τ ) is drawn in solid. (b) If we were to measure the
progress by looking at the % of gap closed only, we would
draw a step-wise linear function.

resolution up to time τ . The function we aim to learn is thus
the indicator function 1{tPsol≤TL}.

The task of features design, on the other hand, aims at pro-
viding a definition of the progress measure used to represent
the % of work done, given the triplet (TL, ρ, P ). Instead of
relying on a single feature to describe the optimization pro-
cess (as could be done, e.g., using the gap), we try to capture
the complexity of MILP resolution by considering heteroge-
neous measurements, and design a features map Φ, mapping
(TL, ρ, P ) to a vector in Rd.

Sequence Classification
The sequential character of B&B makes it natural to think
about the partial resolution of P as a progressive stream of
information and events. In the MILP context, it appears rea-
sonable to discretize the time dimension by considering in-
formation being retrieved at every node of the B&B tree,
starting from the root and up to the last one being processed
before time τ (say η). In other words, one could describe
the output of a MILP run with a multivariate time series
STL,ρ,P ,

STL,ρ,P =
{

(N1, 〈v11 , · · · , v1s〉),
(N2, 〈v21 , · · · , v2s〉),

...

(Nη, 〈vη1 , · · · , vηs 〉)
}
,

(2)

a sequence of vectors vk ∈ Rs, each carrying information
about the optimization state at node Nk, up to η.

Classifying STL,ρ,P depending on P ’s optimization out-
come can be seen as a (conventional) sequence classification
task. Sequence classification is typically employed in ge-
nomic applications, anomaly-detection and information re-
trieval (see, e.g., Deshpande and Karypis; Lane and Brod-
ley; Sebastiani, respectively), and generally deals with learn-
ing a sequence classifier for data of sequential type. Few al-

ternatives to tackle sequence classification can be found in
the literature (see the work of Xing, Pei, and Keogh for a
brief survey). We opt for a feature-based approach: simply
put, we transform the sequence STL,ρ,P into a single vector
of numerical features Φ(TL, ρ, P ) ∈ Rd, to which we will
then apply traditional classification algorithms. In our set-
ting, a data-point for the learning algorithm consists of a tu-
ple

(
Φ(TL, ρ, P ), y

)
with Φ(TL, ρ, P ) describing the time

series data STL,ρ,P , and binary label y ∈ {0, 1} assigned
according to 1{tPsol≤TL}. Our sequence classifier can hence
be written as C : Rd −→ {0, 1},

C(Φ(TL, ρ, P )) =

{
1 if tPsol ≤ TL,
0 otherwise.

(3)

However, as pointed out in (Xing, Pei, and Keogh 2010),
one of the major challenges when dealing with sequence
classification resides in the fact that sequence data does not
come with explicit features. Moreover, features selection is
usually costly, and needs to account for an interpretable pre-
diction. Off-the-shelf features selection methods – like k-
grams or time series shapelets – do not appear suitable to
capture the special temporal nature of B&B. We will present
features specifically designed for the MILP resolution pro-
cess after discussing the data collection methodology.

Collecting B&B Data
As we said, the B&B framework produces a lot of hetero-
geneous information, whose combination can provide in-
teresting insights about the optimization status of a MILP
run. Extracting data from the resolution process is allowed
by means of implementing custom Callbacks in the solver’s
APIs, and comes with some computational overhead. From
an application perspective, it seems reasonable that a user
might be willing to spend some additional resources in the
first part of the resolution process, say up to time τ , in order
to get a prediction on the more lengthy horizon of TL. Nev-
ertheless, especially in our setting, time is important: any
appreciable overhead during the run could bias the yes/no
response with respect to the fixed TL, so data collection has
to be as cheap as possible.

To comply with the need of collecting non-biased data –
and certain that a data collection procedure implemented in-
ternally on the solver side would incur in much less overhead
than that experienced by any user dealing with its interfaces
– we devise a two-step proof-of-concept implementation.
We use CPLEX 12.7.1 as solver, together with its Python
API. Given (TL, ρ, P ), we perform

1. Label computation: run P with time-limit TL, and deter-
mine a label for the run by checking if tPsol ≤ TL. During
the run record η, the number of processed nodes at τ .

