
UNIVERSITÉ DE MONTRÉAL

LEARNING ACTIVATION FUNCTIONS IN DEEP NEURAL NETWORKS

FARNOUSH FARHADI
DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INDUSTRIEL)
DÉCEMBRE 2017

c© Farnoush Farhadi, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

LEARNING ACTIVATION FUNCTIONS IN DEEP NEURAL NETWORKS

présenté par : FARHADI Farnoush
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. ADJENGUE Luc-Désiré, Ph. D., président
M. LODI Andrea, Ph. D., membre et directeur de recherche
M. PARTOVI NIA Vahid, Doctorat, membre et codirecteur de recherche
M. CHARLIN Laurent, Ph. D., membre

iii

DEDICATION

This thesis is dedicated to my beloved parents, Ahmadreza and Sholeh, who are my first

teachers and always love me unconditionally.

This work is also dedicated to my love, Arash, who has been a great source of motivation

and encouragement during the challenges of graduate studies and life.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Andrea Lodi for his permission to be my
supervisor at Ecole Polytechnique de Montreal and more importantly for his enthusiastic
encouragements and invaluable continuous support during my research and education. I am
very appreciated to him for introducing me to a MITACS internship in which I have developed
myself both academically and professionally.

I would express my deepest thanks to Dr. Vahid Partovi Nia, my co-supervisor at Ecole Poly-
technique de Montreal, for his supportive and careful guidance and taking part in important
decisions which were extremely precious for my research both theoretically and practically.

I would also like to thank the examining committee for taking time out from their busy
schedule to read and review my thesis and provide me with their insightful comments.

Further acknowledgements go to the members of the Excellent Research Chair in Data Science
for Real-time Decision-making who were eager to help me whenever needed.

I would like to express my deepest gratitude and special thanks to Lane Cochrane, the Chief
Analytics Officer at iPerceptions, for giving me the opportunity to do an internship within
the company. For me it was a unique experience to be at iPerceptions and to do the research
on machine learning. I would like to thank Sylvain Laporte, the Chief Technology Officer
at iPerceptions, who in spite of being extraordinarily busy with his duties, took time out
to give me necessary advice. I am especially thankful to all my collegues at R&D team at
iPerceptions for their careful and valuable guidance to make life easier.

And on a personal note, a special word of thanks goes to my parents who always stand behind
me and support me spiritually throughout my life. My special thanks to Arshin, Mehrnoush
and Siavash, my sisters and brother-in-law whose encourage and guides always help me in
my personal and professional life. I am grateful for the love, encouragement, and tolerance
of Arash, the man who has made all the difference in my life. Without his patience and love,
I could not have completed this thesis.

I am especially grateful to Atefeh, my best friend, who has been there whenever I needed
her. She always has the time to hear about my successes and failures and has always been a
faithful listener.

I would like to thank my dear friend David Berger for helping me in translating the abstract
into French and Chris Nael for his assistance in general editing.

v

RÉSUMÉ

Récemment, la prédiction de l’intention des utilisateurs basée sur les données comportemen-
tales est devenue plus attrayante dans les domaines de marketing numérique et publicité en
ligne. La prédiction est souvent effectuée par analyse de l’information du comportement des
visiteurs qui comprend des détails sur la façon dont chaque utilisateur a visité le site Web
commercial. Dans ce travail, nous explorons les méthodes statistiques d’apprentissage auto-
matique pour classifier les visiteurs d’un site Web de commerce électronique d’après des URL
qu’ils ont parcourues. Plus précisément, on vise à étudier comment les réseaux de neurones
profonds de pointe pourraient efficacement prédire le but des visiteurs dans une session de
visite, en utilisant uniquement des séquences d’URL. Dans un réseau contenant des couches
limitées, le choix de la fonction d’activation a un effet sur l’apprentissage de la représentation
et les performances du réseau.

Typiquement, les modèles de réseaux de neurones sont appris en utilisant des fonctions d’ac-
tivation spécifiques comme la fonction sigmoïde symétrique standard ou relu linéaire. Dans
cette mémoire, on vise à proposer une fonction sigmoïde asymetrique paramétrée dont la
paramètre pourrait être controlé et ajusté dans chacun des neurons cachées avec d’autres
paramètres de réseau profond en formation. De plus, nous visons à proposer une variante
non-linéaire de la fonction relu pour les réseaux profonds. Comme le sigmoïde adaptatif,
notre objectif est de régler les paramètres du relu adaptatif pour chaque unité individuelle-
ment, dans l’étape de formation.

Des méthodes et des algorithmes pour développer ces fonctions d’activation adaptatives sont
discutés. En outre, une petite variante de MLP (Multi Layer Perceptron) et un modèle CNN
(Convolutional Neural Network) applicant nos fonctions d’activation proposées sont utilisés
pour prédire l’intention des utilisateurs selon les données d’URL. Quatre jeux de données
différents ont été choisis, appelé les données simulées, les données MNIST, les données de
revue de film, et les données d’URL pour démontrer l’effet de sélectionner différentes fonctions
d’activation sur les modèles MLP et CNN proposés.

vi

ABSTRACT

Recently, user intention prediction based on behavioral data has become more attractive in
digital marketing and online advertisement. The prediction is often performed by analyzing
the logged information which includes details on how each user visited the commercial web-
site. In this work, we explore the machine learning methods for classification of visitors to
an e-commerce website based on URLs they visited. We aim at studying on how effectively
the state-of-the-art deep neural networks could predict the purpose of visitors in a session
using only URL sequences. Typical deep neural networks employ a fixed nonlinear activation
function for each hidden neuron. In this thesis, two adaptive activation functions for individ-
ual hidden units are proposed such that the deep network learns these activation functions
in training. Methods and algorithms for developing these adaptive activation functions are
discussed. Furthermore, performance of the proposed activation functions in deep networks
compared to state-of-the-art models are also evaluated on a real-world URL dataset and two
well-known benchmarks, MNIST and Movie Review benchmarks as well.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS AND NOTATIONS . xvii

LIST OF APPENDICES . xx

CHAPTER 1 INTRODUCTION . 1
1.1 Deep Neural Networks . 3
1.2 Adaptive Activation Functions . 5
1.3 Research Objectives . 6
1.4 Our Contributions . 7
1.5 Thesis Structure . 7

CHAPTER 2 OVERVIEW . 8
2.1 Linear Regression . 8

2.1.1 Maximum Likelihood Estimation and Least Squares 10
2.1.2 Multiple Outputs . 12

2.2 Generalized Linear Models (GLMs) . 13
2.2.1 Exponential Family . 14
2.2.2 Exponential Dispersion Family . 15
2.2.3 Mean and Variance . 16
2.2.4 Linear Structure . 18
2.2.5 GLMs Components . 19
2.2.6 Maximum Likelihood Estimates . 21

viii

2.2.7 Logistic Regression . 25
2.2.8 Maximum Likelihood Estimates in Logistic Regression 27

CHAPTER 3 DEEP NEURAL NETWORKS . 33
3.1 Perceptron . 33

3.1.1 Perceptron Algorithm . 33
3.1.2 Model . 33
3.1.3 Basic Perceptron Learning Rule and Convergence 36
3.1.4 Perceptron Learning Rule on Loss Function 42
3.1.5 Perceptron with Sigmoid Function . 45
3.1.6 Perceptron Issues . 51

3.2 Multi Layer Perceptrons (MLPs) . 52
3.2.1 Activation Functions . 56
3.2.2 Loss Function . 59
3.2.3 Backpropagation Learning Algorithm 60
3.2.4 Mini-batch Stochastic Gradient Descent (Mini-batch SGD) 64
3.2.5 Regularization . 66
3.2.6 Dropout . 67
3.2.7 Parameters Initialization . 68

3.3 Convolutional Neural Networks (CNNs) . 68
3.3.1 Convolutional Layer . 69
3.3.2 Max Pooling Layer . 71
3.3.3 Loss Function and Gradients . 72

CHAPTER 4 ADAPTIVE ACTIVATION FUNCTIONS 74
4.1 Latent Variable Formulation . 74
4.2 The complementary log-log transformation 77

4.2.1 Maximum Likelihood Estimates with Complementary log-log 79
4.3 Adaptive Sigmoid Link Function . 81

4.3.1 Identifiability . 83
4.3.2 Maximum Likelihood Estimates for Adaptive Sigmoid Link Function 86
4.3.3 ANNs with Adaptive-sigmoid : Loss Function and Optimization . . . 87

4.4 Adaptive ReLu Function . 90
4.4.1 ANNs with Adaptive-relu : Loss Function and Optimization 92

CHAPTER 5 EXPERIMENTS AND RESULTS . 95
5.1 Performance Measures . 95

ix

5.2 Experiment 1 : Simulated Data . 97
5.2.1 Data . 98
5.2.2 Tools and Technologies . 98
5.2.3 Results and Evaluations . 98
5.2.4 Conclusions . 108

5.3 Experiment 2 : MNIST Benchmark . 110
5.3.1 data . 110
5.3.2 Tools and Technologies . 110
5.3.3 Models . 110
5.3.4 Results and Evaluations . 111
5.3.5 Conclusions . 114

5.4 Experiment 3 : Sentiment Analysis . 117
5.4.1 Data . 117
5.4.2 Data preparation . 117
5.4.3 Models . 118
5.4.4 Tools and Technologies . 119
5.4.5 Results and Evaluations . 119
5.4.6 Conclusions . 122

5.5 Experiment 4 : Company Data . 123
5.5.1 Dataset . 123
5.5.2 Problem Definition . 123
5.5.3 Company Data Preparation . 123
5.5.4 Proposed Models . 131
5.5.5 Tools and Technologies . 135
5.5.6 Conclusions . 135

CHAPTER 6 CONCLUSION . 137

REFERENCES . 140

APPENDICES . 149

x

LIST OF TABLES

Table 2.1 Variance function for different distributions (Lindsey, 2000) 18
Table 2.2 Canonical Link function for different distributions from (Myers et al.,

2012) . 20
Table 3.1 The result table for some boolean functions over two variables x1 and

x2, T represents value 1 and F denotes value 0. 51
Table 5.1 Confusion Matrix Table . 95
Table 5.2 Accuracy table for Simulated data. M1 : primary model with different

configurations, M2 : fitted models using different activation functions
including sigmoid, adaptive-sigmoid, relu and adaptive-relu. The mo-
del M1 could be created based on either sigmoid or relu. 1NN denotes
MLP with one hidden layer and 2NN is used for MLP with two hidden
layers. Both M1 and M2 have the same hyper parameters in all configu-
rations such as λ1 = .001, λ2 = .001, γ = .01, batch size = 20, number
of examples = 10000, number of features 10, number of classes = 2,
number of neurons at each hidden layer = 10 and number of epochs =
2000. 99

Table 5.3 Accuracy table : MLP models with different number of hidden layers,
number of neurons and the type of activation functions at each layer.
The hyper-parameters are γ = 0.01, λ1 = 0.0, λ2 = 0.0001, batch− size =
20, epochs = 500 (MNIST data). 111

Table 5.4 CNN models with two convolution layers (each of them following a
max pooling layer) and one fully-connected MLP at the end. The func-
tions in rows represent the activation functions used in convolutional
layers while the functions in columns denote the activation functions
employed in fully-connected network. The hyper parameters of the all
models are the same in all experiments including # of kernel window
sizes = [20, 50], image shapes = [28, 12], filter shapes = [5, 5], pool
sizes = [2, 2] and hyper-parameters γ = 0.01, λ1 = 0.0, λ2 = 0.0001,
batch− size = 100, iterations = 150. In all CNN models batch norma-
lization is used (MNIST data). 113

xi

Table 5.5 Static CNNs models with two convolution layers (each of them fol-
lowing a max pooling layer) and one fully-connected network at the
end. Functions in rows indicate the activation functions used in convo-
lutional layers and functions in columns show activation functions in
fully-connected network. The hyper parameters in all models are same
including image dimensions (img_w) = 300, filter sizes = [3, 4, 5],
each have 100 feature maps, batch_size = 50, γ = 0.05, dropout = 0.5,
λ2 = 3, number of hidden layers = 1, number of neuron = 100, number
of epochs = 50. The results are reported as the average accuracy from
5-fold cross-validation (MR data). 120

Table 5.6 Comparison between our best models and the state-of-the-art results on
Movie Review data. best-CNN-1 : CNN with adaptive-relu in convo-
lutional layer and sigmoid in fully-connected network, best-CNN-2 :
CNN with relu in convolutional layer and sigmoid in fully-connected
network and best-CNN-3 : CNN with adaptive-relu in convolutional
layer and adaptive-sigmoid in fully-connected network. 122

xii

LIST OF FIGURES

Figure 3.1 A simple model with step function 34
Figure 3.2 Demonstration of the hyperplane as decision boundary for a two-dimensional

and binary classification problem . 35
Figure 3.3 Sigmoid and its derivative function according to equations (3.33) and

(3.34). 46
Figure 3.4 The application of the sigmoid activation function in a perceptron model. 46
Figure 3.5 A demonstration of OR, AND, XOR and XNOR boolean functions. . 52
Figure 3.6 An architecture of a feed-forward neural network with L hidden layers

(reproduced from (Witten et al., 2016)). 53
Figure 3.7 The forward propagation and structure of a multi-layer feed-forward

neural network reproduced from (Witten et al., 2016). 56
Figure 3.8 Common activation functions . 59
Figure 3.9 Backpropagation in a L layer fully-connected network reproduced from

(Witten et al., 2016). 64
Figure 3.10 A slight architecture of leNet5 as a CNN model reproduced from (Le-

Cun et al., 1998a). 70
Figure 4.1 Latent variable and random response. 75
Figure 4.2 The inverse of the link functions for : (left) complementary log-log and

(right) log-log. 78
Figure 4.3 Left : a comparison of the logit, probit and comp-log-log link functions,

g is shown. In middle, graph compares the c.d.f. of Logistic, Normal and
Gumbel distribution as g−1. Right-side graph gives a demonstration of
the p.d.f. of the Logistic, Normal and Gumbel distribution. 79

Figure 4.4 A comparison of link functions. 82
Figure 4.5 Adaptive sigmoid and its derivatives with respect to parameters x (or

p.d.f.) and for different values of α. 83
Figure 4.6 Adaptive-relu and its derivatives with respect to parameters x and α

for different values of α. 93

xiii

Figure 5.1 Comparing the biases w20 histogram of fitted models M2 (in first hidden
layyer) using different activation functions when the primary model M1

uses sigmoid (left column) and relu (right column). Biases were initia-
lized from N (0, 0.5) in M1 and biases in M2 initialized by formulation
suggested in (LeCun et al., 1998b). Both M1 and M2 models in each
single graph have the same configuration in terms of number of layers
and neurons at each layer. The hyper parameters in all models are set
as λ1 = .001, L2 = .001, γ = .01, batch size = 20, number of examples
= 10000, number of features 10, number of classes = 2, number of
neurons at each hidden layer = 10 (Simulated data). 101

Figure 5.2 Comparing the weights W2 histogram of fitted models M2 (in first hid-
den layer) using different activation functions when the primary model
M1 using sigmoid (left column) and relu (right column). The origin
weights W1 in M1 were initialized from a mixture of {N (−1, 0.5),N (1, 0.5)}
and weights in M2 initialized by (LeCun et al., 1998b). Both M1 and
M2 models in each single graph have same configuration in terms of
number of layers and neurons at each layer. The hyper parameters in
all models are set as λ1 = .001, λ2 = .001, γ = .01, batch size = 20,
number of examples = 10000, number of features 10, number of classes
= 2, number of neurons at each hidden layer = 10 (Simulated data). . 102

Figure 5.3 Comparing the weights difference Y2 histogram of fitted models M2

using different activation functions when the primary model M1 using
sigmoid (left column) and relu (right column). Both M1 and M2 models
in each single graph have same configuration in terms of number of
layers and neurons at each layer. The hyper parameters in all models
are set as λ1 = .001, λ2 = .001, γ = .01, batch size = 20, number
of examples = 10000, number of features 10, number of classes = 2,
number of neurons at each hidden layer = 10 (Simulated data). . . . 103

Figure 5.4 Compare the error curve of fitted models M2 using different activation
functions with the primary model M1 using sigmoid (left column) and
relu (right column). Both M1 and M2 models in each single graph have
the same configuration in terms of number of layers and neurons at each
layer. The hyper parameters in all models are set as λ1 = .001, λ2 =
.001, γ = .01, batch size = 20, number of examples = 10000, number of
features 10, number of classes = 2, number of neurons at each hidden
layer = 10 (Simulated data). 105

xiv

Figure 5.5 Comparing the cost curve of fitted models M2 using different activation
functions with the primary model M1 using sigmoid (left column) and
relu (right column). Both M1 and M2 models in each single graph have
the same configuration in terms of number of layers and neurons at each
layer. The hyper parameters in all models are set as λ1 = .001, λ2 =
.001, γ = .01, batch size = 20, number of examples = 10000, number of
features 10, number of classes = 2, number of neurons at each hidden
layer = 10 (simulated data). 106

Figure 5.6 Comparing the Pr, Re and F1 of the four M2 models fitted with sig-
moid, ada-sigmoid, relu and ada-relu activation functions when their
corresponding M1 models designed with sigmoid in a) 1NN, b) 2NN,
c) 4NN and d) 8NN hidden layer MLPs (Simulated data). 107

Figure 5.7 Comparison of the Pr, Re and F1 of the four M2 models fitted with
sigmoid, ada-sigmoid, relu and ada-relu activation functions when their
corresponding M1 models designed with relu in a) 1NN, b) 2NN, c) 4NN
and d) 8NN hidden layer MLPs (Simulated data). 109

Figure 5.8 Comparison of the errors curves for MLP models with different confi-
gurations : rows represent the number of hidden layers (1NN and 2NN)
and columns indicate the number of neurons at each hidden layer
(500 and 1000). The comparisons are based on MLP models using
four different activation functions : sigmoid, adaptive-sigmoid, relu and
adaptive-relu (MNIST data). 115

Figure 5.9 Comparison of the cost curves for MLP models with different configura-
tions : rows represent the number of hidden layers (1NN and 2NN) and
columns indicate the number of neurons at each hidden layer (500 and
1000). The comparisons are based on MLP models using four different
activation functions : sigmoid, adaptive-sigmoid, relu and adaptive-relu
(MNIST data). 115

Figure 5.10 Comparison of the errors and cost curves for CNN models with different
configurations. The activation functions in convolutional layers of CNN
models are tanh, adaptive-sigmoid, relu and adaptive-relu. All CNN
models are trained with batch normalization. The comparison of the
error curve of fitted CNNs with sigmoid, adaptive-sigmoid, relu and
adaptive-relu are demonstrated in each single graph (MNIST data). . 116

Figure 5.11 CNN architecture with two channels for sentence classification repro-
duced from (Kim, 2014). 118

xv

Figure 5.12 Comparison of the error and cost curves of our static CNNs models with
two convolution layers (each of them following a max pooling layer) and
one fully-connected network at the end. The hyper parameters in all
models are same including image dimensions (img_w) = 300, filter sizes
= [3, 4, 5], each have 100 feature maps, batch_size = 50, γ = 0.05,
dropout = 0.5, L2 = 3, number of hidden layers = 1, number of neuron
= 100, number of epochs = 50. a) CNN with tanh in convolutional layer,
b) CNN with adaptive-sigmoid in convolutional layer, c) CNN with relu
in convolutional layer and d) CNN with adaptive-relu in convolutional
layer (MR data). 121

Figure 5.13 Class distribution for company data. class 0 : browse/search product,
class 1 : complete transaction/purchase, class 2 : get order support/technical
support and class 3 : other. 127

Figure 5.14 Comparison of the performance of the user intention prediction with
different baseline classifiers (NB, LR, GB and RF) over URL categori-
zed by Tf-idf. a) comparison based on average accuracy, precision and
recall, b) comparison based on precision per class and c) comparison
based on recall per class. 128

Figure 5.15 Comparison of the performance of the user intention prediction with
with 1NN, 2NN and CNN without dropout over URL categorized by
Tf-idf. a) comparison based on average accuracy, precision and recall,
b) comparison based on precision per class and c) comparison based
on recall per class. 129

Figure 5.16 Comparison of the performance of the user intention prediction with
with 1NN, 2NN and CNN with dropout (p = .5), over URL categori-
zed by Tf-idf. a) comparison based on average accuracy, precision and
recall, b) comparison based on precision per class and c) comparison
based on recall per class. 130

Figure 5.17 Average performance : comparison of the performance of the user in-
tention prediction with different static CNN models fitted with dif-
ferent activation functions in convolutional and fully-connected layers
in terms of average accuracy, precision and recall : a) static CNN with
tanh in convolutional layers, b) static CNN with adaptive-sigmoid in
convolutional layers, c) static CNN with relu in convolutional layers
and d) static CNN with adaptive-relu in convolutional layers. 132

xvi

Figure 5.18 Precision per class : Comparison of the performance of the user in-
tention prediction with different static CNN models fitted with dif-
ferent activation functions in convolutional and fully-connected layers :
a) static CNN with tanh in convolutional layers, b) static CNN with
adaptive-sigmoid in convolutional layers, c) static CNN with relu in
convolutional layers and d) static CNN with adaptive-relu in convolu-
tional layers. 133

Figure 5.19 Recall per class : comparison of the performance of the user intention
prediction with different static CNN models fitted with different acti-
vation functions in convolutional and fully-connected layers : a) static
CNN with tanh in convolutional layers, b) static CNN with adaptive-
sigmoid in convolutional layers, c) static CNN with relu in convolu-
tional layers and d) static CNN with adaptive-relu in convolutional
layers. 134

Figure A.1 MLP models with different configurations : compare the precision, re-
call and F1. 149

Figure A.2 CNN models : Compare the precision, recall and F1. 150
Figure B.1 Compare the precision, recall and F1. 151

xvii

LIST OF ABBREVIATIONS AND NOTATIONS

1NN one hidden-layer neural network
2NN two hidden-layer neural network
adarelu adaptive relu activation function
adasigmoid adaptive sigmoid activation function
ANN Artificial Neural Networks
BOW Bag of Words
CM Company data
CNN Convolutional Neural Networks
GB Gradient Boosting
GLMs Generlazied Linear Models
IRLS Iteratively Reweighted Least Squares
LDA Latent Dirichlet Allocation
LR Logistic Regression
MLE Maximum Likelihood Estimates
MLP Multi Layer Perceptrons
MNIST Modified National Institute of Standards and Technology dataset in-

cludes hand-written digit images
MR Movie Review data
NB Naive Bayes
NLP Natural Language Processing
Pr Precision
Re Recall
relu rectifier linear unit
RF Random Forest
SM Simulated data
SVM Support Vector Machine
Tf-idf Term frequency-inverse document frequency
URL Universal Resource Locator

xviii

Notations

n data size
m number of data features
x input vector x = [x0, ..., xm]> augmented by 1
X input matrix X = [x1, ...,xn] where xi = [x0, ..., xm]>

y output vector y = [y1, ..., yn]
Y output matrix Y = [y1, ...,yn]
w weight vector w = [w0, ..., wm]> including bias
W weight matrix W of size (m+ 1)×K
w0 bias
K number of classes in multi-classification problem
L loss function
L number of hidden layers in MLPs
l index of layers in MLPs
N l number of neorons in each layer l
act activation function in MLP
f output of softmax layer in MLP with K entries l
Wl weight matrix in layer l in MLP
hl result of applying activation function in a layer in MLP
η weighted sum Wx in MLP
K ′ number of mini-batches in mini-batch stochastic gradient descent
γ learning rate
α parameter of adaptive activation function
t response vector
T response matrix for n examples
φ basis function
Φ matrix of basis functions
` log likelihood
E Error function
N Normal distribution
σ dispersion parameter
µ mean
ε noise
Ω Diagonal matrix in weighted least squares
z working dependent vector
η linear predictor

xix

V mathematical operator of variance
ε0 margin in perceptron
tmax maximum number of iterations in perceptron learning rule
βmax upper bound in perceptron learning rule

xx

LIST OF APPENDICES

Appendix A CLASSIFICATION REPORT FOR EXPERIMENT 2 ON MNIST . . 149

Appendix B CLASSIFICATION REPORT FOR EXPERIMENT 3 ON MOVIE
REVIEW . 151

1

CHAPTER 1 INTRODUCTION

Recently, online e-commerce application has become one of the most popular approaches for
people to browse, compare and purchase products. On the other hand, product marketing and
online advertisers realize its importance for providing cost-effective opportunities to improve
decision-making in digital marketing strategies. Most of the revenue brought to the industry
are featured by fitting a probabilistic model to historical event data, in order to predict how
a current visitor will behave in the near future, based on their behavior profile. The concept
of user behavioral profiling includes collecting and analyzing multiple events, in which each
event could be attributed by a single origin entity according to obtain more information
about the origin entity. This process consists of two phases :

1. Data collection including recording, storing and tracking.

2. Looking for recognizing a desired pattern based on state-of-the-art machine learning
techniques on collected data.

Suppose that a customer intends to shop online for a pair of shoes. He surfs the net and
searches for shoes anonymously, but makes no purchase. Subsequently, he visits a web site
of the local market that displays advertisements offering new collection of a specific brand.
While no personal identification information might have been collected, his interest in shoes
has been noted. Online publishers and advertisers aim at increasing the performance of
advertising through user behavior information. Particularly, behavioral targeting gets benefit
from the information collected from an individual’s web-browsing behavior to display a better
advertisement match to that user in real-time. The collected data from a user behavioral
tracking includes the pages he visits, the duration time he visits each page, the links he clicks
on, the search engine or web-browsers he uses, the referral medium to this web site and the
objects that he interacts with. All of this information allow websites to create a profile that
links to that visitor’s web browser. In light of this situation, our motivation is to develop a
methodology for predicting the user intentions based on the web page URLs they navigated,
and to leverage this information to enhance marketing strategies. The prediction is typically
performed based on the web page content along with the link structure of the web graph
(Chakrabarti et al., 1998). There are several advantages to predict the visitors intentions
using only the URLs they navigated and this is the problem we studied in this thesis.