2. Data collection: run againP (the deterministic run of Step
1 can be reproduced by setting the same random seed),
and actively collect data during the optimization, up to η
nodes.
Having detached data collection from label computation,

we do not need to worry anymore about the overhead in-
curred in Step 2, nor about the integrity of the labeled data;
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the produced sequence STL,ρ,P records the real work done
up to the sought fraction ρ of TL.

Producing Diversification
For fixed TL and ρ, a data-point corresponds to a single run
of a problem P . The need of a reasonable amount of data
for applying ML thus requires many MILP instances – def-
initely more than those currently part of MILP libraries. In-
stead of resorting to random problems generation, we try to
create additional data from existing benchmark instances.

A first general diversification of data from the same prob-
lem P can be produced exploiting the so-called performance
variability of MILPs (Lodi and Tramontani 2013). Pertur-
bations can be obtained simply by setting different random
seeds in the solver, to obtain diverse runs of P . Other diver-
sification schemes, specific to our setting, consist in vary-
ing the main parameters TL and ρ. In particular, one could
(i) vary TL and keep ρ fixed, and/or (ii) vary ρ and keep
TL fixed. Intuitively, approach (i) seems more promising at
generating heterogeneous points: a change of TL allows for
a sensible re-scaling of τ as well, potentially producing data
labeled differently, despite coming from the same problem
P . We graphically describe this intuition in Figure 3.

Having discussed how to produce and collect valuable
MILP time series data, we now turn to the task of handling
it, in order to craft a vector of features.

Features Design
We undertake a features-based approach for sequence clas-
sification, and transform MILP sequential data STL,ρ,P into
a single vector of features Φ(TL, ρ, P ) ∈ Rd, to be fed
as input to traditional classification algorithms. As already
mentioned, features selection is not a straightforward pro-
cess when dealing with serial data, especially if one wants to
retain a certain degree of interpretability. We rely on MILP
domain-knowledge to define features that shall encompass
the optimization progress encoded in STL,ρ,P .

In practice, we extract 25 raw numerical traits from each
Callback call during Step 2 of our data collection procedure,

i.e., each vector vk of STL,ρ,P has dimension 25. Note, how-
ever, that the length η of the series varies considerably across
instances and seeds, ranging between few dozens and hun-
dreds thousands. At each branched node of the MILP tree
we collect information about the general state of the opti-
mization (e.g., gap, value of incumbent and best bound, total
number of processed nodes and count of simplex iterations
performed), together with node-specific data (e.g., current
node LP objective value, number of infeasibilities in the LP
solution, node depth). At few points in time, we extract in-
formation about the list of nodes left (e.g., its length, the
maximum and minimum objective estimates, and the num-
ber of nodes attaining them). Data traditionally reported in
the solver’s log are included in these 25 traits.

Few remarks on the nature of the extracted B&B data, and
on the guidelines that should be observed to transform them
into MILP “progress measures”.

1. Some raw information already describe the global opti-
mization state, and can be considered in all respects as
“progress measures” for the MILP resolution. An exam-
ple in this sense is provided by the gap measure: the last
datum collected about the gap refers to the entire resolu-
tion process up to that point, and can be used directly as
feature in Φ(TL, ρ, P ).

2. Some other information are instead local, referring to a
particular node LP, and need to be embedded and inter-
preted within a more broad and global context. For exam-
ple, a single datum about the depth of a node is not in-
formative of the tree evolution, but combined depth data
can provide indications about the tree profile, as well as
describe dives and leaps in the traversal.

3. Some traits are global (in the sense that they refer to the
totality of the optimization process), but are not signifi-
cant if taken individually. This is the case, for example,
of data about the global bounds values, which present
themselves as a crude sequence of decreasing (or in-
creasing) scalar values. Measuring their development and
changes, instead, can be more informative of the opti-
mization progress.

4. Finally, the wide range of MILP benchmark instances re-
quires features to be comparable across the dataset. For
example, exact values linked to parameters (c, A, b, |I|)
and solutions should be avoided. Global counters, e.g.,
the number of processed nodes, should be used to rescale
other indicators, in order not to affect the learning process
(and subsequent data normalizations) with data of differ-
ent magnitudes.

With these guidelines in mind, by means of combining dif-
ferent raw indicators with each other and interpreting them
from a development perspective, we design (and select)
37 features to represent the MILP progress. We report an
overview and brief description of the features set in Table 1.