One benefit of such an approach is time efficiency. The URL could reflect a small fraction
of the corresponded page content which mostly enables a much faster feature building and
accelerates the classification, consequently.

2

Using the URLs for classification has several applications in different domains. (Chakrabarti
et al., 1999) introduces a fast web crawler to discover the relevant web pages to a pre-defined
topic set using a starting set of URLs. Accordingly, such systems could speed-up the web page
classification by predicting the topic of URLs before downloading their contents and avoiding
consuming the excess bandwidth. Using URLs has another application in personalized web
browsers wherein the visited URLs could be annonated based on the visitors’ topic interests
(Baykan et al., 2008, 2009; Qi et Davison, 2009; Kan, 2004; Kustanowitz et al., 2006).

Another line of our work focuses on using machine learning approaches to predict the user
intentions. Generally most prior work includes Logistic Regression and Decision Trees (Ri-
chardson et al., 2007; Yan et al., 2014) due to their simplicity and effectiveness. Although,
these are widely-used approaches in this domain, these methods could not tackle the sparsity
and high-dimensionality challenges seen in text data (McMahan et al., 2013). Furthermore,
the standard machine learning methods could not explain the latent features of data or reveal
the complex relationship among features (Liu et al., 2015).

Identifying the user intent behind the URL sequence is a crucial step toward reaching this
goal. User intention prediction using only URLs is a challenging task because URLs are
usually short, and identifying the exact intent of the visitors requires more context beyond
the extracted tokens from URLs.

In recent decade, the field of deep neural networks (deep learning) achieved considerable
success in pattern recognition and text classification. There are a lot of studies and practical
applications of deep learning on images, video or text classification, the application of these
concepts on user intention prediction are just about to make their first steps in research (Liu
et al., 2015; Vieira, 2015; Korpusik et al., 2016; Lo et al., 2016; Hashemi et al., 2016). Our
approach in this work is to use deep learning methods to find URLs sequence representa-
tions and apply them as features to predict the user intention. Deep learning approaches are
widely-used approaches in text classification tasks through leveraging word vector representa-
tions like word2vec (Kim, 2014). In this thesis, we learn URL sequence representations using
Convolutional Neural Networks (CNNs) which is trained on top of word vector representa-
tions. However, CNNs were originally applied in computer vision, they have shown a great
success in several natural language processing tasks, such as text classifications, sentiment
analysis (Kim, 2014), semantic parsing (Yih et al., 2014) and sentence modeling (Kalchbren-
ner et al., 2014; Kim, 2014). Our work differs from text classification in the sense that URLs
are often short and unstructured.

Typically, the network parameters are learned to fit the data, while the activation functions
are pre-specified to be a sigmoid, tanh or relu function. A deep neural network applying any

3

of these common nonlinear functions can approximate arbitrarily functions (Hornik et al.,
1989; Cho et Saul, 2010). In a network with limited layers, the choice of activation function
has an effect on the representation learning and the network performance (Agostinelli et al.,
2014). Although the rectifier linear unit (relu) function does not saturate like the sigmoid
nonlinear function where corresponding units suffer from the "relu dying" problem during
training. Hence, developing an adaptive activation function that is capable of fast training
of deep neural networks more accurately has attracted attention in recent years (Agostinelli
et al., 2014; Jarrett et al., 2009; Glorot et al., 2011; Goodfellow et al., 2013; Springenberg et
Riedmiller, 2013; Dushkoff et Ptucha, 2016).

In this context, this thesis develops a variant of deep neural networks using adaptive forms
of standard activation functions in order to predict the user intentions by focusing on URL
sequences they visited.

An excerpt of the most relevant work in the context of deep neural networks is reviewed in
following section. An introduction of applying adaptive activation functions is presented in
sequel.

1.1 Deep Neural Networks

According to (Schmidhuber, 2015), the idea of deep networks referred to the work of (Iva-
khnenko et Lapa, 1966). The idea of early neural network models dates back to the work of
(McCulloch et Pitts, 1943) but their models did not learn. The simple networks that worked
properly based on supervised learning were trained by (Rosenblatt, 1958; Widrow, 1962).
The neural network-based systems trained with backpropagation and minimization of error
by gradient descent were discussed in (Kelley, 1960; Bryson, 1961; Bryson et Denham, 1962).
Furthermore, the work of using other optimization methods, namly steepest and momentum
to accelerate the backpropagation were introduced in (Bryson, 1961) and (Rumelhart et al.,
1988), repectively. Some advanced algorithms to control the backpropagation by adjusting a
a global learning rate were introduced by (Battiti, 1989) and (LeCun et al., 1993) as well.
An efficient backpropagation to minimize the loss function rather than error was introdu-
ced by (Dreyfus, 1973) and the first neural network using this efficient backpropagation was
described in detail in (Werbos, 1982). The related papers regarding the developing of such
neural network architectures were published in (LeCun et al., 1998b). (Rojas, 1996) and (Wit-
ten et al., 2016) also provided a formulation for backpropagation in a matrix-vector format.
The idea of optimization through stochastic gradient descent was developed by (Robbins et
Monro, 1951).

4

The first deep learning network of the multi-layer perceptrons variant was trained by (Iva-
khnenko et Lapa, 1966). The proposed network, called GMDH, includes the hidden neurons
using a type of polynomial activation function and the hidden layers were learned by regres-
sion. The hierachical representation of this network containing 8 hidden layers was described
in details in (Ivakhnenko, 1971). (Bottou, 2012) and (Bengio, 2012) presented some theo-
retical and empirical tricks and recommendations for learning deep neural networks with
stochastic gradient descent.

The origin of the convolutional neural networks (CNNs) as the deep variant of neural networks
were first inspired from the work on the animal visual cortex by (Hubel et Wiesel, 1962)
where they discovered that the cells in cat’s visual cortex act as local filters that will be
fired in response to a specific visual pattern inputs (e.g. edge orientations). In this context,
the first modern CNN, "Neocognitiveon", was proposed by (Fukushima et Miyake, 1982).
The "LeNet", a CNN-based model augmented by max-pooling and using backpropagation
was proposed by (LeCun et al., 1998a). The "LeNet" architecture has been an essential part
of several competition-wining solutions and state-of-the-art proposed CNN-based models in
computer vision (Krizhevsky et al., 2012).

The crucial effect of parameter initialization in deep networks was discussed in (LeCun et al.,
1998b) and recently in (Krizhevsky et al., 2012). Further, (Glorot et Bengio, 2010) discussed
several weight initialization and how the different combination of number of input and output
units in weight initialization formulation along with different type of activation functions
could be employed in deep neural networks.

Applying dropout as a regularization method in deep neural networks was introduced by (Sri-
vastava et al., 2014). Furthermore, using batch normalization to speed up the deep network
training by normalizing the layer inputs was introduced in (Ioffe et Szegedy, 2015). Their
method treats as a regularizer and is less careful regarding the parameter initialization.

Recently, CNN models have achieved considerable success in computer vision and speech
recognition domains (Krizhevsky et al., 2012; Graves et al., 2013). In the context of natural
language processing most of the work was focused on word vector representation (Bengio
et al., 2003; Mikolov et al., 2013). By the virtue of existing a strong spatially correlation in
natural languages, CNN models could be used effectively for such tasks as well and achieve
excellent results compared to the state-of-the-art approaches. (Shen et al., 2014) introduced a
CNN latent semantic model for search query retrieval. (Kalchbrenner et al., 2014) presented
a dynamic CNN model using dynamic k-max pooling in sentences modeling applications.
(Kim, 2014) exhibited that a simple CNN model including one convolutional layer and public
word2vec word vectors could outperform the state-of-the-art machine learning models for

5

sentiment analysis on multiple benchmarks.

1.2 Adaptive Activation Functions

A sufficiently large neural network using a sigmoid, tanh or rectifier linear unit (relu) func-
tion in nonlinearity components could approximate any arbitrary complex function (Hornik
et al., 1989) and (Cho et Saul, 2010). However, in deep networks with a specific number of
hidden layers, the choice of the activation functions has an important impact on the net-
work performance. For example, sigmoid suffers from the gradient vanishing and "dying relu"
often occurs in relu neurons. One proposed approach to mitigate these difficulties in deep
neural networks is applying maxout, which leverages the dropout model averaging technique
(Goodfellow et al., 2013).

Most the state-of-the-art deep neural networks choose the activation function as a hyper
parameter in the training. In this context, prior work focused on genetic and evolutionary
approaches such that activation function for each hidden unit was chosen from a predefined
set (Yao, 1999). Further, (Turner et Miller, 2014) proposed a combination of these methods
with a scaled parameter which was tuned in the training step. Selecting more than one
activation function for each unit in a deep CNN model was studied in (Dushkoff et Ptucha,
2016).

In recent years, developing activation functions that speeds up the training step and produces
the accurate results has attracted remarkable attention. (Agostinelli et al., 2014) introduced
an adaptive piece-wise linear function that could be learned for each hidden neuron, indi-
vidually. A parametric form of relu to generalize the standard relu function was proposed
by (He et al., 2015). Their proposed activation function enables deep networks to train ex-
tremely deep models and achieved excellent results on the GoogleLeNet dataset. (Zhang
et Woodland, 2015) introduced a parameterized symmetric form of the sigmoid by adding a
scale parameter. Additionally, an adaptive relu with a parameter to scale the hinge-like shape
was proposed in their work as well. (Hou et al., 2016, 2017) presented a smooth piece-wise
polynomial activation function to decrease the bias of the regression neural networks. The
capability of their proposed activation function in approximating any continuous function
was discussed in their paper. Note that relu is a sort of piece-wise linear function wherein
the negative part is always assigned to zero. By contrary, the leaky relu has a small predefi-
ned negative slope for the negative inputs (Maas et al., 2013). Compared to leaky relu, elu
(Clevert et al., 2015) attempted to exponentially decrease the slope from a predefined value
to zero. Using elu mostly accelerates training by preventing a bias shift that often occurs

6

in relu networks. (Qian et al., 2018) proposed a mixed function of leaky relu and elu as an
adaptive function that could be learned in a data-driven way. A scaled linear and non-linear
combination of leaky relu and elu was explored in their work. Furthermore, the performance
of a hierarchical integration of these activation functions compared to standard relu in a deep
CNN model was well investigated on several image benchmarks.

Inspired from (Agostinelli et al., 2014; Zhang et Woodland, 2015) and (Qian et al., 2018), our
contribution in this thesis is to study the effect of asymmetry on a parametric sigmoid. The
goal is to propose an adaptive sigmoid function with a parameter that could be controlled
and fitted for each hidden neuron along with other deep network parameters in training.
Furthermore, we aim at proposing a smooth variant of relu function for deep networks.
Like adaptive sigmoid, our goal is to tune the parameters of the adaptive relu for each unit
separately in training step. We also indicate that these parametric form of activation functions
improve the performance of deep networks in multiple classification tasks on text and image
data.

1.3 Research Objectives

The goal of this master thesis is to explore the problem of user intention prediction using
URLs dataset. In particular, this thesis proposes two novel adaptive activation functions
employed in deep neural networks, namely in Multi Layer Perceptrons (MLP) and in CNNs.
On one hand, the standard variant of deep networks was applied for learning the visitors
intentions. On the other hand, a slight variant of CNN architecture proposed in (Kim, 2014)
along with our proposed activation functions was used to classify the user intentions based
on URLs they navigated. Aside from this, the performance of the MLP and CNN models
using our proposed activation functions is evaluated on several datasets, namely simulated
data, MNIST and Movie Review. Thus, discovering the answers of the following questions
are the topic of this thesis :
– How can an adaptive version of the standard activation functions be developed ?
– How can the parameters of such adaptive functions be trained in neural networks ?
– How accurate the deep networks based on these adaptive activation functions can predict
the users intentions based on the URLs they visited ?

– How accurate our proposed models perform the prediction versus the state-of-the-art deep
networks in different applications ?

7

1.4 Our Contributions

The main contribution of this thesis is developing a parametric activation function for deep
neural networks and evaluation on user intention prediction with URLs data. The thesis
contributions are listed in detail as follows :

1. Developing and proposing a parametric and adaptive form of two standard activation
functions, an asymmetric sigmoid and a smooth version of relu, for deep neural networks
such that corresponding parameters could be learned along with the network parameters
in training.

2. Evaluating the performance of deep networks with the proposed adaptive activation
functions on a real-world URL-based data.

3. A quantitative analysis that evaluates the performance of the deep networks with adap-
tive activation functions on different benchmarks, such as MNIST and Movie Review.

1.5 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 focuses on overview the primary
concepts of the thesis, linear regression and generalized linear regression, which are used in
describing our suggested activation functions. Chapter 3 covers the fundamental concepts
that are required to understand the architecture of deep neural networks. It also provides
a deeper look at perceptron and convolutional neural networks while explaining how these
models are trained. Our proposed adaptive activation functions for deep networks and their
properties are described in Chapter 4. Chapter 5 gives a brief overview of the different
datasets used within this thesis. Four different datasets have been chosen, namely Simulated
data, MNIST data, Movie Review data and URLs data. Many experimental results on these
data are demonstrated and the effect of selecting different activation functions on the models
performance is investigated, separately in detail. The results and analysis of the deep networks
with proposed activation functions on chosen datasets are discussed at the end. Chapter 6
contains the conclusion of the thesis and possibilities of further work on the subject.

8

CHAPTER 2 OVERVIEW

2.1 Linear Regression

A linear regression model assumes that the regression function E(y|x) is linear regarding
the input vector x. In this section the linear methods for regression is described and linear
method for classification applications is described in the next section.

In linear regression 1, we aim at explaining a dependent response variable y using linear
predictor functions whose unknown model parameters are learned from the independent
regressor variables x1, x2, ..., xm (which is different from independent random variables). The
simplest form for a linear regression model consists of a linear combination of the input
variables and takes the form :

y(x,w) = w0 + w1x1 + ...+ wmxm, (2.1)

where x = [x1, ..., xm]>. The important property of the linear regression model is that it is a
linear function of the regression coefficients w1, ..., wm. The linear regression model remains
linear even if one of the regressors is a non-linear function of the other regressor or of the
all data predictors. In other words, the model is considered linear as long as it is linear in
terms of its own parameter w, where w, is an m-dimensional parameter vector and w0 is the
intercept (a constant term). The elements in the w vector are called regression coefficients.
It is often required to show the intercept separately in several statistical learning procedures
for linear models. For prediction purposes, linear regression is typically applied to learn a
predictive model based on an observed data x and y values. By developing such a learned
model, we would then be able to make a prediction of the value of y for an unseen vector of
x. Linear regression model estimation and inference focuse on fitting w parameter (Bishop,
2006).

Linear regression definition can be extended by considering linear combinations of fixed
nonlinear functions of the input variables for a univariate x as following :

y(x,w) = w0 +
m∑
j=1

wjφj(x), (2.2)

1. This section is heavily based on notes and notations inherited from (Bishop, 2006).

9

where φj(x) are considered as basis functions and m is the total number of parameters in
the model. The intercept parameter w0 is known as any fixed bias in the data and is often
referred to as the bias parameter. By defining the basis function φ0(x) = 1 for bias,

y(x,w) =
m∑
j=0

wjφj(x) = φ>w, (2.3)

where w = [w0, ..., wm]> is the vector of m regressors and φ(x) = [φ0(x), ..., φm(x)] is the
vector of basis functions at input x. By considering nonlinear basis functions, the function
y(x,w) could be a nonlinear function of the input vector x.

Functions of the form (2.3) are typically called linear models, since this function is linear
with respect to its parameter w. This linearity makes the analysis of the model extremely
convenient.

There exist several possible choices for the basis functions, like :

φj(x) = exp
{
−(x− µj)2

2σ2

}
, (2.4)

where φj is usually called as a Gaussian basis function and the parameters µj and σ denote
the location and spatial scale of the basis functions in input space, respectively. Another
choice for the basis function is defined as

φj(x) = sigmoid(x) = 1
1 + exp(x−µj

σ
)
. (2.5)

Also tanh function could be applied as the basis function as it is a rescaling form of the
logistic sigmoid and takes the form

tanh(x) = 2sigmoid(2x)− 1. (2.6)

Hence, equivalently for a linear combination of logistic sigmoid functions, we have a linear
combination of tanh function with scaled regression coefficients as well. Most of the discussion
in this section is independent of the specific form of basis function set. The remainder of the
section will apply the assumption that the basis function vector φ(x) is simply the identity
φ(x) = x (Bishop, 2006).

10

2.1.1 Maximum Likelihood Estimation and Least Squares

A linear regression model assumes that the response variable t is explained by a linear com-
bination of the x’s as follows :

t = y(x,w) + ε, (2.7)

where t is a single response variable, and

y(x,w) = w0 + w1x1 + ...+ wmxm

and ε is a zero mean Gaussian random variable with precision or inverse variance equals 1
σ2

and is often called the error term or noise. ε is considered as an unobserved random variable
that adds noise to the linear regression model between the response variable and predictors.
Thus, the model takes the form

p(t|x,w, σ2) ≡ N (t|x,w, σ2)

where N is known as a Gaussian distribution for a single real-valued variable x and defined
as

p(t|x,w, σ2) = 1√
(2πσ2)

exp
{
− 1

2σ2 (t− x>w)2
}

If one assumes a linear regression, then typically a least squares method is used to estimate the
model coefficients and then the best prediction for an unseen value of x, will be obtained by
the conditional mean of the response variable (Bishop, 2006). Least Squares method searches
for the best parameters wi in (2.7) by minimizing the sum of squares of total error. In the case
of a Gaussian conditional distribution, the error term ε has mean zero and constant variance
σ2 such that E(ε) = 0 and var(ε) = σ2 which implies that the conditional distribution of t
given x is Unimodal. Hence, for the conditional mean, we can simply write :

E(t|x) =
∫
tp(t|x)dt = y(x,w). (2.8)

Note that this assumption may not be true for some applications (Bishop, 2006).

To model data (x1, t1), ..., (xn, tn) where X = [x1, ...,xn], xi = [x1, ..., xm]> and ti is a real-
valued target variable and under the assumption that the input data are drawn independently
identically from the distribution (i.i.d.) (2.7), the following equation for the corresponding

11

probability density function is formulated as the likelihood as below :

L(w, σ) = p(t|X,w, σ) =
n∏
i=1

1√
(2πσ2)

exp
{
− 1

2σ2 (ti − x>i w)2
}
, (2.9)

where the likelihood is known as the function of the adaptable coefficients w. It should
be noted that in linear regression learning as a supervised learning problem, one aims at
learning the model parameters w rather than the distribution of the predictors X. Therefore,
X will always be developed in the set of conditioning variables and could be dropped from
expressions for simplifying the notations as p(t|w, σ).

Since the logarithm of the likelihood is a monotonically increasing function, it reaches to
the maximum value at the same value as the likelihood. It is more convenient to use the
log-likelihood instead of the likelihood function because it is additive with increasing data.
Hence, by taking the logarithm of the likelihood function and making use of the Gaussian
distribution for a single real-valued variable x, we have :

logL(w, σ) = log p(t|w, σ) =
n∑
i=1

log p(ti|φ1(xi), ..., φm(xi),w, σ2)

= −n2 log 2πσ2 − 1
σ2E(w), (2.10)

where E is the sum-of-squares error function and defined by :

E = 1
2 ‖ t− y ‖2

= 1
2

n∑
i=1

(ti − yi)2

= 1
2

n∑
i=1

{
ti − φ>i w

}2
, (2.11)

and φi = [φ0(xi), ..., φm(xi)] (Bishop, 2006).

As clearly understood from (2.10) and (2.11), for any fixed σ > 0, maximizing likelihood L
is equivalent to minimizing a sum-of-squares error E.

MLE attempts to find the best parameter values so that the observed data has the biggest
probability by differentiating the likelihood function with respect to its parameters. As seen
from (2.11), this algorithm is often easier when the trick of maximizing the log-likelihood

12

is used in replace of the likelihood function itself to determine w and σ parameters. In this
case, by taking the logarithm of the product of terms in likelihood, we would have a sum of
individual logarithms, which is often easier to take the derivatives than the original likelihood.
By taking the gradient of the log likelihood, we have :

5 log p(t|w, σ) =
n∑
i=1
{ti − φi>w}φi. (2.12)

Setting (2.12) to zero and maximizing the log-likelihood with respect to the weight w and
noise precision σ2 parameters, gives us :

wML = (Φ>Φ)−1Φ>t

and
σ2

ML = 1
n

n∑
i=1
{ti − φi>wML}2, (2.13)

where Φ is an n×(m+1) matrix, whose elements are calculated by Φij = φj(xi) , as follows :

Φ =


φ0(x1) . . . φm(x1)
φ0(x2) . . . φm(x2)

...
φ0(xn) . . . φm(xn)

 , (2.14)

where Φ = [φ0, ...,φn]> and φi = [φ0(xi), ..., φm(xi)]> (Bishop, 2006).

2.1.2 Multiple Outputs

Multiple output linear regression, which is known as a multiple response model in the lite-
rature, refers to the standard linear regression, except the output is a vector for one input
example. The goal of multiple output linear regression is to simultaneously predict multiple
target variables. In this case, the weights vector is replaced with a weight matrix with di-
mension (m + 1) ×K and K is the dimension of outputs and defined as W = [w1, ...,wK]
where wj = [1, w1, ..., wm]> , ∀j = 1, ..., K. For (x1, t1), ..., (xn, tn) where X = [x1, ...,xn],
xi = [x1, ..., xm]> and ti is a vector with K dimension, this problem yields to multiple inde-
pendent regression by using the same sets of basis functions for modeling all the elements of

13

target vectors as

Yn×K = Φn×m+1Wm+1×K , (2.15)

where Φ is an n×m+1-dimensional matrix with elements Φij = φj(xi) and Y = [y1, ...,yn].
yi as the response is a vector of K outputs, and W is a (m + 1) × K weight matrix. We
suppose that we have Gaussian noise εi ∼ N (0, In) (Bishop, 2006).

By assuming that Φ indicates the input matrix whose columns are x1, ...,xn where xi =
[x0, ..., xm]>, then in light of this situation, the set of observations t1, ..., tn could be combined
into a matrix Tn×K where ti = [t1, ..., tK].

Therefore, the conditional distribution of the response vector will be written in compact form
as :

p(T|Φ,W, σ) ≡ N (T|ΦW, σ2In×n). (2.16)

Therefore, log likelihood function could be written as

L(W, σ) = log p(T|Φ,W, σ) = nK

2 log(σ
2

2π)− σ2

2

n∑
i=1
‖ ti −ΦiW ‖2 . (2.17)

Maximizing the log likelihood function with respect to parameter matrix W, gives

WML = (Φ>Φ)−1Φ>T, (2.18)

and considering the obtained result for each target tk is defined as

wk = (Φ>Φ)−1Φ>tk, (2.19)

where tk = [t1k, ..., tnk]> (Bishop, 2006).

2.2 Generalized Linear Models (GLMs)

General linear regression models for a single variable output as described in previous section,
are of the following form

E(yi) = µi = x>i w,

where the expected value µi is a linear form of m + 1 predictors taking the explanatory
values xi = [1, xi1, . . . xim] for the ith row of input matrix X. The parameter µ is the mean of

14

a Gaussian distribution with fixed variance σ and w represents the weight vector parameters.
Furthermore

yi ∼ N (µ, σ2), (2.20)

where yi is the independent response.

A linear regression model is made up of two main components : i) the linear structure and ii)
the probability distribution. Clearly, in dealing with linear models, the Gaussian distribution
plays a crucial role, where it assumes that the independent responses yi come from a Gaussian
distribution. There are numerous real-world scenarios where this condition is not met. A
simple example is a binary response variable. Examples where the response variable indicates
that the input picture either belongs to class cat or dog (i.e., 0 or 1). Moreover, there are
several scenarios where the response variable is continuous, but it has distribution other than
the Gaussian distribution, like reliability models.

Another situation where general linear regression models work inappropriately happens when
the variance of response variable depends on the mean, which is a function of the mean.
Generalized Linear Models (GLMs) extend the traditional linear model to address all of
these situations.

GLMs allows the mean to depend on the explanatory variables using a link function, and
the response variable to be from one of the exponential family of distributions (Myers et al.,
2012).

(Nelder et Baker, 1972) introduced an initial formulation of GLMs and showed that several
most common linear regression models are members of the exponential family and could be
treated in a general framework. They also discussed that the maximum likelihood estimates
of these models could be calculated using the Iterated Reweighted Least Squares (IRLS) al-
gorithm (Charnes et al., 1976). The reason that GLMs are particularly restricted to members
of exponential family of distributions is due to the fact that the numerical IRLS estimation
algorithm only works within this family (Lindsey, 2000).

2.2.1 Exponential Family

Assume that there are a set of independent random response variables yi and the probability
(density) function of the form :

f(yi; ηi) = r(yi)s(ηi) exp(yi)u(ηi)] = exp[t(yi)u(ηi) + v(yi) + w(ηi)], (2.21)

15

where ηi = x>i w denotes the position where the distribution lies within the range of response
values called the location parameter (Lindsey, 2000). Any distributions is said to belong to
a (one-parameter) exponential family if the probability density function can be written in
this way. One must keep in mind that the capital letter used for the random variables and a
small letters indicate the observed values (Lindsey, 2000).

By letting yi = t(yi) and θ = u(ηi), the canonical form for the random variable, the parameter,
and the family could be calculated simply and the model could be written as :

f(yi, θi) = exp {yiθi − b(θi) + c(yi)} , (2.22)

where b(.) is the natural parameter of the distribution, c(.) is a specific known function and θ
represents the location parameter. Other parameters in addition to the parameter of interest
θ are considered as nuisance parameters and they would be supposed as parts of the b or c
functions (Dobson et Barnett, 2008).

Therefore, the response yi is a set of independent random variables with means, say µi, so
that it could be written as :

yi = µi + εi. (2.23)

2.2.2 Exponential Dispersion Family

An extension of the exponential family includes a fixed scale parameter for the distribution,
σ. So, the equation in (2.21) will be become :

f(yi; θi, σ) = exp
{
yiθi − b(θi)
ai(σ) + c(yi, σ)

}
, (2.24)

where θi is the canonical form of the location parameter and it is a function of the mean,
µi and σ is called scale parameter. a(.) is a particular function which is often appeared as
a(σ) = σ

pi
, where pi is a fixed constant, usually 1 (Myers et al., 2012; Agresti et Kateri, 2011).

One of the most eminent examples of the exponential family is Normal distribution. The
probability density function for a random variable y with mean µ and variance σ2 is expressed
as :

f(yi;µi, σ2) = 1√
2πσ2

exp
{
−(yi − µi)2

2σ2

}

where µi denotes the location parameter and it is the parameter of interest and σ2 is consi-

16

dered as a nuisance parameter. As a result we have :

= exp
{(

yiµi −
µ2
i

2

)
1
σ2 −

y2
i

2σ2 −
1
2 log(2πσ2)

}
(2.25)

the above probability density function is a continuous distribution which is of the form of
exponential family with θ = µ as a location parameter and a(σ) = σ. The other terms are

b(θi) = θ2
i

2

and
c(yi, σ) = −1

2

{
y2
i

σ
+ log(2πσ)

}
.

The Normal distribution is one of the best known special case of the exponential distributions
which is widely used to model continuous data that have a symmetric distribution (bell-
shaped). The most important reason of its popularity is because it approximates many natural
phenomena so well. The second reason is that if we have a data that are not Normally
distributed (e.g., the distribution is skewed) and take sufficiently large random samples from
the data with replacement, then the distribution of the sample mean will approximate a
Normal distribution. This result is stated and proved in details in the Central Limit Theorem.
Moreover, if continuous data are not Normally distributed it would be worthwhile trying
to apply a log or square transformation, like log(y) or √y, so that the transformed data
are approximately Normal. The form of exponential family also belong to the exponential
dispersion family, with ai(φ) = 1 (Dobson et Barnett, 2008).

2.2.3 Mean and Variance

There is a special relationship between the mean and the variance for the distributions
belonging to the exponential (dispersion) families. The variance of density depends on the
scale parameter and on the mean that could be proven in the following way (Lindsey, 2000;
Basu, 1955).

Lemma 2.2.1. Suppose that the likelihood function for an observation is expressed as :

L(θi, φ; yi) = f(yi; θi, σ), (2.26)

Now, the first derivative of the logarithm of likelihood, called the score function, takes the

17

form of :

Ui = ∂ log {L(θi, σ; yi)}
∂θi

. (2.27)

The maximum likelihood estimation as a solution of the above equation will be obtained by

computing the score function for the whole set of observations and setting that to zero. It is

easy to see that

E[Ui] = 0 (2.28)

and

V[Ui] = E[U2
i]

= E
{
−∂Ui
∂θi

}
, (2.29)

under mild regularity conditions for exponential family (Lindsey, 2000; Basu, 1955).

Proof. According to the equation (2.24), the log likelihood for exponential dispersion families
could be written as

`(θi, φ; yi)] = log {L(θi, σ; yi)} = yiθi − b(θi)
ai(σ) + c(yi, σ). (2.30)

Now, as a result of (2.26), we have

Ui = ∂`

∂θi
=
yi − ∂b(θi)

∂θi

ai(σ) . (2.31)

On the other hand from (2.27) we have

E[yi]−
∂b(θi)
∂θ

= µi, (2.32)

and from (2.31) it could be inferred that

U ′i = −
∂2b(θi)
∂θ2

ai(σ) . (2.33)

18

These all yield from (2.27), (2.30) and (2.31) to the following

V(Ui) = V[yi]
a2
i (σ)

=
∂2b(θi)
∂θ2

ai(σ) (2.34)

so that
V(yi) = ∂2b(θi)

∂θ2 ai(σ). (2.35)

Suppose that ∂2b(θi)
∂θ2 = σ2

i called the variance function which obviously depends on the mean
µi (or θi). Therefore :

V[yi] = ai(σ)σ2
i

= σσ2
i

pi
, (2.36)

that is only a product of the dispersion σ and a function of the µ. Notice that in above
equations θi is the parameter of interest while σ is considered as a nuisance parameter. The
variance function and b(θi) of a distribution member of the exponential families are uniquely
identified (Lindsey, 2000). Variance function for some prominent members of the exponential
distribution families are indicated in Table (2.1).

2.2.4 Linear Structure

The linear regression model could be written as a linear predictor. In this case, the canoni-
cal location parameter is expressed as a linear function of other parameters and takes the

Distribution Variance Function
Poisson µ = eθ
Binomial nπ(1− π) = neθ/(1 + eθ)2

Normal 1
Gamma µ2 = (−1/θ)2

Inverse Gaussian µ3 = (−2/θ) 3
2

Table 2.1 Variance function for different distributions (Lindsey, 2000)

19

following form :
θi(µi) =

m∑
j=0

xijwj = x>i w,

θ = X>w, (2.37)

where w is a vector of m + 1 parameters, the input matrix X = [x1, ...,xn] is a set of
explanatory variables where xi = [x0, ..., xm]>, and θ = X>w is the linear structure. The
corresponding link function is called canonical if θi = ηi ∀i = 1, ..., n. Note that vector xi is
augmented by 1 and w0 is bias parameter. In (2.37), θi is indicated explicitly to be a function
of the mean, something that was implicit in previous sections. This strictly linearity regarding
the parameters, but not essentially the explanatory variables, could be further generalized
by using a monotonic transformation on the mean, with g(µ). The transformed mean follows
a linear model, so that

g(µ) = η = θ = X>w, (2.38)

and η is called the linear predictor. In GLMs, instead of modeling the mean, we will focus
on a one-to-one continuous differentiable transformation of mean (Lindsey, 2000).

2.2.5 GLMs Components

Generalized linear models include three main components : 1) response distribution, 2) linear
predictor and 3) link function. Let us look at them closely.

1) Response distribution (error structure) : specifies a probability distribution of the response
variable yi with mean µi which we assume that it is in the exponential family with a constant
scale parameter and it is appeared in canonical form of (2.24). This is sometimes called a
Noise Model or Error Structure.

2) Linear predictor : the linear predictor is a quantity that identifies the set of explanatory
variables of the model and specifies more specifically the coefficients of the linear combination
which is always done via

η = X>w, (2.39)

where X>w is the linear structure (model) and says how the location of the response variables
relates to explanatory variables and η is called the linear predictor (Rodriguez, 2012). In other
words, the linear predictor characterizes the GLMs model and the model will be found via a
link function.

3) Link function : provides the relation between random response variables and linear struc-

20

ture so that
ηi = g(µi) , ∀i = 1, 2, ..., n.

It describes how the expected value of the response links to the linear predictor of explanatory
variables :

µi = E(yi) = g−1(ηi) = g−1(x>i w).

So far, we have studied Normal distribution that could be described as an example of a GLMs
model with Normal errors and identity link, where

ηi = µi. (2.40)

One may use a one-to-one continuous differentiable transformation of the mean called g(µ)
for defining the link predictor. The transformation function, g(µ), is often called the link
function and must be monotonic and differentiable (Myers et al., 2012).

Since the link function is one-to-one, the inverse function of g(.) is thus obtained by :

µi = g−1(x>i w). (2.41)

It should be noted that the expected value of yi, µi is transformed in the above equation.
Other examples of link functions are identity, log, logit and probit functions. When ηi = θi is
employed then, it says that ηi is a canonical link, e.g. the identity function is considered as
the canonical link for the Normal distribution (Rodriguez, 2012). Table (2.2) demonstrates
the canonical links for the most prominent exponential distribution mostly used with GLMs
(Myers et al., 2012).

When the response distribution belongs to the exponential dispersion family with a constant

Table 2.2 Canonical Link function for different distributions from (Myers et al., 2012)

Distribution Link Function Canonical Link Function
Poisson log ηi = log(µi)
Binomial logit ηi = log(πi

1−πi) = log(µi
ni−µi)

Normal identity ηi = µi
Gamma reciprocal ηi = 1

µi

Inverse Gaussian reciprocal2 ηi = 1
µ2
i

21

scale parameter, then by employing the canonical link function, all unknown parameters of
the linear structure have sufficient statistics (Lindsey, 2000). In this situation, the link func-
tion simplifies the parameter estimation process while the model is working with a numerical
estimation method such as the Iteratively Reweighted Least Squares (IRLS) algorithm (Lind-
sey, 2000). One must keep in mind that the link function ηi, does not transform the data, but
the population on the mean (Myers et al., 2012) and choosing an inappropriate link function
might lead to considerable issues while fitting a GLMs model.

2.2.6 Maximum Likelihood Estimates

This section is about parameter estimation for generalized linear models using maximum
likelihood. Although explicit mathematical equations can be found for estimators in some
particular cases (e.g. closed-form functions), numerical methods based on a form of IRLS are
often required. We first study briefly the least squares and weighted least squares methods
and then describe the MLE for GLMs using an iterative variant of weighted least squares
called Iteratively Reweighted Least Squares (IRLS).

Least squares : the simplest form of the method of least squares in linear regression consists
of finding the estimator ŵ that maximizes the log-likelihood which is equivalent to minimizing
the sum of squares of the differences between yi’s and their expected values as

ŵ = (X>X)−1X>z, (2.42)

where zi is called as the working dependent variable.

Weighted least squares : in the cases wherein the variability of the error is unequal across
the predictions, a standard method is used to compensate this nonconstant error variance
by inserting a diagonal matrix Ω in estimating the parameter w such that the observed
heteroscedasticity will be alleviated. The Ω matrix could be calculated by taking the error
variance of the ith response at trail estimation as described in (2.34) and assigns its inverse
to the ith entry on diagonal Ω matrix. The main motivation in this case is that large error
variances will be mitigated by multiplication of the reciprocal (Gill, 2000).

To further describe the weighted regression, recall the standard form of the linear regression
as

yi = x>i w + εi.

Premultiplying each term in the above equation by the square root of the diagonal values,

22

which is produced from a Cholesky factorization, yields

Ω
1
2yi = Ω

1
2 xiw + Ω

1
2 εi. (2.43)

Thus, under assumption of having heteroscedasticity in error term as ε ∼ (0, σ2V), it could
be induced from (2.43) that ε ∼ (0, σ2ΩV) = (0, σ2) and therefore, heteroscedasticity is
eliminated. As a result, the parameter estimates will be performed by minimizing the (y −
X>w)>Ω−1(z−X>w) is rather than (y−X>w)>(z−X>w) in ordinary least squares. The
estimator for weighted least squares takes the form

ŵ = (X>ΩX)−1X>Ωz, (2.44)

where X is the model matrix, Ω is a diagonal weight matrix with entries ωi and z is the
vector of responses with entries zi (Gill, 2000).

Iteratively Reweighted Least Square (IRLS) : when the individual variances in reci-
procal diagonal matrix Ω are a function of the mean, vi = f(µi) = f{E(yi)}, and when the
f(.) is known, the estimation algorithm could be still straightforward. A solution to solve the
problem in this circumstance is to iteratively estimate the weight matrix Ω, by improving
the estimates in each trial.

Given η = g−1(X>w), the estimator ŵ could provide an estimate for mean and vice versa.
The IRLS algorithm could estimate these variables through improving the weight matrix in
an iterative manner as follows (Gill, 2000) :

1. Initialize the diagonal weight matrix Ω, generally equals to one (ωi = 1).

2. Estimate w using weighted least squares in (2.44) with the current weight values.

3. Update the weight matrix by the new estimates for the mean.

4. Repeat steps 2 and 3 until the iterative process converges in such a way that the
estimate parameter of ŵ changes by less than a prior known threshold.

Suppose that the method of maximum likelihood applied to GLMs with a canonical link of
the form ηi = g(µi) = x>i w. Therefore, the log-likelihood function will take the form :

`(w; y) = logL(w; y) =
n∑
i=1

[
{yiθi − b(θi)}

a(σ) + c(yi, σ)
]
, (2.45)

where η = g(µi) = X>w and V(yi) is calculated by (2.34). The derivative of the log-

23

likelihood easily seen to be
∂`

∂w
= ∂`

∂θi

∂θi
∂w

=
n∑
i=1

1
a(σ)

{
yi −

∂b(θi)
∂θi

}
xi

n∑
i=1

1
a(σ)(yi − µi)xi (2.46)

Using the canonical link, the maximum likelihood estimates for the parameters are obtained
by solving the following score equations for w.

U(w) =
n∑
i=1

1
a(σ)(yi − µi)xi = 0, (2.47)

where in most cases, a(σ) is considered as known prior parameters. Hence, equating this to
zero to obtain the solution gives us the equation below in a matrix form :

U(w) = X>(y− µ) = 0, (2.48)

where µ = [µ1, µ2, ..., µn] and µi = x>i w. Note that µi is a function of ηi = x>i w and is not
necessarily a linear function. Thus, there is not a closed-form solution for w. This system
of equations is called the maximum likelihood score equations which is operative for GLMs
with a canonical link. A Taylor series approach could be applied to calculate the following
approximation regarding the w∗

µ ∼ µ∗ + Ω(X>w−X>w∗), (2.49)

where µ∗ = g−1(X>w∗) (Hastie et al., 2009).

Therefore, the following linear approximation will be found for the score for w :

∂`

∂w
= X>Ω(z−X>w), (2.50)

where z = X>w∗ + Ω−1(y− µ∗) is known as the working dependent variable. This approxi-
mation is calculated based on w∗ or, equivalently, µ∗ and are considered as constants in the

24

equation. Solving this approximation gives the maximum likelihood estimator ŵ as follows

ŵ = (X>ΩX)−1X>Ωz,

where Ω plays the same role as the diagonal weighted matrix in weighted least squares. One
must keep in mind that for the canonical link, Ω matrix is obtained by the mean-variance
relationship, and it affects in the variability of w as well. The maximum likelihood solution
for ŵ could be estimated through progressively improving weights with IRLS as described
before (Myers et al., 2012).

Suppose that we have a trial estimate of the parameters ŵ. Then, the estimated linear
predictor η̂i = x>i ŵ could be obtained and used to evaluate the fitted values µ̂i = g−1(η̂i),
consequently. Having the η̂i and µ̂i quantities, the term zi as the working dependent variable
could be identified as :

zi = η̂i + (yi − µ̂i)
∂ηi
∂µi

, (2.51)

where the term ∂ηi
∂µi

denotes the derivative of the link function calculated at the current
iteration (the trial estimate). Furthermore, the iterative weights turns out to be :

ωi = pi

b′′(θi)(∂ηiµi)2
, (2.52)

with the assumption that a(σ) = σ
pi

and b′′(θi) is the second derivative of b′′(θi) with respect
to the θi calculated at the trial estimate. Finally, the estimate of the parameter w through
regressing the working dependent variable zi on the predictors xi through employing the
weights wi are acquired. The updated procedure will be repeated until the iterative process
converges to a threshold. Hence the estimates for the parameter w can be simply obtained
using an IRLS algorithm (Charnes et al., 1976).

In (McCullagh, 1984), authors proved that this procedure is equivalent to Fisher scoring
and yields to maximum likelihood estimates. Remember that for the data from Normal
distribution with identity link ηi = µi, the derivative equals

∂ηi
∂µi

= 1,

and therefore, the weights Ω are constant and no iteration is needed.

25

2.2.7 Logistic Regression

In this section 2, we consider generalized linear models for the situation where the outcome
variables take on only binary scale, 0 and 1. For example, the responses may be either success
or failure, as generic terms of the two categories (Myers et al., 2012).

Suppose that the model takes the form :

yi = x>i w + εi

where xi = [1, xi1, xi2, ..., xim]>, w = [w0, w1, ..., wm]> and the responsible variable yi takes
the value 1 if the outcome is a success or 0 if the outcome is a failure. Hence, it is supposed
that yi is a Bernoulli random variable with probabilities p(yi = 1) = πi and p(yi = 0) = 1−πi
where πi is the parameter of interest. The distribution of yi is written as :

p{yi} = πyii (1− πi)(1−yi) , yi ∈ {0, 1},

and it could be rewritten as :

p{yi} = πyii (1− πi)(1−yi) , yi ∈ {0, 1}

= exp
{
yi log

(
πi

1− πi

)
+ log(1− πi)

}
,

which is obviously a member of the exponential family, see (2.22).

If there are n such independent random variables y0, ..., yn therefore, the joint probability can
be written as

n∏
i=0

πyii (1− πi)(1−yi) = exp
{

n∑
i=0

yi log
(

πi
1− πi

)
+

n∑
i=0

log(1− πi)
}
. (2.53)

The expected value of the response variable yi, mean µi, will be

µi = E(yi) = πi, (2.54)

2. This section is heavily based on notes and notations inherited from (Myers et al., 2012).

26

Furthermore, the variance of the response is not constant :

V(yi) = σ2
yi

= E{yi − E(yi)}2 = (1− πi)2πi + (0− π2
i)(1− πi) = πi(1− πi)

V(yi) = σ2
yi

= E(yi)[1− E(yi)] = πi(1− πi). (2.55)

The main crucial problem with above linear probability model is that although πi is a proba-
bility restricted to the interval [0, 1], it would be possible that the fitted values xi>w might
be less than zero or greater than one (Myers et al., 2012).

To ensure that πi is always bounded between 0 and 1, it would be modeled by a transformation
function of the πi, says g(πi), and model the transformation as a linear function of x>i s as :

ηi = g(πi) = xi>w, (2.56)

where ηi is the linear predictor and g(.) is the link function. Then, the inverse transformation
is the cumulative distribution function (c.d.f.) of the random variables as :

πi = g−1(ηi), (2.57)

which enables us to return from logits to probabilities. One commonly-used choice of g(.)
in this context is to consider the canonical link of the binomial distribution, θi, as the link
function in such a way that :

ηi = g(πi) = θi = log
(

πi
1− πi

)
. (2.58)

The ratio πi
1−πi is often called the odds and the logarithm the odds is called the logit trans-

formation (or log-odds). The logit transformation maps πi which is restricted to the interval
[0, 1], to the real line. Solving for πi in the above equation gives the logistic distribution as
follows :

πi = g−1(ηi) = exp(ηi)
1 + exp(ηi)

= logistic(ηi). (2.59)

The right-hand side of equation (2.59), the logistic function, is a nonlinear function of the
predictors. To express the effect on the probability when increasing a predictor by one unit,
while the other variables is kept fixed, an approximation answer could be obtained by taking

27

the first derivative of probability with respect to predictors as follows

∂πi
∂xij

= wjπi(1− πi). (2.60)

This expression is only applicable for continuous predictors. As understood from (2.60), the
effect of the jth predictor on the πi depends on regressor wj and the probability itself (Agresti
et Kateri, 2011).