Besides the canonical use of statistical functions (like
max, min, average) to synthesize some serial information,
and the use of throughputs measures (e.g., to infer the rates
at which nodes are processed and pruned), we apply our
domain-knowledge to summarize the optimization progress.
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Count Group name Features general description
7 Last observed global

measures
Gap, global bounds ratio, fraction of nodes left attaining max/min objective esti-
mate, comparison of max/min estimates with incumbent, primal-dual integral

4 Nodes left and pruned, it-
erations count

Throughput of pruned nodes, comparison with nodes left, trend w.r.t. max observed
# of nodes left, simplex iterations throughput

4 Node LP integer infeasi-
bilities (iinf)

Max/min/avg number of observed iinf, fraction of nodes with iinf below 5% quan-
tile value

5 Incumbent Throughput of incumbent updates, average frequency and improvement of updates
(normalized), distance from last observed update (normalized), was an incumbent
found before an integer feasible node (boolean)?

4 Best bound Throughput of best bound updates, average frequency and improvement of updates
(normalized), distance from last observed update (normalized)

3 Node LP objective Fraction of nodes with objective above the 95% quantile value, normalized differ-
ences between quantile threshold and global bounds

4 Node LP fixed variables Fraction of max/min observed # of fixed variables, fraction of nodes with # of fixed
variables above 95% quantile value, normalized distance from last observed peak

6 Depth and tree traversal Comparison of max observed depth with # of processed nodes, normalized height
of last full level and waist of the tree, average length of dives (normalized), fre-
quency of leaps in the traversal

Table 1: Overview and brief description of the 37 features employed for learning experiments.

For example, we tackle measures that can vary significantly
even between consecutive nodes in the B&B tree, but for
which we are interested in localizing extreme behaviors
only, by employing quantile values as statistically meaning-
ful thresholds. We use them to track peaks for values of node
LP objective, number of integer infeasibilities and number
of fixed variables. Instead, for data that is updating through-
out the optimization process (e.g., for incumbent and best
bound values), we focus on interpreting their changes in
time, deduce how often and how distant are updates hap-
pening, and what is their average improvement.

Experimental Results
Dataset Composition and Setup We employ instances of
MIPLIB2010 (Koch et al. 2011) and (Mittelmann 2018) for
our experiments. An assessment of the distribution of solv-
ing times seemed necessary in order to produce a balanced
and meaningful dataset. Evaluation runs with 10 different
seeds on the MIPLIB2010 Benchmark set suggested the use
of TL ∈ {3600, 2400, 1200} seconds. A projection of the
resulting labels distribution was performed, to select ρ = 0.2
(i.e., we stop the observation after 20% of TL).

To build our dataset, we collect B&B data from the fol-
lowing MILP problems:
- Benchmark78: 78 instances from MIPLIB2010 Bench-

mark set (problems belonging to Infeasible and Primal
subsets are removed, since they do not appear meaningful
for our question);

- Challenge160: 160 problems from MIPLIB2010
Challenge set (with Infeasible and Primal removed);

- Mittelmann48: 48 instances from H. Mittelmann
MILPlib collection (Mittelmann 2018).

Problems in Benchmark78 and Mittelmann48 are
solved with 3 different random seeds, while those

Class 0 Class 1 Total (%)
Benchmark78 106 405 511 (52.7)
Challenge160 219 6 225 (23.2)
Mittelmann48 9 225 234 (24.1)

Total (%) 334 (34.4) 636 (65.6) 970

Table 2: Dataset composition in terms of labels and original
MILP libraries.

in Challenge160 with a single one. As expected,
Mittelmann48 runs are very short, with few cases of
time-limiting problems. Counterbalancing this effect, the
majority of instances in Challenge160 cannot be solved
within 1h time-limit; Benchmark78 run times are dis-
tributed more evenly. All MILP runs were performed on
a cluster of 640 48-cores machines, each equipped with a
2.1GHz Intel Platinum 8160F “Skylake” processor and 192
GB of RAM. Apart from time-limit specifications, we do not
modify the solver’s default setting; in particular, we leave in
place CPLEX default presolve, cuts and primal heuristics.