There are other popular alternatives to the logit function, namely probit and complimen-
tary log-log, as link functions that result in the cumulative standard Normal and Gumbel
distribution functions, respectively. The probit link is defined as

ηi = Φ−1(πi), (2.61)

where Φ denotes the cumulative distribution function and the complimentary log-log link is

ηi = log {log(1− πi)} , (2.62)

where πi = g−1(ηi) = exp{− exp(ηi)} is the Gumbel distribution. Logit, probit and comple-
mentary log-log are all monotonic and differentiable functions (Agresti et Kateri, 2011).

2.2.8 Maximum Likelihood Estimates in Logistic Regression

The logistic regression is considered under the framework of generalized linear models that
have binomial error and logit link function. Thus, according to the general theory developed
for generalized linear models, the parameter estimates could be simply obtained. In this sec-
tion an underlying procedure to compute the estimates will be summarized briefly. Typically,
logistic regression model is of the form

yi ∼ Bernoulli(πi),

where yi’s are independent from each other and yi takes on only two possible values, 0 and
1. Since the response variables are independent, the likelihood function for n independent
bernoulli observations equals to a product of the densities. As a result, the likelihood function

28

has the form (Myers et al., 2012)

L(w, y1, ..., yn) =
n∏
i=1

fi(yi) =
n∏
i=1

πyii (1− πi)1−yi . (2.63)

Since the logarithm is a monotonically increasing function of its argument, maximizing the
log likelihood, `, is equivalent to maximizing the likelihood itself. Thus the log-likelihood is

`(w, y1, ..., yn) = logL(w, y1, ..., yn) = log
n∏
i=1

fi(yi)

=
n∑
i=1

[
yi log

(
πi

1− πi

)
+

n∑
i=1

log(1− πi)
]
. (2.64)

Since from (2.53) we have 1 − πi = [1 + exp{xi>w}]−1 and ηi = log(πi
1−πi) = xi>w, the

log-likelihood take the form :

`(w) = logL(w) =
n∑
i=1

yixi>w− log[1 + exp(xi>w)]

= w>Xy−
n∑
i=1

log
{

1 + exp(xi>w)
}
. (2.65)

Now, suppose that yi is the number of 1’s at the ith observation . So, the kernel of the
log-likelihood is of the form :

`(w) = w>Xy−
n∑
i=1

log
{

1 + exp(xi>w)
}
, (2.66)

where X is the input matrix and y is the response vector. Taking the derivative of the
log-likelihood with respect to w, gives us :

∂`

∂w
= Xy−

n∑
i=1

{
1

1 + exp(xi>w)

}
exp(xi>w)x>i . (2.67)

Since
exp(xi>w)

1 + exp(xi>w) = 1
1 + exp(−xi>w) = πi, (2.68)

29

thus
∂`

∂w
= Xy−

n∑
i=1

πix>i . (2.69)

Moreover, since πi denotes the mean of the Bernoulli random variable, the right-hand side of
the equation could be expressed in the form of following matrix (Myers et al., 2012)

s = X(y− µ),

where

µ =


µ1

µ2
...
µn

 . (2.70)

Consequently, the solutions are the maximum likelihood estimation (MLE) of the following
equation called score equation :

X(y− µ) = 0. (2.71)

Note that the w parameters in µ and the entries in the µ vector are nonlinear based on the
model

µi = 1
1 + exp(−xi>w) , ∀i = 1, ..., n.

As a result, an IRLS approach is applied to solve the equation (2.71) as discussed similarly
for GLMs (Myers et al., 2012).

Lemma 2.2.2. An IRLS method could be used to solve the equation s = X(y− µ) = 0.

Proof. Similarly, we have

min s = min
w

n∑
i=1

[
(yi − µi)2

σ2
i

]
, (2.72)

with fixed variance σ2
i . Consequently, taking the derivative of the numerator of s gives us :

∂s
∂w

= −2
{∑n

i=1(yi − µi)
σ2
i

}
(∂µi
∂w

), (2.73)

where ∂µi
∂w = πi(1 − πi)xi = σ2

i xi. Hence, the solution obtained by the minimization of the

30

weighted residual sum of squares with fixed variance σ2
i takes the form

∂s
∂w

=
n∑
i=1

(yi − µi)xi = 0

X(y− µ) = 0 (2.74)

which is identical to the score solution of MLE produced by (2.63) and produces the estimator
values of the MLE (Myers et al., 2012). Given a parameter of the estimate iteration, ŵ, the
linear predictor η̂i = x>i ŵ and the fitted values µ̂i = logit−1(ηi) could be calculated. Having
these quantities, the working dependent variable and the iterative weight could be found to
estimate the parameters of logistic regression. Let the model is defined by

ηi = logit(πi) = log πi
1− πi

. (2.75)

It is more convenient to show the link function as a function of µi as

ηi = log µi(1− µi) = log(µi)− log(1− µi). (2.76)

By taking the derivative of the ηi with respect to the µi, we have :

∂ηi
∂µi

= 1
µi

+ 1
1− µi

= 1
µi(1− µi)

= 1
πi(1− πi)

. (2.77)

Thus, the working dependent variable will be as the general form below :

zi = ηi + (yi − µi)
∂ηi
∂µi

= ηi + yi − πi
πi(1− πi)

, (2.78)

and the iterative weight will take the form

wi = 1
b′′(θi)(∂ηi∂µi

)2

31

= 1
πi(1− πi)

[πi(1− πi)]2

= πi(1− πi). (2.79)

Finally, the estimate of the parameter w, through regressing the working dependent variables
zi, on the predictors xi, through employing the weights ωi are acquired as follows :

ŵ = (X>ΩX)−1X>Ωz, (2.80)

where X is the model matrix, Ω is a diagonal weight matrix with entries ωi obtained by
(2.52) and z is the vector of responses with entries zi calculated via (2.51). The updated
procedure will be repeated until convergence. Finally, the estimates for the parameter w of
logistic regression is found using an IRLS algorithm.

Suppose that ŵ is the estimate of parameter w of the logistic regression model fitted by IRLS.
If all the model assumptions are correct, then it could be shown asymptotically (Myers et al.,
2012)

E(ŵ) = w (2.81)

and
V(ŵ) = (X>V̂X)−1, (2.82)

where V̂ is an n×n diagonal matrix including the estimated variance of each element on the
main diagonal. Thus, the ith entry on the diagonal of the V̂ would be :

vii = π̂i(1− π̂i). (2.83)

As a result, the estimated value of the linear predictor has the form η̂i = x>i ŵ and the fitted
model for logistic regression is given by :

ŷi = π̂i = exp(η̂i)
1 + exp(η̂i)

= exp(x>i w)
1 + exp(x>i w) = 1

1 + exp(−x>i w) . (2.84)

There is an interesting relationship between weighted least squares and score equation in
(2.62) which is obtained by maximum likelihood (Myers et al., 2012). Using the weighted

32

residual sum of squares obtained by

s =
n∑
i=1

{
(yi − µi)2

σ2
i

}
(2.85)

where µi = πi and σ2
i is the Bernoulli variance at the ith observation with

σ2
i = πi(1− πi) = exp(−x>i ŵ){

1 + exp(−x>i ŵ)
}2 . (2.86)

33

CHAPTER 3 DEEP NEURAL NETWORKS

3.1 Perceptron

In the context of neural networks, the term perceptron refers to a network consisting one
single neuron, initially presented by Rosenblatt in its most basic form (Rosenblatt, 1962;
McCulloch et Pitts, 1943). The aim of the following section is to give a better understanding
of perceptrons applied to binary classification. An introduction of the architecture of two
neural networks related to this thesis, MLPs and CNNs, are described in sequel.

3.1.1 Perceptron Algorithm

The perceptron algorithm is a linear discriminant model for supervised learning of binary
classification problems and belongs to the broad family of on-line learning algorithms (Cesa-
Bianchi et Lugosi, 2006). Perceptrons play a key role in the evaluation of machine learning
and neural network algorithms. The perceptron algorithm was first introduced by Frank Ro-
senblatt, an American psychologist, at the Cornell Aeronautical Laboratory in late 1950s
(Rosenblatt, 1957). We also denominate the perceptron algorithm as the single-layer per-
ceptron, the simplest feedforward neural network, to discern it from a so-called multilayer
perceptron, which is used for more complicated and deep neural networks.

3.1.2 Model

Before we begin, one should note that the notation that is used in the perceptron and
neural network sections are different in appearance with that used in the linear regression
context. The perceptron model was one of the first artificial neural network models to build
a generalized linear model in which it first maps a real-valued input vector x = [x1, ..., xm]>

to a single binary value y of the form

y = g(w>x), (3.1)

where the nonlinear function g(.) is given by a step function of the form

g(x) =

−1 x ≥ b,

+1 x ≤ b,
(3.2)

34

where w is a real-valued weight vector [w1, ..., wm]> and b is the threshold. Also, w>x is the
dot product of weight vector w and input x as

w>x =
m∑
j=1

wjxj, (3.3)

where m is the number of input features. The perceptron outputs a non-zero value +1 only
when the weighted sum exceeds the threshold. Otherwise, it assumes the deactivated value
−1. Mostly, in the case of a binary classification problem, the value of y ∈ (0, 1) is used
to classify x as either a positive or a negative example. But, for the perceptron algorithm,
however, it is more proper to use target values y = +1 for class positive and y = −1 for class
negative, which makes the choice of the activation function harmonious (Bishop, 2006).

x1

x2

xn

x0
w0 = b

w1

w2

wn

∑n
i=1 xiwi

η = w>x g(.) = step function

y

Figure 3.1 A simple model with step function

Models based on the g(.), used by the perceptron in a linear model, is one of the most widely-
used machine learning models. Albeit, in many cases they are learned in different ways how
the original models were trained. The key idea of the function g(.) appears simple and is
elaborated in the name : the Heaviside step function which returns 1 if the input exceeds
zero, and 0 for any negative input. We could consider a perceptron as a single artificial neuron
which uses the Heaviside step function as the activation function. Suppose that X0 and X1

be two sets of points in an m+ 1-dimensional euclidean space. Then, X0 and X1 are linearly
separable if there exists a real-valued weight vector w = [w0, ..., wm]>, a real value b in such
a way that each point x ∈ X0 satisfies ∑m

j=0wjxj ≥ b, where each point x ∈ X1 satisfies

35

∑m
j=0wjxj < b, and x is a real-valued vector x = [x0, ..., xm]>.

Recall that ∑m
j=0wjxj ≥ b and ∑m

j=0wjxj < b are two regions on the hyperplane which are
separated by the line ∑m

j=0wjxj + b = 0. Therefore, if we consider two vectors x1 and x2 from
two separate regions as two data points on a hyperplane, then the perceptron model could
partition the input space into two separate halfspaces along a hyperplane and gives us the
half-space on the plane that this points belongs to.

We call such regions so-called linearly separable regions as they are separated by a single
line. If the value of parameter b is negative, then the weighted sum of inputs have to produce
a positive value greater than |b| to push the perceptron over the 0 threshold. Therefore, the
bias parameter changes the spatial position but not the direction of the decision boundary.
Figure 2.1. illustrates an example of a binary classification (Bishop, 2006).

X0

X1

x1

x2

w1x1 + w2x2 + w0 = 0

Figure 3.2 Demonstration of the hyperplane as decision boundary for a two-dimensional and
binary classification problem

To simplify the representation, we aim at dealing with a perceptron model with threshold
b = 0 due to the fact that linear separations are forced to go through the origin of the
input space. Therefore, a widely-used method is to append an extra feature to input vector
x and set it to 1 and the resulting (m + 1) dimensional vector is called the extended input
vector x = [1, x1, x2, ..., xm]>. Then, we aim at learning a m + 1 dimension weight vector
w in this extended space and consider w0 as the bias parameter. With the notation w =

36

([w0, w1, ..., wm]>, we have :

u = w>x = w0 +
m∑
j=1

wjxj

= w0 + w>x. (3.4)

Hence, we consider the two perceptron models demonstrated in Figure 3.2 as equivalent
models. The bias parameter (threshold) of the left perceptron model has been turned to
the weight −b of an additional input feature linked to the constant value 1, without loss of
generality. We could interprete this extra weight linked to a constant as a bias parameter.

3.1.3 Basic Perceptron Learning Rule and Convergence

Suppose that we have the input matrix X = [x1, ...,xn] is a set of n input vectors where
xi = [x0, ..., xm]>. Assume that we receive a m+ 1 dimensional input vector x at time-stamp
t denoted by x(t) = [1, x1(t), x2(t), ..., xm(t)]>, and we define a m + 1 dimensional weight
vector w, w(t) = [w0(t), w1(t), w2(t), ..., wm(t)]> where t represents the current time-step in
the model training process and xi is the observed example at step t. Correspondingly, the
linear dot product x and w are written in the following form :

u(t) = w>(t)x(t) = w0(t) +
m∑
j=1

wj(t)xj(t), (3.5)

where, w0(t) interprets the bias parameter in time-step t. Considering a fixed t, the equation
w>x = 0 defines a hyperplane as the decision boundary between two separate classes of inputs
in an m+1 dimensional space. Remember the first assumption that our data originated from
two sets of points in an m+ 1 dimensional euclidean space, where X0 and X1 are sufficiently
linearly separable. It means that the input variables of the perceptron came from two linearly
separable classes C1 and C2 where the union of C1 and C2 classes is the complete space. Hence,
there is a weight vector w in such a way that we may say :

w>(t)x(t) ≥ 0 , ∀x(t) ∈ X0, (x(t) ∈ C1)

w>(t)x(t) < 0 , ∀x(t) ∈ X1, (x(t) ∈ C2) (3.6)

Therefore, given the subsets of training vectors from X0 and X1, the learning problem for

37

the perceptron model is then to find a weight vector w where the two above inequalities are
satisfied.

The basic perceptron algorithm for training the weight vector w is now be formulated in the
following form :
– If data x(t), with the training input vector at iteration t, is properly classified by the
weight vector w(t) calculated at time-step t, then accordingly, there is no need to adapt
the weight vector of the perceptron model :

w(t+ 1) = w(t) if w>(t)x(t) ≥ 0 and x(t) ∈ C1,

w(t+ 1) = w(t) if w>(t)x(t) < 0 and x(t) ∈ C2,
(3.7)

– Else, a correction is made to the weight vector w and it is modified according to the
following rule :

w(t+ 1) = w(t)− γ(t)x(t) if w>(t)x(t) ≥ 0 and x(t) ∈ C2,

w(t+ 1) = w(t) + γ(t)x(t) if w>(t)x(t) < 0 and x(t) ∈ C1,
(3.8)

where γ(t) is the learning rate parameter.

To prevent the error and to update the weights, we need to increase w if x is positive and
belongs to class C1. Otherwise, the update needs to be opposite. The algorithm does not
update weights if the existing model correctly make predictions for the current training data.
Learning parameter γ(t) controls how fast or slow we will move towards the optimal weights
at time-step t. Unlike the gradient-based algorithms, we can drop the learning rate parameter
γ easily as it only affects on scaling the weight parameters by some fixed constant. Therefore,
it does not have impact on the learning behavior of the perceptron algorithm (Ng, 2000). If
γ(t) is set to γ, a fixed positive value during the training time, then we have a fixed-increment
updating rule for the perceptron model. Choosing a very large γ constant, may skip the global
minimum and picking a small one may lead to an exhaustive search to reach to convergence.
Therefore, selecting a proper value for learning rate is crucial. In the following, we present
a proof of convergence for perceptron model from (Block, 1962) considering a fixed-positive
learning parameter for which 0 ≤ γ < 1.

Lemma 3.1.1. For a fixed-positive learning rate γ(t) = 1, iterations t and w(0) = 0, the

learning for weights of the perceptron model will be terminated after at most tmax iterations.

Proof. To prove the perceptron convergence, we first present a proof for the initial condition

38

w(0) = 0 from (Block, 1962). Suppose that w>(t)x(t) < 0 , ∀t = 1, 2, ... and the input vec-
tor x(t) ∈ X0. That is the case that we have a false classification for the vectors x(1),x(2), ...,
as the second condition is not held. Then, given the fixed-value learning parameter γ(t) = 1,
we have

w(t+ 1) = w(t) + x(t) , x(t) ∈ C1. (3.9)

Initializing w(0) = 0, we could iteratively solve this equation for w(t + 1), obtaining the
result

w(t+ 1) = x(1) + x(2) + ...+ x(t). (3.10)

By virtue of assuming that the classes C1 and C2 are linearly separable, there is a solution
ŵ for which w>(t)x(t) > 0 for the vectors x(1), ...,x(t) ∈ X0. Now, for a fixed ŵ, we could
define a positive number ε0 as margin as follows :

ε0 = min
{x(t)∈X0}

ŵ>x(t) (3.11)

Consequently, if we multiply both sides of equation (3.10) by the vector ŵ>, the following
equation is obtained :

ŵ>w(t+ 1) = ŵ>x(1) + ŵ>x(2) + ...+ ŵ>x(t). (3.12)

Therefore, considering the definition given in (3.11), we get

ŵ>w(t+ 1) ≥ tε0. (3.13)

Then, given two vectors ŵ and w(t+ 1), and using a Cauchy–Schwarz inequality

‖ ŵ ‖2‖ w(t+ 1) ‖2≥
{
ŵ>w(t+ 1)

}2
, (3.14)

where ‖ . ‖ indicates the euclidean norm of the argument vector and the inner ŵ>w(t + 1)
gives a scalar quantity. Recalling from equation (3.13) that [ŵ>w(t + 1)]2 ≥ t2ε2

0 and from
equation (3.14) we deduce that ‖ ŵ ‖2‖ w(t+ 1) ‖2≥ [ŵ>w(t+ 1)]2. Subsequently,

‖ ŵ ‖2‖ w(t+ 1) ‖2≥ t2ε2
0. (3.15)

39

Analogously,
‖ w(t+ 1) ‖2≥ t2ε2

0
‖ ŵ ‖2 . (3.16)

Then, we continue the work in a different direction by rewriting (3.9), specifically in the form

w(t+ 1) = w(t) + x(t) , t = 1, 2, ..., tmax , x(t) ∈ X0 (3.17)

where tmax is the maximum time iteration.

Calculating the squared euclidean norm of both sides of the above equation gives

‖ w(t+ 1) ‖2=‖ w(t) ‖2 + ‖ x(t) ‖2 +2w>(t)x(t). (3.18)

Since w>(t)x(t) ≤ 0, we could conclude from (3.18) that

‖ w(t+ 1) ‖2≤‖ w(t) ‖2 + ‖ x(t) ‖2, (3.19)

or, equivalently,

‖ w(t+ 1) ‖2 − ‖ w(t) ‖2≤‖ x(t) ‖2 , t = 1, 2, ..., tmax. (3.20)

Referring to initial condition w(0) = 0, we sum these inequalities for t = 1, ..., tmax, and
obtain the following inequality

‖ w(t+ 1) ‖2≤
tmax∑
t=1
‖ x(t) ‖2

≤ nβmax, (3.21)

where βmax is an upper bound given by

βmax = max
x(t)∈X0

‖ x(t) ‖2, (3.22)

and n is data size (Block, 1962).

Equation (3.21) declares that the squared euclidean norm of the weight vector w(t+1) mostly
increases linearly according to the number of time-steps t. Another consequence inferred from

40

equation (3.21) is quite clearly in conflict with the result obtained by (3.16) for sufficiently
large values of t. As a result, we can set a limit on iteration t and state that t ≤ tmax. Then
both equation (3.16) and (3.21) are satisfied with the equality sign meaning that tmax is
obtained by the equation

t2maxε
2
0

‖ ŵ ‖2 = tmaxβmax. (3.23)

So far, it has been proven that for a fixed-positive learning rate, the perceptron learning will
be terminated after at most tmax iterations. Note that ŵ or tmax are not the unique solutions,
meaning that the perceptron is capable of finding more than one solution. One important
point to remember is that if we have two data points with different labels but very close to
each other, the convergence time might be too long as the margin ε0 is too small in this case.
Therefore, the convergence time depends on margin and not the number of training data or
features. A fixed-increment covergence theorem for the perceptron learning algorithm is first
presented by Rosenblatt in (Rosenblatt, 1962). "Suppose that the subsets of training vectors
X0 and X1 are linearly separable in the sense that the inputs to the perceptron come from
these two subsets. The perceptron learning algorithm converges after some t′ iterations, that
is

w(t′) = w(t′ + 1) = w(t′ + 2) = ... (3.24)

w(t′) is a solution vector for t′ ≤ tmax."

In the next step, we aim at considering the updating rule for adapting the weights of the
single-neuron perceptron, with a variable learning rate γ(t). Particularly, on the assumption
of γ(t) would be the smallest integer for meeting the following condition,

γ(t)x>(t)x(t) > |w>(t)x(t)| (3.25)

we realize that if the inner product w>(t)x(t) at iteration t leads in an incorrect sign, then
w>(t+ 1)x(t) at time-step t+ 1 would reach to the right answer. It means that if w>(t)x(t)
has an incorrect sign, at iteration t, then we may improve the learning procedure at iteration
t + 1 by setting x(t + 1) = x(t). This procedure is iterated until the example is classified
correctly by the perceptron model. Note that the perceptron updates the weights vector only

41

on those data examples on which it makes a mistake.

Algorithm 1: Perceptron Convergence Algorithm
Data: x(t) = [1, x1, ..., xm]>, w(t) = [w0, w1, ..., wm]>, y(t),d(t), 0 < γ ≤ 1

1 Initialize w(0) with zero values;
2 t = 0;
3 while t ≤ tmax do
4 Activate the perceptron by applying continuous-valued input vector x(t) and

desired response d(t);
5 Compute the actual response y(t) = sgn[w>(t)x(t)] where sgn(.) is the step

function;
6 Update the weight vector w of the perceptron model by following adapting rule :

w(t+ 1) = w(t) + γ {d(t)− y(t)}x(t),

where

d(t) =

+1 if x(t) ∈ C1,

−1 if x(t) ∈ C2.

7 t = t + 1
8 end

A summary of the perceptron convergence algorithm is demonstrated by Algorithm 1 given in
(Lippmann, 1987). One important point to note in Algorithm 1 is the symbol sgn(.), in step
5 is used for calculating the prediction of the perceptron and behaves according to following
rule :

sgn(x) =

+1 x ≥ 0,

−1 x ≤ 0.
(3.26)

We state the quantized response y(t) of the perceptron in the form of

y(t) = sgn
{
w>(t)x(t)

}
. (3.27)

Recall that the input vector x(t) is an (m + 1) × 1 vector whose first feature is fixed at
+1 throughout the calculation. Accordingly, the weight vector w(t) is an (m+ 1)× 1 vector
whose first feature interpretes as the bias. Furthermore, we should remember that a quantized

42

desired response d(t), in Algorithm 1 is defined by

d(t) =

+1 if x(t) ∈ C1,

−1 if x(t) ∈ C2.
(3.28)

Therefore, an update rule for adapting the weight vector w(t) is obtained in the form of the
error-correction learning rule

w(t+ 1) = w(t) + γ {d(t)− y(t)}x(t). (3.29)

Setting a learning rate has been recognized as problematic for the perceptron learning algo-
rithm. Keep in mind two conflicting requirements : setting learning rate parameter γ too high
can cause the algorithm to diverge and a small γ setting makes it slow to converge (Lipp-
mann, 1987). An extension of the update rule makes the learning rate a decreasing function
γ(t) of the iteration number t, in such a way that large changes in the parameters are seen
in the first iterations, while the later iterations cause only the parameter tuning (Darken et
Moody, 1990).