The heterogeneity of the collected time series data makes
necessary a thorough phase of data cleaning and scaling. We
discard troublesome runs to get 1315 data-points, which then
reduce to 970 after computing the hand-crafted features and
performing basic data cleaning (data with missing values are
removed). Note that a single MILP problem can generate up
to 9 different data-points, given the variations in seeds and
time-limits used. In the final dataset of 970 points, Class 1
(Class 0) represents the 65.6% (34.4%) of the total; a snap-
shot of the dataset composition is provided in Table 2.
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Figure 4: Training and test set composition with respect to
different labels and MILP libraries, reported for the three
considered train-test splits.

Train and Test Splits In order to account for the different
composition of MILP libraries and the role of performance
variability, we define and try three different ways of splitting
our data into training and test set.

1. Non-homogeneous split: data-points from
Benchmark78 are used for training, while those from
Mittelmann48 for test; data from Challenge160
is divided between train and test, taking care of keeping
together points arising from the same MILP instance.

2. Homogeneous split: both training and test sets are built
using a share of each dataset. Again, points arising from
the same instance are kept together.

3. Random split: data from all runs are mixed together and
randomly split. In this case, points that originated from
the same MILP instance can appear in both training and
test sets.

Proportions between training and test set are roughly main-
tained around a 60%-40% repartition, with slight variations
across splits. Figure 4 illustrates the datasets composition in
more detail.

Learning Experiments
We train and test five different learning models, namely, Lo-
gistic Regression (LR), Support Vector Machines (SVM)

Dum LR SVM RF ExT MLP

Accuracy 0.55 0.94 0.94 0.96 0.96 0.91
Precision 0.56 0.94 0.94 0.96 0.96 0.92
Recall 0.55 0.94 0.94 0.96 0.96 0.91
F1-score 0.56 0.94 0.94 0.96 0.96 0.90

(a) Non-homogeneous split

Dum LR SVM RF ExT MLP

Accuracy 0.59 0.90 0.91 0.94 0.95 0.86
Precision 0.58 0.91 0.91 0.94 0.95 0.86
Recall 0.59 0.90 0.91 0.94 0.95 0.86
F1-score 0.59 0.90 0.91 0.94 0.95 0.85

(b) Homogeneous split

Dum LR SVM RF ExT MLP

Accuracy 0.57 0.93 0.94 0.94 0.93 0.93
Precision 0.57 0.93 0.94 0.95 0.94 0.93
Recall 0.57 0.93 0.94 0.94 0.93 0.93
F1-score 0.57 0.93 0.94 0.94 0.93 0.93

(c) Random split

Table 3: Classification results for the three considered train-
test split settings. Best scores and classifiers are bold-faced.

Predicted
0 1

Tr
ue 0 100 9

1 3 222

(a) Non-homog.

0 1

0 125 11
1 12 228

(b) Homogeneous

0 1

0 130 5
1 18 244

(c) Random

Table 4: Confusion matrices (w/o normalization) for RF in
different split settings. Note that support sizes are varying.

with RBF kernel (Cortes and Vapnik 1995), Random For-
est (RF) (Breiman 2001), Extremely Randomized Trees
(ExT) (Geurts, Ernst, and Wehenkel 2006), and Multi-Layer
Perceptron (MLP). All algorithms are compared against
a dummy classifier (dum) following a stratified strategy.
The learning phase is implemented entirely in Python with
Scikit-learn (Pedregosa et al. 2011), and run on a PC with
Intel Core i5, 2.3 GHz and 8 GB of memory. Each feature
is normalized to have a mean of 0 and a standard deviation
of 1, and each experiment comprises a training phase with
3-fold cross validation to grid-search hyper-parameters, and
a test phase on the neutral test set.