3.1.4 Perceptron Learning Rule on Loss Function

In this Section, we discuss the perceptron learning rule with gradient descent on the per-
ceptron loss function. Remembering the linear separability property of the perceptron which
is explained in Section 3.1.3, the main idea in learning a perceptron model is to fit the in-
put data in an online fashion to find a weight vector that minimizes the error metric of the
classification which is equal to the number of the misclassified data. Suppose that we have a
set of input examples from class 0, X0 ⊂ Rm+1, called the set of positive data instances and
another set of inputs from class 1, X1 ⊂ Rm+1, called the set of negative data. Then, our
goal is to generate a perceptron model that yields +1 for all examples from X0 and -1 for
data from X1. Given X0 and X1 which must be separated by a perceptron model, a learning
algorithm should automatically fit the weights necessary for the solving the problem. Two
sets of X0 and X1 must be separated in m + 1 dimensional space such that a perceptron
model calculates the binary linear function f with f(x) = +1 for x ∈ X0 and f(x) = −1
for x ∈ X1. The separability of the linear model f relies on the adapted weights values. We
calculate the loss of the classification by computing the number of misclassified data points

43

which is defined as :
E(w) =

i=1∑
n

Ei(w),

where
Ei(w) = max{0,−yif(xi)}, (3.30)

and Ei is a modified form of the Hinge loss which is convex, but not differentiable. The
perceptron loss function defined over all of weight space and attempts to learn a perceptron
model with minimum cost. If xi is correctly classified, then Ei(w) = 0. The aim of the learning
process is to reach the global minimum over all examples where E = 0 in an iterative manner
(McCulloch et Pitts, 1943).

The data is linearly separable if there is a weight vector w so that for all data examples xi,

yiw>xi ≥ 0. (3.31)

A simple learning algorithm for training the perceptron computes the loss function E, and
uses this to adapt the weight vectors through a form of gradient descent (McCulloch et Pitts,
1943). The key idea of perceptron learning is to iterate over the training input examples and
update the weight vector w such that would make xi more likely to be classified correctly.

Algorithm 2 illustrates how the perceptron learns the weight vector w in an online fashion

44

using loss function and gradient descent (a basic version of (McCulloch et Pitts, 1943)).

Algorithm 2: Perceptron Learning Algorithm with Gradient Descent
Data: Training data X = [x1, ...,xn], where xi = [x0, ..., xm]>, y = [y1, ..., yn],

0 < γ ≤ 1
1 , threshold b < 1 and maximum number of iterations tmax. Initialize w(0) with zero

values;
2 t = 0;
3 while not converged or t ≤ tmax do
4 ∆ = 0;
5 for xi ∈ X and target yi ∈ y do
6 Calculate the output of the perceptron as f(xi) = ∑m

j=0wjxij.;
7 if yif(xi) < 0 then
8 ∆ = ∆−5Ei;
9 end

10 end
11 ∆ = ∆

n
;

12 w(t+ 1) = w(t)− γ∆;
13 if |∆| < b then
14 converged = False;
15 Break ;
16 end
17 t = t + 1
18 end

The learning process will be done by initializing the weights with very small random values for
weight vector w (typically zero) and assess the performance of the prediction by comparing
the predicted labels, f(xi), with the actual ones, yi. Then, the algorithm will update the
initial guess for the estimated weights by changing the weight vector values in the correct
direction by implementing a form of gradient descent. The weight adaptation of w(t) to
w(t + 1) is done such that w(t + 1)xi > w(t)xi which is obtained by the following update
rule :

w(t+ 1) = w(t) + γ 5 Ei,

where

5Ei =

0 yiwxi > 0,

−yixi otherwise.
. (3.32)

45

Suppose that xi is an example of false classification while it is positive.

f(xi) =
m∑
j=0

wjxij < 0.

This process will be repeated in each iteration in an attempt to decrease the loss function Ei
and converge to the situation where we have no misclassified data point. If the input vectors
are not linearly separable, then the learning algorithm will never converge to a point where
all input vectors are classified correctly. In (McCulloch et Pitts, 1943), it has been proven
in details that the perceptron learning algorithm could not terminate if the training data is
not linearly separable. With this convergence proof, a perceptron algorithm will eventually
properly classify all the training data in a linearly separable space. However, this means
that this model is trained specifically for the training set, and could not generalize well on
validation or test datasets. If the data is not linearly separable, then it is required to set a
limit on the maximum number of iterations to terminate the learning algorithm.

3.1.5 Perceptron with Sigmoid Function

Remember from the perceptron section, the perceptron learning algorithm looks for the
minimum of the loss function in weight space using the method of gradient descent. The
weight vector which minimizes the loss function is considered as the solution of the learning
problem. Indeed this algorithm requires computation of the derivative of the loss function
at each time step. Therefore, to guarantee the smoothness and differentiability of the loss
function, we have to apply a continous form of the activation function instead of step function
in perceptron model (Rojas, 2013). One of the most popular non-linear activation functions
for this purpose is the logistic sigmoid, defined as :

s(x) = sigmoid(x) = 1
1 + exp(−x) , (3.33)

so that s(.) is always monotonically increasing, continuous, differentiable and bounded in
0 ≤ s(.) ≤ 1. The derivative of the sigmoid with respect to input x, required later on in this
section, is easily calculated as follows :

s′(x) = s(x)× {1− s(x)} (3.34)

46

which is usually employed for calculating the weight updates in training the perceptron
model with gradient descent. Below is the graph of a sigmoid function and its derivative
corresponding to the variable x.

Figure 3.3 Sigmoid and its derivative function according to equations (3.33) and (3.34).

Therefore, we consider the case of learning a perceptron model whose activation function
is a sigmoid instead of step function in which we have a single target variable y such that
y = 1 indicates class C1 and y = 0 referes to data belongs to class C2. The application of the
sigmoid activation function in a perceptron model is illustrated in Figure 3.4.

xi ai fi

yi

w0

w

L

Figure 3.4 The application of the sigmoid activation function in a perceptron model.

Suppose that we have a perceptron model where xi is the ith pattern of the input x including
m+1-dimentional data, xi = [1, xi1, xi2, ..., xim]>, weight parameters w = [w0, ..., wm]> where
w0 is the bias parameter, ai is the weighted sum of the inputs, and fi is the calculated output

47

of the perceptron model which is obtained by the sigmoid function. Additionally, yi is used
as the corresponding target label for input xi.

In this case, the model first computes a linear combination of its input signals and then
applies a sigmoid function to the result as follows :

fi = sigmoid(w>xi) = 1
1 + exp(−w>xi)

. (3.35)

We can describe fi as the conditional probability p(C1|xi), with p(C2|xi) given by 1−fi. The
output of the perceptron model with sigmoid function can be interpreted as probabilities
since we have the conditional distribution of targets given inputs as a Bernoulli distribution
of the following form :

p(yi|xi,w) = fi(xi)yi{1− fi(xi)}1−yi , (3.36)

where the predicted class is 1 if fi ≥ 0.5 and 0 if fi < 0.5.

Assume that we have a training set including n data examples X = [x1, ...,xn] and correspon-
ding multivariate target responses Y = [y1, ...,yn], then the general form of loss function for
a multiclassification problem, which is given by the negative log likelihood, is a cross-entropy
loss function and it takes the form :

L(W) =
n∑
i=1
Li(W),

where
Li(W) = −

K∑
k=1
{yik log(fik) + (1− yik) log(1− fik)}, (3.37)

where W is a weight matrix of the size (m+ 1)×K, and K is the number of desired classes.
Therefore, ai = W>xi and fi = f(ai) = f(W>xi) and

fik = f(aik) = f(w>k xi), (3.38)

is the sigmoid output of xi corresponding to class k. Note that yi should be represented in
one-hot vector format and fi is calculated into one-hot vector format as well with k entries
(Harris et Harris, 2010).

We now have a model capable of calculating the total loss for a given training data. The
weights in the perceptron model are the only parameters that can be modified to make the

48

cross-entropy loss L as low as possible which is a continuous and differentiable function of the
weights W in the model. Taking the derivative of the loss function respecting the activation
for a particular output gives the following equation :

∂Li
∂wk

= ∂ai
∂wk

∂fi
∂ai

∂Li
∂fi

= ∂ai
∂wk

∂Li
∂ai

. (3.39)

To compute the partial derivative of the loss with respect to ai, first we do :

∂ai
∂wk

= ∂w>k xi
∂wk

=


0 xi0 0
...
0 xim 0

 , (3.40)

where vector xi is kept in the column k of the above matrix. Hence, we have :

∂Li
∂ai

=
∂

[
−∑K

k=0{yik log fik + (1− yik) log(1− fik)}
]

∂ai
= yi −

1
1 + exp(−ai)

= −yi − p(yik|xi)

= yi − fi. (3.41)

Now, we could rewrite the partial derivative of loss with respect to ai as :

∂Li
∂ai

= (yi − fi), (3.42)

where fi is the logistic sigmoid function of wk
>xi and yi is the target vector for pattern i.

Now having ∂ai
∂wk

and ∂Li
∂ai , we could formulate the gradient of loss function L corresponding

to the weight matrix wk in the following compact form :

∂L
∂wk

= ∂ai
∂wk

∂L
∂ai

49

= −(yi − fi)xi, (3.43)

where the gradient matrix computation for the ith data example is formulated simply by
using the error times input vector. Then, to minimize the cross-entropy loss L by using an
iterative process of gradient descent which gives us a weight update rule with a gradient
ascent rule, we have :

wk(t+ 1) = wk(t)− γ
∂L
∂wk

, (3.44)

where γ denotes a learning rate, a parameter used to interpret the step length of each iteration
in the negative gradient direction. If we compare this to the update rule using the gradient of
least squares function, we figure out that it looks similar but with one important difference :
the f function we used as the activation function is now a non-linear and differentiable
function. With this extension of the basic perceptron model the algorithm learning problem
now reduces to the question of computing the gradient of a cross-entropy loss function with
respect to the weight vector by finding a minimum of the error function, where the gradient
equals to zero. Once we have the derivative of the loss function, we can then adapt the
model’s weight parameters iteratively. Algorithm 3 demonstrates how the perceptron model

50

with the sigmoid function learns the weight vector wk using cross-entropy loss function.

Algorithm 3: Perceptron Learning Algorithm with Sigmoid and Cross-entropy Loss.
Data: Training data X = [x1,x2, ...,xn]> , and xi = [1, xi1, ..., xim]>,

Y = [y1, ...,yn] , yi ⊂ RK and yi is of the one-hot form, learning rate
0 < γ ≤ 1, threshold b < 1, maximum number of iterations tmax, converged =
True

Result: fitted matrix W , W ⊂ Rm+1 ×RK

1 Initialize W(0) with zero values;
2 Initialize t = 0;
3 while not converged or t ≤ tmax do
4 ∆ = 0;
5 for xi ∈ X and target yi ∈ Y do
6 Calculate the weighted sum of the input as ai = w>k xi;
7 Calculate the output of the perceptron as fi = sigmoid(ai) = sigmoid(w>k xi).;
8 Calculate the cross-entopy loss function as

Li = −
K∑
k=1
{yik log(fik) + (1− yik) log(1− fik)} .

Update the weights vectors according to the gradient of the loss function L
with respect to the all weight attributes as

wk(t+ 1) = wk(t) + γ
∂Li
∂wk

xi.

;
9 if ∂Li

∂wk
< b then

10 converged = False;
11 Break ;
12 end
13 end
14 t = t + 1
15 end

In (Simard et al., 1993), the authors indicate that using the cross-entropy loss function instead
of the sum-of-squares for a classification problem results in an acceleration in learning as well
as generalizing performance.

51

3.1.6 Perceptron Issues

Intuitively, it is desired to find a hyperplane to be generalized more accurately on unseen
data. Support Vector Machines (SVMs) are robust linear classifiers which find a separating
hyperplane by maximizing margin. Additionally, the most classic example of the perceptron’s
inability to solve problems with a linearly inseparable space are XOR, AND and XNOR
boolean functions. As seen in Table 3.1, a single-layer perceptron is not capable of computing
all the boolean functions with two variables x1 and x2.

Table 3.1 The result table for some boolean functions over two variables x1 and x2, T repre-
sents value 1 and F denotes value 0.

x1 x2 AND NAN OR XOR NOR XNOR
F F F T F F T T
F T F T T T F F
T F F T T T F F
T T T F T F F T

The perceptron only could perform its functionality for those boolean functions that the
points with label 1 can be separated from the points with label 0 linearly. Obviously, two
boolean functions in the above table, XOR and XNOR, cannot be computed in this way. A
computational analysis is provided to show the linearly inseparable pattern of the XNOR
function as follows :

f = sgn(w1x1 + w2x2 − b),

where b is threshold. Therefore,

1) x1 = 0, x2 = 0→ w1x1 + w2x2 − b > 0→ w0 < 0,

2) x1 = 0, x2 = 1→ w1x1 + w2x2 − b < 0→ w2 < b,

3) x1 = 1, x2 = 0→ w1x1 + w2x2 − b < 0→ w1 < b,

4) x1 = 1, x2 = 1→ w1x1 + w2x2 − b > 0→ w1 + w2 > b.

As a result of the second and third inequalities, w1 and w2 are both negative while the last
inequality implies that w1 + w2 ≥ b which cannot be true and makes a conflict. Figure (3.5)
illustrates the XNOR that cannot be separated with a single line. The solution for the pattern
of (x1, x2) consists of two separated lines l1 and l2.

(Minsky et al., 1969) studied the possibility of learning linear decision boundaries for all
boolean logic functions. They indicated that it is impossible for a single-unit perceptron to
learn the linearly inseparable patterns like XOR and XNOR while a multi-layer perceptron

52

Figure 3.5 A demonstration of OR, AND, XOR and XNOR boolean functions.

is capable of learning all boolean functions. Then, "if the training data is linearly separable,
then the perceptron learning algorithm is capable of finding one of the possible hyperplanes
solutions and not the best one" (Minsky et al., 1969). Note that the criteria for discrimination
between the non-linear separable spaces is not the shape of activation function in the percep-
tron model, however the activation function provides the linear separability. Indeed, we have
to use more than one hyperline or any other non-linear functions to discriminate the points
of XOR and XNOR by implementing at least two separate perceptron models. Intuitively,
we could use a combination of multiple-layer perceptrons to separate the intermediate results
on the basis of sign which will be discussed in detail in sequel.

3.2 Multi Layer Perceptrons (MLPs)

Multi-layer Perceptrons (MLP) 1 are the feedforward Artificial Neural Networks (ANN) which
are originally inspired by the capabilities of human cognition and brain system in processing
information (Haykin et al., 2009). The MLP models have been developed as a generalization
of the mathematical paradigms of the biological nervous systems according to the following
assumptions (Witten et al., 2016; Haykin et al., 2009; Fausett et Fausett, 1994) :

1. MLPs are typically organized in different fully-connected layers which are made up of
a finite number of neurons.

2. Patterns are given to the MLP model through the input layer, which is fully connected
to an intermediate hidden layer. This intermediate layer is linked to another hidden
layer or directly to the output layer via the weighted connections to produce the output
of the MLP model.

1. This section is heavily based on notes and notations inherited from (Witten et al., 2016).

53

3. Neurons in successive layers are connected by means of directed weighted connections
across layers and there is no connection within the same layer.

4. Information processing is performed in neurons by applying a non-linear activation
function to the weighted sum of the neurons’ input.

5. The output of a neuron in one layer broadcasts to all neurons in the next layer.

A simple architecture of a MLP network with m input neurons, l hidden layers each of them
includes N l neurons, and one output layer with k neurons is demonstrated in Figure 3.6.
Note that in this graph, we indicate the hidden units by the square shapes on purpose to
emphasize that those units are intermediate deterministic variables and are not formulated as
random variables, rather than the output units which typically are produced probabilistically
and therefore are illustrated by circles (Witten et al., 2016).

Input Layer Hidden Layer 1 Output Layer

x1

x2

xm

1

h
(l)
1

h
(1)
2

h
(l)
N l

1

h
(L)
1

h
(L)
2

1

h
(L)
NL

y1

y2

yk

Hidden Layer L

.

.

.

.

.......

Figure 3.6 An architecture of a feed-forward neural network with L hidden layers (reproduced
from (Witten et al., 2016)).

There are several types of Artificial Neural Networks depending on
– the pattern of the connections among the neurons (architecture),
– the learning algorithm applied for adjusting the connection weights and
– the activation functions used in neurons.
In this thesis we are only focused on two of them :

1. Multi-layer Perceptrons (MLPs) and

54

2. Convolutional Neural Networks (CNNs).

In this chapter, we first begin by considering the functional conncepts of the MLP mo-
del, including the architechture, parameters of the basic model, activation functions and
loss function, and we then discuss the problem of learning the weights parameters within
a minimum negative of log likelihood framework, which involves the solution of a gradient
descent-based optimization problem. This requires the evaluation of the gradient of the log
likelihood against the weights parameters, and we shall see how an effective formulation can
be obtained using the backpropagation learning algorithm afterwards. We also discuss two
regularization methods and some techniques to accelerate the performance of the MLPs.

MLP models are typically organized in three different components : input layer, at least one
hidden layer and one logistic output layer with non-linear and differentiable activation func-
tions capable of learning nonlinear decision boundaries (oppose to a single perceptron with
nonlinearity) (Bishop, 2006; Witten et al., 2016; Haykin et al., 2009). A classical architecture
for a MLP model is made up of a fully-connected hidden layer consisting a finite number of
neurons behave as activation functions. Input patterns are fed to the network through the
input layer which is then connected to a hidden layer. Similarly the hidden layer is connected
to the output layer and it is processed to produce the output prediction of the model.

We can comprise the MLP model with several hidden layers of perceptron neurons. Typically
neurons are grouped in layers and each neuron in one layer receives input only from neurons in
the preceding layer. One single layer network can be considered as a linear decision boundary.
There are different types of single layer networks like Hebb (Hebb, 1949), ADALINE (Widrow
et Hoff, 1960) and Perceptrons (Rosenblatt, 1957).

Each hidden layer l connects N l input units to N l+1 output units in the next layer l+1 simply
which means that a unit’s output is one of the input for all units in the next hidden layer.
This broadcasting will be performed via fully weighted connections. Note that the inputs
and outputs for a hidden layer are easily distinguishable from the inputs and outputs of the
entire model. Furthermore, we can easily set different activation functions in different hidden
layers, or even different neurons within a hidden layer.

Each link represents the data flow and is associated with one weight. Each neuron in each layer
behaves like a single-neuron perceptron model by applying a non-linear activation function
to the weighted sum of its input signals which was described in detail in Chapter 2. The first
layer known as the input layer consists of the pattern vector x. No computation is performed
in this layer. The first hidden layer receives the input vector from the input layer, processes

55

it by a non-linearity, and transmits its output as vector hl to the next hidden layer.

hl = sigmoid(Wl>hl−1) = 1{
1 + exp(Wl>hl−1)

} . (3.45)

This process repeats in all L hidden layers. The last hidden layer receives the inputs from the
preceding hidden layer as hL−1 and sends this vector to the output layer. After applying the
logistic activation functions by output neurons, the output layer then produces the output
vector f . The output of the MLP is typically made up of computations that can be obtained
by the outputs of the consecutive intermediate layers denoted by hl. Therefore, such models
generate the output could be formulated among the L layers (Witten et al., 2016).

Typically, the input layer in a MLP is considered as layer 0, referring to an L layer network
means that we have a MLP with L+ 1 weighted non-input layers, including L hidden layers
and one output layer. In this chapter, we suppose that all neurons in a same non-input
layer apply the same activation functions. We have noted before that the sigmoid function
is an appropriate and differentiable non-linear activation function that applies a smooth
thresholding for perceptron models. Hence, we simply perform the non-linearity on the hidden
layers using logistic sigmoid activation functions and softmax for the output layer as well.
Therefore, the output of a two layer network model f takes the following form :

f = out(ηL+1), , ηL+1 = WL+1hL

where

hL = act(ηL), , ηL = WLhL−1 ... hl = act(ηl), , ηl = Wlhl−1 ...
h1 = act(η1), , η1 = W1h1

h1 = x, (3.46)

and act(.) is a nonlinearity used as the activation function (Witten et al., 2016).

A computation graph in Figure 3.7 demonstrates the forward propagation and architecture
of the decomposed model to indicate how the MLP predictions and the loss function L are
computed for a L+ 1 layer network.

f = f
{
ηL+1(hL(ηL(...(hl(ηl(...(h1(η1(x)))...))...))))

}
, (3.47)

where ηl has the form of a linear weighted sum of Wl including bias and hl−1 in such a way
that :

ηl = Wlhl−1. (3.48)

56

....x

w0
(1)

η(1)

W(1)

w0
(l)

W(l)

η(l)h(l−1)

w0
(L+1)

η(L+1)

W(L+1)

h(L) L

y

η(1) = W(1)x + w0
(1)

h1 = act(η1)
η(l) = W(l)h(l−1) + w0

(l)

hl = act(ηl) f = out
{
η(L+1)

}η(L+1) = W(L+1)hL + w0
(L+1)

Figure 3.7 The forward propagation and structure of a multi-layer feed-forward neural net-
work reproduced from (Witten et al., 2016).

and for the first layer (l = 1), we can write :

η1 = W1x, (3.49)

where x is an example of the input data augmented by one in vector form and W is the
weight vector with the bias appended at the end. Similarly, for the next hidden layers we
have :

ηl = Wlhl−1, (3.50)

where hl−1 = act(ηl−1) (Witten et al., 2016).

3.2.1 Activation Functions

A non-smooth perceptron activation function means that the error rate of the model is a
discontinuous function of the weight parameters which makes it difficult to adjust optimal
weights by minimizing the loss function. To address this problem, we apply a continuous
activation function. We saw in the previous chapter that the logistic sigmoid is an appro-
priate choice for this purpose which is capable of learning nonlinear decision boundaries for
nonlinear separable spaces. Activation functions in MLP should be nonlinear, continuously
differentiable and monotonically non-decreasing (Rosen-Zvi et al., 1998). Additionally, it is
desired to choose an activation function which its derivative would be computed easily.

With the assumption of using a nonlinear activation function e.g. sigmoid, it could be pro-
ven that an MLP is a universal function approximator. This means that a single-hidden
layer MLP associated with sufficiently large and finite number of neurons can approximate

57

and learn any continuous function on a compact domain with an arbitrary accuracy (Cy-
benko, 1989). This property is required while we apply the backpropagation learning method
using gradient-based approaches. To use the backpropagation learning method, the activa-
tion function should be differentiable so that the range of the activation function is finite.
Typically, by choosing an activation function which is bounded in a certain range of limits,
the gradient-based optimization methods regularly tend to be more stable, as pattern pre-
sentations considerably change only limited weight parameters. For activation functions with
infinite range, learning is typically more efficient since pattern presentations remarkably tend
to affect most of the weight parameters. Hence, we should necessarily select smaller learning
rates for updating parameters (Snyman, 2005).

If the activation function used is monotonic, then the error surface associated with a single-
layer network (no hidden layer) is guaranteed to be convex, like logistic regression (Wu,
2009). According to the proof provided in (Kingman, 1961), if function f is concave and g
is convex and monotonically non-increasing over a univariate domain, then h(x) = g{f(x)}
would be convex, consequently. In their work, they proved that the output and global minima
for a single perceptron could be found. But for multi-layer perceptrons, the problem becomes
more complicated, yet is still possible. While moving to the solution using backpropagation
through a gradient-based method, the monotonically decreasing loss function looks like a
convex function with several local minima (Goodfellow et al., 2014). Therefore, the main
feature of the learning problem is to derive the update rules for the weights adjustments
via a gradient-based algorithm. During the learning, backpropagation specifies the influence
proportion on each neuron in the next layer. Using a nonmonotonic activation function may
cause that increasing the neuron’s weight affect less on the neurons in next layer and model
might not converge to the solution.

Another desired property for choosing an activation function is to approximate near the
origin. In this case, if the weight parameters are initialized with small random values, the
MLP model tend to learn efficiently. Otherwise, we should care specifically while initializing
the weights (Sussillo, 2014).

The most common choice of activation function used in MLP is so-called logistic sigmoid as it
takes a real-valued input varied from −∞ to +∞ and saturates it to a bounded range between
0 and 1, which are the values used to represent the output class for a binary classification
problem.

Despite the popularity of the sigmoid, a sigmoidal activation function in the form of a hy-
perbolic tangent is sometimes preferred empirically and theoretically for deep MLPs. Two
forms of hyperbolic tangent activation functions are commonly used : tanh(x) whose range

58

is normalized to the range of −1 to 1, and 1
1+exp(−x) which is vertically bounded to 0 and 1.

The former function is a rescaling of the logistic sigmoid :

tanh(x) = 2sigmoid(2x)− 1. (3.51)

The hyperbolic tangent typically transform the data from domain [−∞,+∞] to [−1,+1] and
it is symmetric around the origin while the sigmoid is not. The outputs of a logistic sigmoid
will be always a positive value in [0, 1]. The nonsymmetry property of sigmoid around zero
makes it more prone to saturation of the next layers during the training via gradient-based
algorithms and making learning more difficult consequently.

In (LeCun et al., 1998b), authors show that logistic sigmoid has been already demonstrated
to slow down learning due to its non-zero mean which yields singular values in the Hessian
during gradient-based learning. To address this problem, they provide evidence in great detail
that normalizing the initial inputs to have mean 0 and variance 1 along the features typically
makes a better and faster convergence during gradient-based learning. They also suggested
that the activation function should be chosen as anti-symmetric and takes the form :

f(x) = a tanh(bx), (3.52)

where the f(.) maps [−∞,+∞] to [−a,+a], a = 1.7159 and b = 2
3 .

Sigmoid and tanh function, however, both computes their derivatives very simply and effi-
ciently which is a compelling reason for using them during the gradient optimization in a
MLP.

While sigmoid and tanh have been commonly used activation functions, the more recent
work of (Glorot et al., 2011) shows evidence that rectified linear units (relu) provide faster
and more effective learning of deep neural networks on complex and high-dimensional data.
Relu computes the function f(x) = max(0, x) and simply thresholds the input matrix at
zero. One of the most important advantages of relu, compared to sigmoid and its counterpart
tanh, is that it does not require expensive computation consisting of only comparison and
multiplication. Furthermore, there is no saturation in relu which means that we have an
efficient backpropagation without vanishing or exploding gradient that makes it a proper
choice particularly for networks with deep layers. These advantages combined with its ability
to produce sparse activations are considered as benefits for optimizing deep MLPs and CNNs.
On minus side, relu units suffer from an important potential problem during training : dying
relu neurons. Dying problem occurs when no gradient flows backward through the relu unit

59

and therefore, that neuron subsequently will never fire from that point on. Typically, large
number of units in a multi-layer network may pushed into dead states, while a high value
selected for the learning rate. One attempt to alleviate this problem is to set a small learning
rate during the weights update in gradient descent.

Another approach to mitigate this issue is applying Leaky relu instead of relu which allows
a small negative slope when a unit is not active. A parametric rectified linear unit (prelu)
activation function that generalizes the rectified unit by making the slopes into a parameters
that are adapted along with the other network parameters were proposed by (He et al., 2015).

There are several commonly-used activation functions you may encounter in practice. Figure
3.8 illustrates several common activation functions and their functionalities.

3.2.2 Loss Function

We have seen how an MLP network can produce a corresponding output f , given an input
vector x, along with a weight matrix W which has been adjusted correctly. Note that the
output layer is made up of multiple neurons in such a way that each neuron indicates one
of the classes that we want the model to train. Hence, we can consider the output layer
as a distribution of the probabilities of the multi classes that we expect the network must
predict an example to. For example, if the MLP has two classes, given an input x the network
might predict f = [0.1, 0.9], meaning that it believes the second class is most probable as
the prediction of x. Given a true label, for example (0, 1), we can tell if the trained model
made a correct prediction or not. Giving a probabilistic representation of the model outputs,
provides a more general perspective of model learning (Witten et al., 2016).

A simple approach to the problem of model parameters estimation is to minimize a loss
function. Learning a MLP network is much like learning a linear classifier, one defines a loss

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sig
m

oi
d(

x)

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(x
)

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

re
lu

(x
)

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

le
ak

yr
el

u(
x)

Figure 3.8 Common activation functions

60

function or cost function L(f ,y) as a function that represents some "loss" associated with the
prediction f while the actual target is y.

Hence, we need a formulation to understand how good a certain set of the adjusted weight
parameters are given the true labels and prediction probabilities. Therefore, for an input
vector x, L(f ,y) is defined as the loss function, where y is the true target vector and f
denotes the output vector produced at softmax layer in network. Each element in vector f
represents the probability prediction for which the corresponding class belongs to (Witten
et al., 2016).

During the backpropagation in MLP, our goal is to minimize a loss function. So far, we have
viewed MLP as a general class of parametric nonlinear models which map an input vector
x to an output vector y. One of the most common loss functions employed for classification
problems is cross entropy and it is defined in equation (3.37).

3.2.3 Backpropagation Learning Algorithm

A feed forward neural network can essentially be thought of as logistic regression, but with
a projection to some hidden layers to render the input more linearly separable. This method
was initialized with random weights and was trained via the minimization of backpropagated
error using a gradient descent-based method. The backpropagation algorithm is used to find a
local optimum of the loss function in an iterative manner. First, the parameters of the model
are initialized to some values. Next, the gradient of the loss function with respect to the model
parameters is computed and used to update the initial parameters. The principle task is to
compute the gradient recursively based on chain rule. Suppose that L{f(x; W),y} is the loss
function of a single-hidden layer MLP with a softmax logistic regression for the multinomial
output layer. Multinomial vector y is represented by a vector wherein the elements in dimen-
sion k is 1 for the corresponding class and the other elements indicated by 0. The output
function is defined by f = [f1(η), ..., fK(η)] where η(x; W) = [η1(x; w1), ..., ηK(x; wk)] and
ηk(x; wk) = w>k x, with the column vector wk includes the kth row of the parameter matrix
W. Here, the parameter of interest is W including weights and biases w0. Therefore, the loss
function at softmax output layer will be defined as (Witten et al., 2016)

L(W) = −
K∑
k=1

yk log fk(x),

where
fk(x) = exp {ηk(x)}∑K

c=1 exp {ηc(x)}
. (3.53)

61

Note that x is augmented by 1 and bias is the last entry in each wk. Taking the partial
derivative of loss function L with respect to any parameter vector wk using the chain rule
produces the following equation in reversed form as (Witten et al., 2016)

∂L
∂wk

= ∂η

∂wk

∂f
∂η

∂L
∂f

= ∂η

∂wk

∂L
∂η

. (3.54)

To calculate each element of the gradient vector of loss with respect to vector η, we have
(Witten et al., 2016)

∂L
∂ηj

=
∂

{
−∑K

k=1 yk

[
ηk − log{∑K

c=1 exp(ηc)}
]}

∂ηj

= −
{
yk=j −

exp(ηk=j)∑K
c=1 exp(ηc)

}

= −{yj − p(yj|x)}

= −{yj − fj(x)} . (3.55)

Hence, the gradient of loss with respect to the vector η could be shown in the vector form
as

∂L
∂η

= −{y− f(x)} = ∆, (3.56)

where ∆ is usually referred to as the error (Witten et al., 2016).

Next, for computing the gradient of the vector η with respect to the wk in vector form, we
have

∂ηj
∂wk

=


∂w>k x
∂wk

, ,j = k

0, , j 6= k

 ,
which implies that

∂η

∂wk

= Hk =


0 x1 0
0 x2 0
...
0 xn 0

 (3.57)

where the kth column of the above matrix includes the vector x.

To recap, using quantities from above equations the derivative of loss function with respect

62

to the given parameter wk will be calculated by

∂L
∂wk

= ∂η

∂wk

∂L
∂η

=


0 x1 0
0 x2 0
...
0 xn 0

 [y− f(x)], (3.58)

which achieves the gradient of loss with respect to any given parameter vector wk that is
stored in the kth row of the parameter matrix W. Computing the gradient of the loss with
respect to the entire matrix W, will be formulated in a compact form as (Witten et al., 2016)

∂L
∂W

= −[y− f(x)]x>

= ∆x>. (3.59)

Now, consider a multi-layer network with L hidden layers using the same activation function
at each hidden layer and a logistic regression layer with softmax output at the end. The
gradient of the kth parameter vector of the output layer will be computed by (Witten et al.,
2016)

∂L
∂w(L+1)

k

= ∂η(L+1)

∂w(L+1)
k

∂L
∂η(L+1) , (3.60)

where ∂L
∂η(L+1) = −∆(L+1).

Hence, we have

= − ∂η
(L+1)

∂w(L+1)
k

∆(L+1)

= −H(L)
k ∆(L+1), (3.61)

where H(L)
k is a matrix consists of the activation functions in layer L in column k and

∆(L+1) = −[y− f(x)], (3.62)

represents the error term of the softmax output layer. With a little readjustment, the for-
mulation for computing the gradient of L with respect to entire parameter matrix can be

63

written as
∂L

∂W(L+1) = −∆(L+1)h̃>(L), (3.63)

which includes the error term to be backpropagated across the network layer by layer (Witten
et al., 2016).

Therefore, the error backpropagation through the output layer L to layer l < L will be done
via a recursive computation as

∂L
∂w(l)

k

= ∂η(l)

∂w(l)
k

∂h(l)

∂η(l)
∂η(l+1)

∂h(l)
∂L

∂η(l+1)

= − ∂η
(l)

∂w(l)
k

∂h(l)

∂η(l)
∂η(l+1)

∂h(l) ∆(l+1)

= − η
(l)

w(l)
k

∆(l), (3.64)

where ∆(l) is determined in terms of ∆(l+1) as follows

∆(l) = ∂h(l)

∂η(l)
∂η(l+1)

∂h(l) ∆(l+1)

∆(l) = D(l)W>(l+1)∆(l+1) (3.65)

so that D(l) = ∂h(l)

∂η(l) and W>(l+1) = ∂η(l+1)

∂h(l) (Witten et al., 2016).

Note that D(l) preserves the partial derivative of the activation function at layer l with
respect to the inputs of the layer beforehand and it is often a diagonal matrix since the
activation functions typically works on an element-wise basis. Furthermore, according to
Figure(3.9), W>(l+1) could be simply obtained from the definition of η at each layer l as
η(l)(h(l)) = W>(l+1)h(l).

Consequently, the gradient for the kth vector of parameters of the layer l in a multi-layer
network could be written as the product of the following matrices, compactly (Witten et al.,
2016)

∂L
∂w(l)

k

= −H(l−1)
k D(l)W>(l+1) ... D(L)W>(L+1)∆(L+1). (3.66)

Having above quantities, softmax output function and corresponding loss at logistic regression
layer with/without any regularization terms, the MLP model could be formulated and it

64

could be optimized and fitted using the backpropagation and (stochastic) gradient descent
in an iterative manner. The backpropagation could be performed recursively by using the
recursive definition of ∆(l). Figure (3.9) demostrates the error backpropagation computation
and parameter updates required for a gradient-based training (Witten et al., 2016).

....x

w0
(1)

η(1)

W(1)

w0
(l)

W(l)

η(l)h(l−1)

w0
(L+1)

η(L+1)

W(L+1)

h(L) L

yD(1)

∆(1)

∂L
∂w0(1)

∂L
∂W(1)

.......

∂L
∂w0(l)

∂L
∂W(l)

D(l)

... ∆(l) ∆(L+1)

f

...
...

∂L
∂W(L+1)

∂L
∂w0(L+1)

Figure 3.9 Backpropagation in a L layer fully-connected network reproduced from (Witten
et al., 2016).

3.2.4 Mini-batch Stochastic Gradient Descent (Mini-batch SGD)

MLPs and deep network models are mostly optimized through mini-batch stochastic gradient
descent such that the model parameters will be updated based on the gradients calculated
from a small subset of the data called a batch. Mini-batch gradient descent algorithm is a
variation of the standard gradient descent algorithm splitting the training data into small
mini-batches that are randomly chosen from disjoint partitions of the training data. Algo-

65

rithm 4 shows a pseudocode for mini-batch SGD in details (Witten et al., 2016).

Algorithm 4: Mini-batch Stochastic Gradient Descent Algorithm (Witten et al., 2016)
Data: Training data X = [x1,x2, ...,xn]> , xi ⊂ Rm+1 , Y = [y1, ...,yn] , y ⊂ RK ,

0 < γ ≤ 1, threshold b < 1, , converged = True
Result: fitted W

1 Initialize W;
2 t = 0;
3 while not converged do
4 Create K ′ mini-batches as B = [B1, ..., BK′] = Shuffle(X);
5 for k ∈ {1, ..., K} do
6 g = 1

|Bk|
∑
i∈Bk

[
∂L(f(xi;W),yi)

∂W + |Bk|
n
λ∂R(W)

W

]
;

7 ∆W← g + α∆W;
8 W←W + ∆W
9 end

10 t = t + 1
11 end

The algorithm will use mini-batches Bk include a set of data indexes to compute the error.
Then, update model parameters based on the gradient average to reduce the variance of the
gradient. The mini-batch SGD works similar to standard SGD ; the process starts by initia-
lizing the model parameters, entering a parameter updating loop and is ended by evaluating
the validation set. Compared to standard SGD, the iterative process will continue over the
mini-batches and the model parameters will be updated after processing each mini-batch. In
each iteration, a set of mini-batches are processed that represent the whole training data in
one epoch (Witten et al., 2016).

Hence, after a mini-batch processing the model parameters will be updated using the gradient
of loss function L and a regularization term as follows

W(t+ 1)←W(t)− γ
 1
|Bk|

∑
i∈Bk

{
∂L(f(xi; W),yi)

∂W

}
+ |Bk|

n
λ
∂R(W)
∂W

 , (3.67)

where γ is the learning rate that could be considered as a small fixed value ; n represents
the number of training data ; the kth batch includes Bk examples and indicated by set Bk =
B(t, k) of the indexes that maps them into original training set ; L(f(xi; W) denotes the loss
function obtained by batch example xi, true label yi and parameters W ; and term R(W) is
used for regularizer with weights λ (Witten et al., 2016).

66

Mini-batch gradient descent algorithm explores a trade-off among the robustness of standard
SGD and the efficiency of mini-batch SGD. Most of the common deep learning models use the
mini-batch SGD implementation in terms of optimization method. The number of examples
in a mini-batch to find one that works well for a given data set could be considered as a
hyperparameter of the model and could be tuned through a cross-validation (Witten et al.,
2016).

3.2.5 Regularization

In multi-layer networks, weight decay regularization is added to the loss function while com-
puting the backpropagation gradients. The weight decay method is standard for regulariza-
tion and it is widely used in training other models like linear regression. This method tries
to force the model weights toward zero unless there are big gradients to prevent it, which
makes corresponding model more interpretable. Note that this regularization method is often
applied on the weights parameters not to the biases.

There are two types of weight regularization methods ; L1 and L2 norms. L1 norm is often
used in machine learning context, e.g. in regression and it is of the form

RL1(W) =
m∑
j=0
|wj|. (3.68)

It tries to penalize the absolute value of the non-relevant weights by giving a coefficient of
zero to these weights. Applying L1 can lead to sparsity in the model.

By contrary, L2 norms penalize the square value of the weight which yields to assign all the
weights to smaller values close to zero.

RL2(W) =
m∑
j=0

w2
j . (3.69)

In neural networks a weighted combination of L1 and L2 norms is added to the loss function
at the softmax layer to penalize the weight parameters as follows (Witten et al., 2016)

1
n

n∑
i=1
L(f(xi,W),yi) + λ1RL1(W) + λ2RL2(W). (3.70)

67

3.2.6 Dropout

Large and deep networks are typically work so slowly. Dropout is a regularization method
for addressing this problem by providing a way of approximately combining exponential
number of different neural network models in a reasonable time. The term "dropout" refers
to omitting units and temporarily removing them from the model architecture, along with all
their incoming and outgoing connections during the training (Hinton et al., 2012). This means
that the connections of dropped units to the activation of downstream units is temporally
ignored on the feed-forward pass, thus their corresponding parameters are excluded from the
updates on the backpropagation and their neighbors cannot rely on theses dropped units in
the parameter tuning as well.

Overfitting is another crucial important challenge in deep neural networks with a large num-
ber of parameters. The main idea behind dropout strategy is to prevent units from complex
co-adapting and therefore counteract overfitting. The overfitting will be significantly decrea-
sed by randomly deleting some units on each training case (Srivastava et al., 2014).

Consider a network with L hidden layers. Suppose that the a(l) indicates the input vector
into layer l and the h(l) represents the corresponding output vector where h(1) = x.

A feed-forward pass in the network can be shown as (Witten et al., 2016)

η(l+1) = W(l+1)h(l)

h(l+1) = act{η(l+1)} , l ∈ {1, ..., L}, (3.71)

where act(.) could be any activation function. Using the dropout method, the feed-forward
pass will be described as

r
(l)
i ∼ Bernoulli(p)

h̃(l) = r(l) ∗ h(l)

η(l+1) = W(l+1)h̃(l)

h(l+1) = act{η(l+1)}, (3.72)

where r(l) is a Bernoulli random variables vector where each element has probability p of being
1 (Witten et al., 2016). This vector is sampled at each hidden layer and multiplied with the
outputs of that layer h(l) to build a thinned outputs h̃(l) and then passed to the next layer as

68

the input. During the model training, the gradient of the loss function are backpropagated
using the thinned network. At test time, the weights are rescaled as W(l)

test = pW(l). If a
unit was kept with probability p at training time, corresponding weights are scaled-down or
multiplied by p at test step and the resulting model will run without dropout (Srivastava,
2013). By applying dropout regularization on a network with n units, the model could work
like an ensemble of 2n smaller networks (Witten et al., 2016).

3.2.7 Parameters Initialization

Weight initialization is one of the most important prerequisites in speeding up the training of
deep neural networks. Typical gradient descent-based algorithm from random initialization
work poorly in deep networks (Glorot et Bengio, 2010). Bias parameters are all typically ini-
tialized to zeros but a particular weight initialization value yields the learning to an acceptable
approximation or to a false one. For example, initializing the weights to zero while using tanh
activation functions at all layers yield a zero gradient with no updates in backpropagation
(Witten et al., 2016).

One common solution is to initialize weight matrix at each layer with the following widely-
used heuristic :

wij = U[−q, q], (3.73)

where U[−q, q] denotes the uniform distribution in the interval (−q, q) and q is the number
of units in the preceding hidden layer. Several methods have been proposed for choosing the
best number for q with the intention of selecting smaller weights for units with more inputs.
For example, for a given hidden layer l, one commonly used choice is to consider U[− 1√

q
, 1√

q
],

where q denotes the number of units in the preceding layer that equals to the dimensionality
of the h(l−1) (Glorot et Bengio, 2010).

3.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are special types of MLPs that are inspired from
biology which have proven excellent performance in several machine learning applications
and especially in image related tasks.

The input layer receives images which are all size normalized and centered. Each unit in a
layer receives inputs from a relatively small spatial zone in the preceding layer (LeCun et al.,
1998a). The visual system includes a complex set of cells that are sensitive to small sub-set
of the visual field, called a receptive field. Theses sub-sets are tiled across the image to cover

69

it entirely and behave as local filters in the image. Local receptive fields units can extract
useful features such as oriented edges, endpoints and corners from the image. Then, these
elementary features are combined by the succeeding layers with the intention of discovering
higher-order features (LeCun et al., 1998a). Each filter is mathematically described by a set
of small weights that is multiplied by a small spacial area of the given image and then pass it
to the feed-forward network. This multiplication is repeated over the image using the same
weights. By using CNNs, one can learn a large number of such filters jointly in a data-driven
fashion, while learning the other network parameters (Witten et al., 2016).

By applying a filter over an image, the output would be a new modified image including the
filter’s response at each spatial region. Each filter will be replicated across the entire image
while sharing the same parameters at each spatial location. The new image considered as a
feature map containing particular features discovered the entire original image, e.g. edges,
vertical/horizontal lines or corners (LeCun et al., 1998a).

In a typical CNN, the model architecture built on a series of convolution and subsampling
operations, while the last layer of the architecture consists of a fully-connected multi-layer
network with a softmax output layer. The subsampling operation performs sampling over
every nth output and prevent unnecessary computations by measuring every nth pooling
computation.

3.3.1 Convolutional Layer

A deep network takes the original image as input that is often centered and normalized in
terms of size. Then each unit in a layer receives inputs from a relatively small spatial region
in the preceding layer, so-called receptive field. A generic CNN, so-called LeNet5 (LeCun
et al., 1998a), for recognizing digit characters is illustrated in following figure.

Let x be a simple vector.A filtering operation is performed by multiplying vector x by a
matrix of weight parameters W composing a particular low-level representations as follows

y = Wx

=


w1 w2 w3

w1 w2 w3
. . .
w1 w2 w3

 , (3.74)

70

Figure 3.10 A slight architecture of leNet5 as a CNN model reproduced from (LeCun et al.,
1998a).

where the empty cells denote zero values (Witten et al., 2016). This matrix shows an example
of a filter with three nonzero parameters and stride 1 which means that the filter jumps across
the image one pixel at a time. Setting stride to a higher value, e.g. 2, yields producing smaller
output images spatially. It is more convenient to apply zero-padding dimensions of the input
image by putting zeros around the border such that the spatial size of the filter response and
the input image will be the same. By reorganizing the rows of a 2D image compactly in a
one column vector, a variant of this 3× 3 filter will be obtained by a larger matrix W where
includes two more weight parameter sets in each row. Therefore, the result will be achieved by
implementing the summation and multiplication applied by the matrix representation of a 2D
filter. The filter response y would be computed similarly like the cross-correlation operation in
Digital Signal Processing context which is similarly related to convolution operation (Witten
et al., 2016).

Now, let the filter W be centered by assigning −1 to the first vector entry or generally −K,
where K denotes the filter radius. Hence, the 1D filtering operation would be expressed as
(Witten et al., 2016)

y[n] =
K∑

k=−K
W[k]x[n+ k]. (3.75)

Under the assumption of having a 2D image X and weights W, the filtering generalization
would be formulated in a compact form as

Y = W ∗X, (3.76)

where ∗ used for convolutional operation and the cross-correlation result for the entry in row

71

r and column c of the matrix Y is computed as

Y[r, c] =
J∑

j=−J

K∑
k=−K

W[j, k]X[r + j, c+ k], (3.77)

where J and K are the filters dimensions. Thus, the convolution result will be achieved by
(Witten et al., 2016)

=
J∑

j=−J

K∑
k=−K

W[−j,−k]X[r + j, c+ k]. (3.78)

Elements of a feature map are supposed to employ the similar filtering operation on different
local tiles of the image (Witten et al., 2016). Instead of using predefined weight filters, CNNs
tend to jointly learn a large number of convolutional filters in a data-driven manner by
backpropagation along with the other model parameters. Different filters could be applied on
a spatial location of the image and several feature maps will be produced by sliding different
filters across the image. After convolving the image with several filters, the produced feature
maps are fed into the consecutive layer in the model (LeCun et al., 1998a).