Results Table 3 reports the standard performance mea-
sures for binary classification: for all classifiers we compare
accuracy, precision, recall and f1-score, the last three metrics
averaged between classes and weighted by supports. Over-
all, RF and ExT are the best performing models, with SVM
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Rank Score (avg) Feature description
1 0.1856 ∗ Throughput of pruned nodes (over number of processed nodes)
2 0.1839 ∗ Ratio of pruned nodes over last measured number of nodes left
3 0.0805 ∗ Last measured number of nodes left over maximum number of nodes left observed
4 0.0758 ∗ Fraction of nodes attaining max objective in the list of nodes left
5 0.0632 ∗ Fraction of nodes attaining min objective in the list of nodes left
6 0.0622 ∗ Frequency of leaps (i.e., changes in depth with absolute value > 1)
7 0.0453 ∗ Frequency of best bound updates
8 0.0324 ∗ Last measured gap
9 0.0196 Ratio between last measured best bound value and best integer value

10 0.0181 Maximum length of observed dives, normalized
11 0.0165 Normalized difference between last measured best bound and value of objective 5% quantile
12 0.0164 Normalized distance from last measured best bound update

Table 5: Subset of features appearing in the top-10s for RF: scores are averaged among split cases; features marked with ∗
appear in the top-10 of each setting.

following close behind. We report confusion matrices for
RF in Table 4; selected hyper-parameters (n estimators,
max depth) are (1500, 10), (100, 10), (100, 5), respec-
tively. The high accuracy scores obtained in all three train-
test settings attest that there is indeed a statistical pattern to
be learned during MILP resolution, and that the designed
features are capturing it.

Taking a closer look at class-specific precision and re-
call scores, we note distinct behaviors with respect to dif-
ferent train-test splits. In particular, models in the Non-
homogeneous case present a sensitivity (i.e., recall for Class
1) being higher than specificity, accompanied by high preci-
sion for Class 0. The trend is much less accentuated in the
Homogeneous setting, and blurs completely (if not reverses
itself) in the Random one. An explanation of these behaviors
could be linked to the intrinsic difference in composition of
the MILP libraries employed for the experiments. In fact,
instances in Benchmark78 do not exhibit clear-cut behav-
iors as those in Challenge160 and Mittelmann48. Fi-
nally, the fact of Random being the setting in which MLP is
best performing might be a sign of the model being able to
recognize akin data-points arising from the same instance
(now scattered in both training and test set), and thus linked
to the presence of problems with low variability scores.

Features Analysis Our best performing methods, RF and
ExT, have the advantage of interpretability. We employ fea-
tures scores returned by Scikit-learn to provide a first eval-
uation of those factors that proved valuable for the predic-
tions. We look at the sets of top-10 scoring features for RF,
for each train-test split case, and note a very stable scoring
pattern: 8 features appear in the top-10 of each setting, and
a total of 12 different features covers the three top rankings.
We report them in Table 5, where scores have been averaged
among cases. In particular, throughputs and trends of nodes
pruned, processed and left seem to be crucial for proper clas-
sification. Information on the proportions of nodes attaining
max and min objective estimates within the list of nodes left
are also valuable. Indeed, such estimates at the frontier of

the B&B tree are somehow quantifying the amount of work
to be done to close the upper and lower bounds in the re-
maining subtrees, and hence measuring the “difficulty” of
what is yet to be explored. Together with the gap, few top-
ranked features focus on dives and leaps happened during
the traversal, while few others on best bound updates. Note
that, despite having provided the same set of features to cap-
ture updates of incumbent and best bound, only those rela-
tive to the latter are top-ranked by the algorithm. This is in
line with the composition of MILP benchmarking libraries
and the experience of MILP practitioners, who often wit-
ness slow B&B searches due to difficulty in improving the
LP bound.

Conclusions and Outlook
We propose a learning approach to predict the outcome of
a general MILP problem after only a share of the avail-
able computing time has passed. We summarize the sequen-
tial MILP resolution process with hand-crafted features, and
successfully classify it with traditional learning models. In
particular, our novel features can be applied to any type of
MILP instance, and hence used in future application of ML
for B&B studies, making this work of interest for a wide
audience. Our positive results show that there is indeed a
pattern to be learned across MILP instances, and represent
(to the best of our knowledge) the first structural statistical
use of the data provided by the solver throughout the res-
olution. The proposed framework could be readily imple-
mented internally on the solver side, in order to strategically
specialize the optimization process on the fly, before timing
out, providing better options for the user. In other words, an
early detection of a potential time out can trigger algorith-
mic changes that, in turn, could prevent such a time out to
happen. The developed setting can be extended in a num-
ber of different directions. We plan to deepen data analysis
– possibly augmenting our dataset – and frame the role of
performance variability in the learning process. It would be
interesting to consider other ways to tackle sequence classi-
fication, e.g., by following a pattern-based approach.
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