3.3.2 Max Pooling Layer

Each convolutional layer in a CNN architecture consists of a filter operation over the feature
maps received from the preceding layer. Thus, as one operates successively the receptive fields
of any unit will increase and high-level layers exploit larger features which are produced by
small parts of objects in lower levels and pass much more larger features to the subsequent
layers as well. Consequently, a spatial pooling layer will be incorporated within subsequent
convolutional layers in a CNN architecture to represent a degree of local spatial invariance
in replacement of the locations where corresponding features have been produced. The most
widely-used form of the max pooling layer is made up of filters of sizes 2× 2 using stride of
2. As a result, CNNs are typically composed of multiple convolution layers followed by max
filter and subsampling layer applied on non-overlapping slides of the receptive fields with
stride of 2 for stepping across corresponding input. The goal of applying max pooling layer is
to downsample corresponding feature map by reducing its spatial size, number of parameters
and computations that avoiding overfitting as well. The reduced feature maps generated
from the last max pooling and subsampling layer are often passed to a fully-connected neural
network, eventually (Witten et al., 2016).

The original image in a numeric form is first convolved with a predetermined filter W that
tiled across the entire image. The generated feature map contains the result of the convolution

72

operation in the form of matrix. Then, the maximum values within non-overlapping 2 × 2
regions will be detected. Finally, the results are pooled and downsampled by a factor of 2 to
produce the final matrix (Witten et al., 2016).

3.3.3 Loss Function and Gradients

As mentioned earlier, in CNNs instead of using predefined filters one can learn the filter
values during the learning of other model parameters through backpropagation. Hence, it
is necessary to compute the gradient of the loss function with respect to the entire model
parameters.

Therefore, at any layer l in CNN, we have i = 1, ..., N (l) filtered features and their fea-
ture maps. The convolutional kernel matrices Ki including flipped filters regarding kernel
weight matrices Wi. Consider act(.) as activation function that operates element-wise func-
tion corresponding input matrix received from the preceding layer. For each filter i, there is
a scaling parameter gi. Then, the feature maps are defined as matrices Hi(Ai(X)) that could
be expressed as a set of feature maps as below (Witten et al., 2016)

Hi = giact(Ki ∗X) = giact(Ai). (3.79)

Thus, the loss function L at softmax output layer will be defined as a function of the N (l)

feature maps at layer l as
L = L(H(l)

1 , ...,HN(l)
(l)), (3.80)

where each feature map is related to a layer l. Having activation function with a scale factor
of 1 and biases of 0, the gradient of loss function L with respect to the X of the convolutional
units will be calculates using chain rule as

∂L
∂X

=
N(l)∑
i=1

J∑
j=1

K∑
k=1

∂aijk
∂X

∂Hi

∂aijk

∂L

∂Hi

=
N(l)∑
i=1

∂ai
∂X

∂hi
∂ai

∂L
∂hi

=
N(l)∑
i=1

[Wi ∗Di], (3.81)

where h, x and a are the vectors with stacked columns of the matrices H, X and A, respec-

73

tively ; Di = ∂L
∂Ai

is a matrix including the derivative of the act(.) inputs with respect to the
related preactivations for the filter i that are arranged based on the spatial locations (j, k).
Consequently, the result will be a summation of convolutions of the filter weights matrix Wi

with a matrix of derivatives Di. Thus, the gradient of loss with respect to the softmax layer
will be achieved by (Witten et al., 2016)

∂L
∂Wi

=
∑
j

∑
k

∂aijk
∂Wi

∂Hi

∂aijk

∂L
∂Hi

. (3.82)

Finally, suppose that a pooling layer is used across a spatially arranged feature map. The
input includes matrices Hi for each feature map with entries hijk. Therefore, the results of
the max pooling operations are pooled layer matrices Pi with entries pijk that generated by

pijk = max
r∈Rj,k
c∈Cj,k

hi,r,c, (3.83)

where Rj,k and Cj,k are index sets representing the pooling areas at each position j and k

(Witten et al., 2016). The units that hold the maximum values within each region (j, k) are
discovered by

{r∗, c∗}j,k = argmaxr∈Rj,k
c∈Cj,k

hi,j,k. (3.84)

For non-overlapping regions, the gradient will be backpropagated from the pooled layer Pi

to the preceding feature map Hi, from the pijk to {r∗, c∗}j,k in each region. As a result, the
backpropagating the gradient through the max pooling layers yields (Witten et al., 2016)

∂L
∂hi,rj ,ck

=

0 rj 6= r∗j , ck 6= c∗k,

∂L
∂Pi,j,k

rj = r∗j , ck = c∗k.
(3.85)

74

CHAPTER 4 ADAPTIVE ACTIVATION FUNCTIONS

In Chapter 4, we aim at developing a family of asymmetric and smooth activation functions
for Artificial Neural Networks (ANNs). In particular, the goal is to propose an adaptive
activation function with a parameter to be controlled and fitted, along with other model
parameters in the ANN, e.g. weights and biases. We also indicate that this parametric form
of activation functions improve the performance of ANNs in multiple classification tasks.

In Chapter 2, we studied the logistic regression as a special case of GLMs with binomial error
distribution and logit link function. Under the assumption of binary response, there are other
possible alternatives to the logit link. A strictly monotonic transformation that enables to
map the probabilities πi onto a real number could be employed as a link function. Let g(.) is
the c.d.f. of a random variable which is defined on the real line and it is of the form

πi = g−1(ηi) , −∞ < ηi <∞. (4.1)

Now, the inverse transformation could be used as (Rodriguez, 2012)

ηi = g(πi) , 0 < πi < 1. (4.2)

The c.d.f.’s are used as the link functions in binary responses applications because the c.d.f.
is always restricted to the interval [0, 1]. The most widely-used choice of c.d.f.’s in the case
of Bernoulli model is logistic, normal and extreme value distribution Type I. The extreme
value distribution is usually referred to as Gumbel distribution.

4.1 Latent Variable Formulation

A GLMs relates the expected value of responses as mean, E(yi) and the explanatory variables
in a linear system :

ηi = E(yi) = x>i w. (4.3)

If the dependent variable is on a binary scale, then E(yi) would be simply interpreted as
the probability of response, πi and the corresponding linear model could be generalized as
following :

g(πi) = g{E(yi)} = x>i w (4.4)

75

or simply g(πi) = ηi, in such a way that g(.), as the link function, is a strictly monotonic
differentiable function.

Now let y∗i , called the latent response, is a continuous random variable and it takes any
value in the real line. The latent variable y∗i is subjected to a certain threshold so that the
observed outcome yi will be one if and only if y∗i exceeds that threshold. This process in
logistic regression, as a GLMs model, leads to finding the probability and takes the form of
a logistic c.d.f. The logit model will be motivated as a method of estimating the coefficients
from the latent regression of y∗i on ηi as (Rodriguez, 2012)

0 y∗i > x>i w,

1 y∗i < x>i w.
(4.5)

Figure (4.1) demonstrates the latent variable associated to logistic distribution and the res-
ponse when the threshold defined in 0.

Figure 4.1 Latent variable and random response.

The way we interpret the yi and y∗i depends on the context. In a case that yi viewed as a
binary response, a positive outcome will be seen when the latent response exceeds a certain
threshold t. Thus, the probability πi of a positive outcome takes the form

πi = p(yi = 1) = p(y∗i > t). (4.6)

76

Note that no change will occur in the probability πi by adding a constant to both y∗i and
t, or multiplying them by a constant. It is assumed that the the threshold t takes the zero
value and y∗i is standardized to have a constant standard deviation (e.g. 1).

Now, let the outcome depends on a vector of predictors x. this dependency could be modeled
by an ordinary linear model for the latent variable such that

y∗i = x>i w + εi. (4.7)

where w is a vector of coefficients for xi and epsi is the error supposed to have a distribution
with c.d.f. g(ε). Therefore, the probability of having a positive outcome will be given by :

πi = p{yi < t = 0} = p{εi < ηi} = g−1(ηi) (4.8)

where ηi = x>i w is the linear predictor. If the error associated with a symmetric distribution
is around zero, this defines a GLMs with Bernoulli response and link shown below

ηi = g(πi). (4.9)

In the cases where the error distribution is not necessarily symmetric, the link could be
written as (Rodriguez, 2012)

ηi = −g−1(1− πi). (4.10)

The common method to model the binomial response is to apply a GLMs such that the latent
probability of success will be modeled through a linear function of covariates using a link
function. The logit and probit links are two of the widely-used links in GLMs. Compared to
other link functions, logit is simpler to interpret since it is defined as log(odds). Moreover,
logit link function is a same function as the one used as the canonical link for Bernoulli
distribution. Therefore, it is mathematically convenient to justify its application as a link
function. The standard normal and logistic distributions usually lead to a same result while
they use the same mean and variance parameters and the GLMs with these links will be
expected to fit equally well.

In GLMs with Bernoulli error distribution, data could be fitted with either logit or probit
transformation. Since a symmetric model is employed, we suppose that the latent probability
of a given binomial response approaches 0 and 1 with the same rate. Consequently, the
corresponding p.d.f. of logit and probit links is symmetric which is not reasonably a true

77

assumption in many real-world scenarios. A commonly-known asymmetric link function is
the complementary log-log with a constant negative skewness (Rodriguez, 2012).

In next section, we will analyze the binomial response problem with complementary log-log
transformation.

4.2 The complementary log-log transformation

A commonly-used choice as an alternative to logit link is complementary log-log which is
defined as

ηi = g(πi) = log{− log(1− πi)}. (4.11)

Similar to the logit and probit probability transformation, the complementary log-log takes a
value bounded above by 1 and below by 0 and maps it onto the real line. The complementary
log-log transformation is the inverse function of the c.d.f. of the extreme value Type I or
Gumbel distribution with c.d.f.

πi = g−1(ηi) = 1− exp {− exp(ηi)} . (4.12)

The Gumbel distribution has two forms : minimum and maximum (Kececioglu, 1991). The
former is based on the smallest and the latter is based on the largest extreme. Typically, the
probability density function (p.d.f) of the Gumbel distribution takes the form

f(x) = 1
σ

exp
(
x− µ
σ

)
exp

{
− exp

(
x− µ
σ

)}
, (4.13)

where µ and σ denote the location and scale parameters, respectively. The p.d.f. with µ = 0
and σ = 1 is called standard Gumbel distribution. Considering the equation (4.3), now
suppose that we have

ηi = x>i w = w0 + x>i w1. (4.14)

Thus, the equation (4.12) gives us (Rodriguez, 2012)

πi = 1− exp
{
− exp(w0 + x>i w1)

}
. (4.15)

The Gumbel distribution has an s-shaped response curve that approaches 0 moderately slowly
while approaching 1 so sharply with w1 > 0, see following figure (left).

78

While the complementary log-log link function is employed to model π as the probability of
a success, there is another alternative that could be used to model the failure called log-log
link function which is of the form (Rodriguez, 2012)

πi = g−1(ηi) = exp
{
− exp(w0 + x>i w1)

}
. (4.16)

In Figure (4.2), a demonstration of complementary log-log and log-log inverse of the links
are presented. For w1 > 0, log-log link approaches 1 fairly slowly while approaching 0 quite
sharply. Moreover, by increasing the explanatory variable, the log-log curve is monotonically
decreasing but it is monotonically increasing for w1 < 0. Log-log transformation is rarely
employed as a link function since it works poorly in most applications (McCullagh et Nelder,
1989). Therefore, it is excluded from our work.

4 2 0 2 4

x
0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
 o

f t
he

 c
om

pl
em

en
ta

ry
 lo

g-
lo

g

w > 0
w < 0

4 2 0 2 4

x
0.0

0.2

0.4

0.6

0.8

1.0
In

ve
rs

 o
f t

he
 lo

g-
lo

g

w > 0
w < 0

Figure 4.2 The inverse of the link functions for : (left) complementary log-log and (right)
log-log.

Figure (4.3) demonstrates the comparison of the p.d.f, link and c.d.f. functions of the three
commonly-used functions for binomial error distribution in GLMs : logit, probit and com-
plementary log-log. One should keep in mind that to distinguish the difference between the
behavior of logit and probit link functions in real scenarios, one needs extremely large data
samples (Chambers et Cox, 1967). The logit, probit, and complementary log-log link func-
tions are increasingly monotonic, differentiable, and one-to-one in [0, 1] interval. Logit and
probit link functions are symmetric around zero which means that they behave similarly when
g(x) = g(−x). In other words, g(.) function approaches to 0 with a same rate as approaching
to 1. Thus, to take the reverse function of the dependent variable, only a change in the co-
efficient signs gives us the result. For the complementary log-log link with a fixed negative
skewness, the result will be completely different. The shape of the logistic distribution and

79

normal distribution are very similar, except that logistic shape has heavier tails. One may
interpret the coefficients in a logit transformation as the effects of the covariates on a latent
variable with the assumption that the error in linear model has a logistic distribution. To
compare the link functions, the logit and probit transformations are linear functions with
respect to π in the range of 0.1 and 0.9. Under the assumption that g is asymmetric in the
interval [0, 1], logit and probit increase slowly to a moderate value while approaching 1 shar-
ply. By contrast, as the probability g increases, the complementary log-log approaches ∞
slower than logit and probit link functions. When g takes a small value, the complementary
behaves close to logit link with significantly less heavy right tail. Unlike the logit and probit,
complementary log-log is often employed when the probability π is either too small or too
large (Agresti, 2003).

0.0 0.2 0.4 0.6 0.8 1.0

x

4

2

0

2

4

Li
n
k

Fu
n
ct

io
n
:
g(
x
)

logit

probit

com-log-log

6 4 2 0 2 4 6

x

0.0

0.2

0.4

0.6

0.8

1.0

c.
d
.f

 o
f

th
e
 d

is
tr

ib
u
ti

o
n
:
g
−

1
(x

)

logistic

normal

gumbel

6 4 2 0 2 4 6

x

0.0

0.1

0.2

0.3

0.4

0.5

p
.d

.f
.:

g
−

1
(x

)

x

logistic

normal

gumbel

Figure 4.3 Left : a comparison of the logit, probit and comp-log-log link functions, g is shown.
In middle, graph compares the c.d.f. of Logistic, Normal and Gumbel distribution as g−1.
Right-side graph gives a demonstration of the p.d.f. of the Logistic, Normal and Gumbel
distribution.

4.2.1 Maximum Likelihood Estimates with Complementary log-log

In Section 2.2.8, a maximum likelihood estimate using the IRLS algorithm was shown for
logistic regression under the assumption of having binomial error distribution with the logit
link function. Similarly, an IRLS approach could be employed to fit the parameters of the
Bernoulli regression model with a complementary log-log link function. Given a parameter of
the estimation ŵ, the linear predictor η̂i = complementarylog − log(πi) = x>i w and the fitted
values µ̂i = g−1(ηi) = Gumbel(ηi) could be obtained, consequently. Under the assumption of
having these quantities, the working dependent variable, zi, and the iteration weight, ωi, are

80

identified to estimate the parameters of the Bernoulli model. Suppose the model is defined
by

ηi = g(πi) = log{− log(1− πi)}. (4.17)

The link function could be shown more conveniently as a function of µi, thus, we have :

ηi = log {− log (1− µi)} . (4.18)

Taking the derivative of ηi with respect to the parameter µi yields

∂ηi
∂µi

= −1
(1− µi) log(1− µi)

= −1
(1− πi) log πi

, (4.19)

Hence, the working dependent variable is

zi = η̂i + (yi − µ̂i)
∂ηi
∂µi

= η̂i + (yi − πi)
{

−1
(1− πi) log πi

}
. (4.20)

and the iteration weight will be of the form

ωi = pi

b′′(θi)(∂ηi∂µi
)2

= −(1− πi) log(πi)2

πi
(4.21)

where pi = 1 and b′′(θi) = πi(1− πi).

Consequently, the estimates of the parameter w by regressing the working dependent variable
zi on the predictors xi will be obtained as (2.52) in an iterative fashion and the iterations
with corresponding updates will be repeated until the convergence (see Chapter 2).

81

4.3 Adaptive Sigmoid Link Function

The complementary log-log transformation is an asymmetric link with fixed negative skew-
ness. It suffers from the lack of flexibility to allow the data to adjust the amount of skewness
required. Furthermore, there is no ability to have the positive skewness in corresponding
p.d.f. As a result, binary response regression might be better fitted with an asymmetric link
function and flexible and adjustable skewness might be a better alternative for modeling the
binary response problem. Hence, we aim at developing such link function so that allows the
data to determine how much skewness should be included, positive, negative or even zero
skewness (symmetric link).

To introduce such flexibility into the link functions, we propose a one-parametric model for
skewness-flexibility in the Gumbel distribution using the inverse of log Box–Cox transforma-
tion (Sakia, 1992) on the 1

1−x to form an adaptive function of standard Gumbel that could
approximate both symmetric logistic and asymmetric Gumbel (with either positive or nega-
tive skewness) quite well, depends on the value of the parameter. Our most important goal
is to propose an adaptive link function to allow more adoptable skewness controlled by a
parameter and includes both standard logistic and Gumbel as well.

We first apply the Box-Cox transformation on variable x which obtains


(1

1−x)α−1
α

α 6= 0,

log
(

1
1−x

)
α = 0.

(4.22)

Taking the logarithm function of the Box-Cox transformation


log

{
(1

1−x)α−1
α

}
α 6= 0, 1,

log(1
1−x − 1) = log x

1−x α = 1,

log{log(1− x)−1} = log{− log(1− x)} α = 0,

(4.23)

or simply 
log

{
(1

1−x)α−1
α

}
α 6= 0, 1

logit(x) α = 1

complementary− log − log(x) α = 0.

(4.24)

For α = 0 and α = 1, we have the standard logit and complementary log log transformation
as seen before. Any value not equal to zero and one leads to a parametric transformation of

82

x.

Figure below compares the shape of the logit, complementary log-log, probit and Log Box-
Cox link function. All functions are alike g−1 in the interval [0, 1]. For small values of g,
the logarithm of Box-Cox is close to the logit and also behaves similar to the behavior of
complementary log-log. As x approaches 1, the logarithm of Box-Cox function approaches
infinity much more slowly than logit but more sharply than probit and complementary log-
log.

Figure 4.4 A comparison of link functions.

Now, the inverse function of (4.24) can be expressed as


1− 1

{1+α exp(x)}
1
α

α 6= 0, 1,
1

{1+exp(−x)} α = 1,

1− exp{− exp(x)} α = 0.

(4.25)

Consequently, to define πi we could use the definition of the adaptive-sigmoid equivalently
as

πi = g−1(ηi) =


1− 1

{1+α exp(x>i w)}
1
α

α 6= 0, 1,
1

1+exp(−x>i w) α = 1,

1− exp
{
− exp

(
x>i w

)}
α = 0.

(4.26)

with an interesting property so that with a = 0 and a = 1 the equation converges to Gumbel
and logistic distributions, respectively. This function will be called adaptive-sigmoid.

Similarly, it is easy to show that for the α close to 1, g(.) approaches the logistic. Due to the
fact that {1 + α exp(.)} must necessarily be positive and the domain of the adaptive distri-

83

bution will be changed by choosing negative values for α, therefore, the adaptive distribution
for α < 0 will be defined as

πi =


1− 1

{1+a exp(x>i w)}
1
α

x>i w < log(α) ,

1 otherwise.
(4.27)

As a result, the adaptive distribution includes both standard forms of logistic and Gumbel
distributions for α = 1 and α = 0, respectively. Adaptive link functions, referred to as
adaptive-sigmoid, with different values of α are illustrated in Figure (4.5). In Figure (4.5),
curves with solid line show a special case of the Gumbel distribution while α → 0 and
curves in dotted style, demonstrate the standard logistic distributions when α = 1. The
other curves show the adaptive-sigmoid function with different values of parameter α. The
p.d.f. of the adaptive sigmoid is illustrated in middle graph which demonstrates a nice view
of the skewness of the adaptive sigmoid distribution induced by parameter α.

Figure 4.5 Adaptive sigmoid and its derivatives with respect to parameters x (or p.d.f.) and
for different values of α.

As obviously understood from the middle plot, parameter α, appeared in the above distribu-
tion, could be used to tune the skewness parameter, as we shall show later in sequel.

4.3.1 Identifiability

Before the discussion about the maximum likelihood estimates of the model, the identifia-
bility property of the model with respect to the parameter α must be verified. A family of
distributions with probability density function f(x;ω), ω ∈ Ω, is said to be identifiable if, for

84

any ω1 and ω2 in the parameter space Ω, we have (Huang, 2005) :

f(x, ω1) = f(x, ω2)↔ ω1 = ω2, (4.28)

where ω = (x, α). This definition also means that distinct values of parameter ω should result
in distinct functions as :

ω1 6= ω2 ↔ f(x, ω1) 6= f(x, ω2), (4.29)

or the mapping from parameters to functions is one-to-one.

Our goal is to show the identifiability of the link function in the Bernoulli model.

Lemma 4.3.1. Under the assumption of having a Bernoulli random variable with probabili-

ties p(yi = 1) = πi and p(yi = 0) = 1− πi, we have to show the identifiability of the proposed

link function for the corresponding model.

Proof. We have the following probability distribution function

p{yi} = πyii (1− πi)(1−yi) , yi = {0, 1},

where πi is a function of parameters ω = (x, α) and parameter α is supposed to represent a
non-negative value. πi is referred to as Px,α which yields

yi

{
log Px,α

1− Px,α
− log Px,α′

1− Px,α′

}
+ log

{
1− Px,α
1− Px,α′

}
= 0. (4.30)

Equating the above polynomial to zero for all its positive factors, requires that each coefficient
be equal zero, individually. Hence, we have to show Px,α = Px,α′ , ∀α = α′ and P (.) =
1− 1

{1+α exp(x)}1/α .

To show the Px,α = Px,α′ , we have to solve the equation below

1− 1
{1 + α exp(x)} 1

α

= 1− 1
{1 + α′ exp(x)} 1

α′

⇒ {1 + α exp(x) 1
α} = {1 + α exp(x) 1

α′ }. (4.31)

85

Taking the logarithm from both sides of the above expression gives us

⇒ 1
α

log{1 + α exp(x)} = 1
α′

log{1 + α′ exp(x)}. (4.32)

Now, let z = exp(x). By replacing z in the above equation, we have

1
α

log(1 + αz) = 1
α′

log(1 + α′z), (4.33)

where f(z, α) = log(1 + αz). If we could show f(z, α) = f(z, α′) ↔ α = α′, then the proof
of identifiability will be accomplished, successfully. To do this, the Taylor series expansion of
both sides of this equation should be written as follows

1
α

{ ∞∑
n=0

f (n)
z (0)αn
n!

}
= 1
α′

{ ∞∑
n=0

f (n)
z (0)α′n

n!

}

⇒ f (0)
z (0)α0

0! +
{ ∞∑
n=1

f (n)
z (0)αn−1

n!

}
= f (0)

z (0)α′0

0! +
{ ∞∑
n=1

f (n)
z (0)α′n−1

n!

}
. (4.34)

This equation is true for almost all z only when all corresponding coefficients are equal, which
is only possible when

1)

fz
′(α) = fz

′(α′)⇒ ∂ log(1 + αz)
∂α

= ∂ log(1 + α′z)
∂α′

⇒ α = α′,

2)

fz
′′(α) = fz

′′(α′)⇒ ∂2 log(1 + αz)
∂α2 = ∂2 log(1 + α′z)

∂α′2

⇒ −z
(1 + αz)2 = −z

(1 + α′z)2 ⇒ (1 + αz) = (1 + α′z)⇒ α = α′,

...

and

n)
(n− 1)!(−1)n−1αn

(1 + az)n = (n− 1)!(−1)n−1α′n

(1 + α′z)n

⇒ α

(1 + αz) = α′

(1 + α′z)

86

⇒ α + αα′z = α′ + αα′z

⇒ z(αα′ − αα′) + (α− α′) = 0

α = α′. (4.35)

Therefore, the the parameter α of adaptive-sigmoid is identifiable in the Bernoulli model.

4.3.2 Maximum Likelihood Estimates for Adaptive Sigmoid Link Function

Since the response variable in our problem is known and the parameter of the link function
is identifiable, the method of maximum likelihood could be employed to estimate the model
parameters. As described before, the errors in our desired model is in the form of Bernoulli
distribution with mean zero and fixed variance σ2. Hence, the observations y are from Ber-
noulli distribution with mean X>w and variance σI. Thus the maximum likelihood function
could be obtained by the joint probability distribution of the observed data. Recall that the
maximum likelihood function is equivalent to maximizing the log likelihood which is of the
form (2.63) which aims at estimating the values of parameters w and σ2. Taking the par-
tial derivatives of the log-likelihood against the parameters and equating to zero yields the
estimator ŵ = (X>ΩX)−1X>Ωz.

Given a parameter of the estimation ŵ, the linear predictor η̂i = x>i w and the fitted values
µ̂i = adaptive− sigmoid(ηi), where the adaptive-sigmoid is defined in (4.26).

Having these quantities, the working dependent variable, zi, and the iteration weight, wi,
are determined to estimate the parameters of the binomial regression. Suppose the model is
defined by

ηi = log
{(1

1−πi)
α − 1
α

}
,

and
πi = g−1(ηi) = 1− 1

{1 + α exp(ηi)}
1
α

. (4.36)

Since it is easier to show the link function as a function of µi, we have :

ηi = log(1
1− µi

)α − 1− logα. (4.37)

87

Taking the derivative of the ηi with respect to parameter µi yields

∂ηi
∂µi

=
α(1

1−µi)
α

(1− µi){(1
1−µi)

α − 1}

=
α(1

1−πi)
α

(1− πi){(1
1−πi)

α − 1}

= α

(1− πi) {1− (1− πi)α}
. (4.38)

Hence, the working dependent variable is

zi = η̂i + (yi − µ̂i)
∂ηi
∂µi

= η̂i + (yi − πi){
α

(1− πi)[(1− πi)α − 1]} (4.39)

and the iteration weight will be of the form

ωi = pi

b′′(θi)(∂ηi∂µi
)2

= (1− πi) {1− (1− πi)α}2

πiα2 , (4.40)

where pi = 1 and b′′(θi) = πi(1− πi).

Finally, the estimates of the parameter w by regressing the working dependent variable zi
on the predictors xi using the weights ωi could be determined as in equation (2.52) in an
iterative way using the IRLS algorithm. The iterations and updating weights will be repeated
until convergence (see Section 2.2.7).

4.3.3 ANNs with Adaptive-sigmoid : Loss Function and Optimization

The multiple output linear regression model with a K-dimensional output is a linear mapping
from an input vector

x = [x0, ..., xm]>

88

to a vector of responses y through a set of (m+ 1)×K-dimensional coefficients W matrix,
including the biases. This linear mapping is modeled by an error term εi normally distributed
and independent that adds a Gaussian noise of unknown variance σ2 to the linear relationship
between the response variables and covareiates x. Hence, the model will take the form below

η = x>W

and
yi = ηi + εi ε ∼ N (0, σ2), (4.41)

where η denotes the systematic component of the linear model and ε is the random com-
ponent.

In GLMs, the response variables are allowed for error distribution models other than a normal
distribution and typically, belongs to the exponential family. In fact, in the GLMs, the linear
model is related to the response variable through a link function and the variance of each
measurement is defined as a function of the mean.

Thus, in GLMs, we have
E[yi] = µi = g−1(ηi), (4.42)

where g(.) is considered as the link function that allows us to define the parameters ηi as
a function of mean µi, more conveniently. If the logit function is used as the link function,
then the inverse link function in the definition of mean will be the logistic sigmoid function
and consequently, the mean parameters corresponding to the probabilities of y takes either
0 or 1, under the Binomial distribution. In other words, GLMs takes the covariates x, ap-
plying a linear combination of x and coefficients W and proceeds the result by a nonlinear
transformation (the inverse link function) as a single building block.

In ANNs, the inverse link function is referred to as the activation function act(ηl) and the
process of GLMs building block could be repeated in each hidden layer and produces the
corresponding outcome hl as

hl = act(ηl), (4.43)

where ηl = hl−1>wl and hl−1> and wl are the inputs and coefficients of the hidden layer l−1
and l, respectively. As a result, a recursive GLMs could be identified by applying the above
building block recursively as follows :

µL+1 = hL+1 ◦ hL ◦ ...hl ◦ ...h1 ◦ h0(x) (4.44)

89

which is exactly the model architecture of an L-layer MLP model and an ANN could be
considered as a recursive GLMs model (Ranganath et al., 2015; Mohamed, 2015).

As described in Chapter 3, logistic sigmoid and hyperbolic tangent are two widely-used
nonlinear functions that applied as activation functions in ANNs and play a crucial role
in the convergence and performance of the ANNs. An ANN model could be employed as
an alternative way to solve binomial regression models. Specifically for the binary response
model which is considered as a specific case GLMs.

Our motivation is to broaden the range of activation functions for ANNs using the inverse
of the adaptive-sigmoid function as the inverse of the log Box-Cox of 1

1−x . Our objective is
to implement the adaptive-sigmoid as a nonlinear function in the processing units of the
ANNs. Adaptive-sigmoid parameter α and the ANNs model parameters will be learned si-
multaneously during training step and each hidden neuron would be enabled to learn its
own adaptive activation function. Thus, the amount of the skewness and consequently the
symmetry in each neuron could be adjusted in a data-driven learning way.

As seen in Chapter 3, the logit, probit, complementary log-log and log Box-Cox link func-
tions are almost linearly related in the interval [0.1, 0.9]. Also, this figure indicates that
the adaptive-sigmoid function is a nonconstant, monotonically-increasing, continuous, and
differentiable function which is bounded to [0, 1]. Hence, adaptive-sigmoid satisfies the requi-
rements of the UAT for being employed as an activation function in ANNs.

Now, consider a MLP using the adaptive-sigmoid function for L hidden layers and a softmax
regression layer at the end. According to the formulations and notations presented in Chapter
3, the gradient of softmax loss function (L) with respect to the the weight parameters remains
same. The gradients for the kth parameter vector of layer l could be calculated by

∂L
∂θlk

= − ∂η
l

∂θk
∆l,

where
θlk = [Wl

k,w0
l
k,α

l
k],

∆l = ∂hl

∂ηl
∂ηl+1

∂hl
∆l+1, (4.45)

and α is the parameter of the adaptive-sigmoid function. Therefore, the gradient for each
parameter could be obtained as

∂L
∂Wl

k

= −hl−1∆l,

90

∂L
∂w0

l
k

= −∆l

and
∂L
∂αlk

= − ∂η
l

∂αlk
∆l

= Wl
k

[1 +α exp(hl−1)]
1
α

 − exp{hl−1}
α {1 +α exp(hl−1)} +

log
{

1 +α exp(hl−1)
}

α2

∆l. (4.46)

Also, the parameters typically will be updated using (stochastic) gradient descent by the
following update equations :

Wl
k ←Wl

k − γ
∂L
∂Wl

k

,

w0
l
k ← w0

l
k − γ

∂L
∂w0

l
k

and
αlk ← αlk − γ

∂L
∂αlk

, (4.47)

where γ is the learning rate and takes a small fixed value.

Having above quantities, softmax output function and corresponding loss at logistic regression
layer with/without any regularization terms, the MLP model could be formulated. Then, it
could be optimized and fitted using backpropagation with (stochastic) gradient descent in
an iterative manner.

4.4 Adaptive ReLu Function

In this Section, we suggest a smooth form of standard relu function that is inspired from
the approximation of Heaviside function. Our aim is to apply an adaptable parameter in the
form of relu activation function in such a way that it could be tuned along with other ANN
model parameters in backpropagation.

Consider the Heaviside H(x) function defined as

H(x) =
∫ x

−∞
δ(x)dx,

where

δ(x) =

1 x = 0 ,

0 otherwise
(4.48)

91

is a step function. Furthermore, function H̃(x) is a smooth approximation to step function
given by

H̃(x) = 1
1 + e−αx

, a ≥ 0. (4.49)

This definition could also be considered as a parametric form of logistic function, as well.

Besides, the function H(x) could be related to the Ramp function, R(x) as

R(x) = xH(x), (4.50)

which is comprised of a heaviside multiplied by line x. Accordingly, by considering the H̃(x)
rather than H(x) in 4.50, we have

R̃(x) = xH̃(x) = x

1 + e−αx
, α ≥ 0, (4.51)

where for a large value of a, the Ramp function behaves like max(0, x) whose functionality
is as similar as the standard relu function.

By the virtue of using Equation 4.50, R̃(x) could be identified as a smooth parametric form
of relu function called adaptive-relu defined as

adaptive− relu = R̃(x) =

max(0, x) α→∞ ,

x
1+e−αx otherwise,

(4.52)

where α ≥ 0.

Consequently, the first derivative of adaptive-relu with respect to x will be calculated as

∂R̃(x)
∂x

= 1
1 + e−αx

+ xαe−αx

(1 + e−αx)2 . (4.53)

In the same way, the derivative of the adaptive-relu with respect to parameter α is obtained
by

∂R̃(x)
∂α

= x2e−αx

(1 + e−αx)2 . (4.54)

Figure 4.6 shows the adaptive-relu function with different values of parameter α. The green
curve in most left-side graph illustrates an approximation of standard relu for a large value
of non-negative α. The middle and right-side graphs demonstrate the derivatives of adaptive-
relu with respect to input x and its parameter α, respectively. As understood from the above

92

plots, parameter α appeared in the adaptive-relu definition could be employed to tune the
smoothness of the function by choosing fairly small values.

4.4.1 ANNs with Adaptive-relu : Loss Function and Optimization

Suppose that we have an MLP using the adaptive-relu function for L hidden layers and a
softmax regression layer at top of the hidden layers. The gradients for the kth parameter
vector of layer l will be obtained by

∂L
∂θlk

= − ∂η
l

∂θk
∆l,

where
θlk = [Wl

k,w0
l
k,α

l
k],

∆l = ∂hl

∂ηl
∂ηl+1

∂hl
∆l+1 (4.55)

and α is the parameter of the adaptive-relu function. Similar to the formulations presented for
updating the parameters of ANN with adaptive-sigmoid, the gradient of softmax loss function
(L) with respect to the the weights and biases parameters are the same. The gradient for
parameter α could be written as

∂L
∂αlk

= − ∂η
l

∂αlk
∆l

= Wl
k(hl−1)2 exp(−αhl−1)
{1 + exp(−αhl−1)}2 ∆l. (4.56)

Accordingly, the parameters will be updated in backpropagation by the following update
rules :

Wl
k ←Wl

k − γ
∂L
∂Wl

k

,

w0
l
k ← w0

l
k − γ

∂L
∂w0

l
k

and
αlk ← αlk − γ

∂L
∂αlk

, (4.57)

where γ is the learning rate and takes a small fixed value.

By computing the above quantities, the softmax output function and the corresponding loss

93

(a) adaptive-relu

(b) Derivative of adaptive-relu with respect to x

(c) Derivative of adaptive-relu with respect to α

Figure 4.6 Adaptive-relu and its derivatives with respect to parameters x and α for different
values of α.

94

at softmax layer with/without regularization terms, the model parameters could be optimized
in an iterative manner.

95

CHAPTER 5 EXPERIMENTS AND RESULTS

5.1 Performance Measures

In classification problems, the results on the test set are not measured directly from the
classifier outputs, but from a two-dimensional confusion matrix built from these results. This
matrix has one row and one column for each class (k ≤ K). Therefore, each entry (i, j), (1 ≤
i, j ≤ K), represents the number of examples predicted as class number i by the classifier
when they actually belong to class number j. Hence, the diagonal entries (i, j) , ∀i = j

show the correctly classified examples, whereas off-diagonal terms, (i, j) for i 6= j, denote the
incorrectly classified ones.

An example of a confusion matrix for a binary classification problem is illustrated in Table
(5.1).

A single prediction may distinguish four different possible outcomes : true positives (TP) and
false positives (FP) refers to the case where examples are correctly and incorrectly classified
as positive, whereas true negatives (TN) and false negatives (FN) are examples correctly
and incorrectly classified as negative, respectively. Ideally, a good result will be obtained by
having large numbers on the main diagonal and small values for off-diagonal entries.

In our experiment, the performance of the classification is evaluated by the following rates
that are computed from the confusion matrix as follows.

Accuracy : Accuracy is one of the most popular metrics and is defined as (Fawcett, 2006)

accuracy = TP + TN

TP + TN + FP + FN
,

and it indicates how close measured predictions are to the actual values. In our experiments,

Table 5.1 Confusion Matrix Table

Predicted Labels
Positive Negative Total

Actual Labels Positive TP FN TP + FN
Negative FP TN FP + TN
Total TP + FP FN + TN N

96

we also measure the performance of the classification with error which is of the form

error = 1.0− accuracy.

In a problem where we have a large class imbalance in the data, the trained model may
predict the value of the majority class for all predictions with a high accuracy (accuracy
paradox).

Precision : Precision is defined as the ratio of true positives over the number of true
positives plus the false positives as (Fawcett, 2006)

precision = TP

TP + FP
,

and it demonstrates how relevant the predicted values are to each other. In other words, it
is the probability that an unseen retrieved data is relevant.

Recall : Recall is the ratio of true positives over the number of true positives plus the
number of false negatives and takes the form (Fawcett, 2006)

recall = TP

TP + FN
.

A low recall means that the classifier returned many false negative predictions. Precision is
a measure of result relevancy, but recall is a metric which indicates how many truly related
results are returned.

F1 : F1 score considers simultaneously both precision and recall in measurement. Thus
both false positives and false negatives are taken into account. F1 score is defined as follows
(Fawcett, 2006)

F1 = 2precision× recall
precision + recall

= 2TP
2TP + FP + FN

= 1.0− FN + FP

2TP + FN + FP
.

F1 score could be interpreted as the harmonic mean of precision and recall. The best value
for F1 score is 1 and the worst case is 0. Compared to accuracy, F1 is more useful when we
have an uneven class distribution. By contrary, accuracy works better if false positives and

97

false negatives take small same values. If the value of false positives and false negatives are
too different, one should look at F1 score.

Cost : Another metric we attempt to minimize during the network training is the negative
log-likelihood of the fitted models, called the loss function. Furthermore, a weighted combi-
nation of λ1 and λ2 regularization terms is often added to the loss and the result is referred
to as cost.

5.2 Experiment 1 : Simulated Data

Our objective in this experiment is to understand better how using the nonlinear, smooth and
asymmetric activation functions have an effect on the representation and the prediction of
the fitted MLP models. Suppose that we have a neural network M1 with matrix W1 and bias
vector w10 parameters. Given an input matrix X, W1 and w10, the network model produces
an output Y1. Now, under the assumption of having input X and output Y1, after performing
a neural network training step, we aim at understanding how well the fitted model M2 with
corresponding learned parameters, W2, w20 and its prediction Y2 are approximated closely
to W1, w10 and true labels Y1, respectively. While in M1 and M2 different initialization
methods and activation functions are used.

For the primary model M1, the first half of the weights in W1 are initialized randomly from a
Normal distributions N1(1, 0.5) and the remaining are produced randomly from N2(−1, 0.5).
Bias parameters w10, are also randomly initialized from a Normal distribution N (0, 0.5).
These initialization methods were done at each layer in the primary model M1.

For the fitted model M2, we initialized the weights W2 and biases w20 parameters at each
layer according to paper (LeCun et al., 1998a).

Several configurations for M1 and M2 models were designed. These settings are shown in Table
(5.2). The fitted model M2 and corresponding primary model M1 that are arranged in the
same row, have the same number of hidden layers and same number of neurons at each layer.
Also, other hyper-parameters such as γ, λ1, λ2, the coefficients of L1 and L2 regularizations,
and batch-size in M1 and M2 were configured in a similar way. For creating the M1 model,
we used standard sigmoid and relu activation functions. For example, given X and Y1 from
model M1 with 2 hidden layers (2NN) and sigmoid as activation function, we compare the
performance of four M2 models fitting with sigmoid, adaptive-sigmoid, relu and adaptive-
relu activation functions separately in terms of accuracy, predictions Y2 and the learned
parameters of the model M2, including W2 and w20.

98

5.2.1 Data

To produce the input X, we first create a toy data set applying a random sample generator.
The produced data includes a matrix of features and corresponding discrete binary targets
such that each target value was assigned to one normally-distributed cluster of points. We also
add noisy features to the feature space by using correlated, redundant and non-informative
features ; multiple Gaussian clusters per class ; and linear transformations of the current
features. The data includes 10,000 examples with 10 features which is considered as the
input matrix X.

Given X and feeding it into one pre-designed model M1 with pre-defined parameters W1 and
w10, we could obtain an output Y1. Now, having X and Y1, we can train a deep MLP M2

and fit corresponding parameters W2 and w20 in a supervised manner. We tend to compare
the fitted parameters W2 and w20 with the pre-defined parameters W1 and w10 in M1 that
the true class labels were originated from. Our goal is to understand how the trained model
M2 is successful in prediction and fitting the parameters closely to the primary ones in M1.

5.2.2 Tools and Technologies

Training and results of the MLP models were implemented using a slightly modified imple-
mentation of original code developed by Theano development team 1.

5.2.3 Results and Evaluations

First, we want to study the effect of varying activation functions on the accuracy of the
predictions produced by the fitted model M2 compared to its original counterpart M1 when
they have the same number of hidden layers, same number of neurons at each layer, and
weights and biases were initialized from different distributions. Our goal is to understand
how accurately M2 could predict the class labels at the end of training step. The accuracy
results are displayed in Table (5.2).

Selecting the best values for hyper parameters including λ1 and λ2 parameters, are performed
by designing a 5-fold cross-validation for model with two hidden layers (2NN) on simulated
data. The hyper parameters in other model configurations remain fixed to only evaluate the
effect of varying activation functions on final predictions.

In Table (5.2), for a given model M1 with specific number of hidden layers and types of
activation functions, the accuracy of fitted models using different activation functions are

1. http ://deeplearning.net/tutorial/code/mlp.py

99

Table 5.2 Accuracy table for Simulated data. M1 : primary model with different configu-
rations, M2 : fitted models using different activation functions including sigmoid, adaptive-
sigmoid, relu and adaptive-relu. The model M1 could be created based on either sigmoid
or relu. 1NN denotes MLP with one hidden layer and 2NN is used for MLP with two hid-
den layers. Both M1 and M2 have the same hyper parameters in all configurations such as
λ1 = .001, λ2 = .001, γ = .01, batch size = 20, number of examples = 10000, number of
features 10, number of classes = 2, number of neurons at each hidden layer = 10 and number
of epochs = 2000.

M1 M2
model activation function sigmoid ada-sigmoid relu ada-relu

1NN sigmoid 95.8 97.5 97.8 97.7
relu 96.1 97.4 98.2 98

2NN sigmoid 95.1 95.5 95.1 96.5
relu 92.3 96.1 96 96.2

4NN sigmoid 91.8 92.1 91 93.8
relu 93.8 94.7 94.6 94.3

8NN sigmoid 83.7 83.8 81.8 81.9
relu 57.3 88.2 89.3 89.9

reported. M1 and M2 that are being compared in one cell have exactly the same number of
hidden layers. Following is the list of inferences understood from Table (5.2).
– For 1 hidden layer network (1NN), regardles of the type of activatin function in M1, fitting

M2 with relu gives the best result. Adaptive-sigmoid and adaptive-relu outperform the
sigmoid. Also, adaptive-relu obtains the better accuracy versus adaptive-sigmoid whether
the primary model M1 contains sigmoid or relu.

– For two hidden layer cases (2NN), M2 with adaptive-relu outperforms the other counter-
parts whether the activation function in M1 is sigmoid or relu. Similarly, M2 with adaptive-
sigmoid gives the better accuracy compared to M2 with relu or sigmoid.

– Suprisingly, for four hidden layer cases (4NN), when M1 uses sigmoid, M2 with adaptive-
relu gives the best accuracy. M2 with adaptive-sigmoid outperforms other models when M1

uses relu. M2 with adaptive-sigmoid produces better accuracy than sigmoid whether M1

uses sigmoid or relu.
– For eight hidden layer M1 models (8NN) associated with sigmoid, M2 with adaptive-sigmoid
outperforms the other activation functions. Moreover, for M1 created with relu, M2 with
adaptive-relu gives the best accuracy. Fitting M2 with adaptive-relu and adaptive-sigmoid
yields the better accuracy versus relu and sigmoid, separately.

– As the number of hidden layers increases, an expected drop in the performance of all M2 is

100

seen. Hence, it is evident that there is no question to continue for deeper fully-connected
layers.

– For models with less layers, fitting M2 with relu or adaptive-relu almost outperforms the
other activation functions. For deeper models, fitting M2 with the adaptive-sigmoid also
exhibits a good performance in competition with relu and adaptive-relu.

– In all model settings, fitting M2 with adaptive-sigmoid outperforms the accuracy obtained
by M2 with sigmoid.

The fitted weights (W2) and biases (w20) curves corresponding to the first hidden layer, are
illustrates in Figure 5.1 and 5.2, respectively.

As observed from Figure (5.1), when the original model is associated with standard sigmoid
activation function (left histograms), the M2 models with proposed adaptive functions out-
perform other models in approximating the biases. As the number of hidden layers increases,
a drop in the approximation is seen. M2 with sigmoid function could not fit biases in an
eight-layer network while M2 with adaptive-relu function is successful to fit an acceptable
curve.

For the original models designed by sigmoid activation functions, fitting models with adaptive-
sigmoid gives the better bias approximation compared to other activation functions in 1NN
and 2NN models. By increasing the number of hidden layers, fitting model with relu outper-
forms other functions in approximating bias. In all models originated from sigmoid, fitting
models with adaptive-relu yield poor bias approximation.

When the original model M1 is created by standard relu (right histograms), the M2 models
with adaptive-sigmoid and adaptive-relu functions fit the biases except for the eight-layer
networks where the M2 model with standard relu approximate biases excellent. Overally,
fitting models with relu gives a better approximation of bias distribution. In deeper models,
although adaptive-relu exhibits a fairly good approximation, performance of the sigmoid and
adaptive-sigmoid drop dramatically in approximating bias distribution.

As seen from Figure (5.2), when the original model was initialized by a mixture Gaussian
distribution, none of the fitted models could approximate the original weights W1 properly,
but cover corresponding range in 2 and 4 hidden layer models. It is probable that the reason
would be due to the non-identifiability property of the neural networks. Hence, studying the
fitted weight histograms dose not yield any insight regarding the performance of the adaptive
activation functions being compared in terms of weight approximation.

As understood from Figure (5.3), the prediction performance of the all M2 models associated
with different activation functions are the same, except the case where the original model M1

was designed by a standard relu. In this case, M2 with standard sigmoid could not converge

101

sigmoid relu

1N
N

2N
N

4N
N

8N
N

Figure 5.1 Comparing the biases w20 histogram of fitted models M2 (in first hidden layyer)
using different activation functions when the primary model M1 uses sigmoid (left column)
and relu (right column). Biases were initialized from N (0, 0.5) in M1 and biases in M2 ini-
tialized by formulation suggested in (LeCun et al., 1998b). Both M1 and M2 models in each
single graph have the same configuration in terms of number of layers and neurons at each
layer. The hyper parameters in all models are set as λ1 = .001, L2 = .001, γ = .01, batch size
= 20, number of examples = 10000, number of features 10, number of classes = 2, number
of neurons at each hidden layer = 10 (Simulated data).

102

sigmoid relu

1N
N

2N
N

4N
N

8N
N

Figure 5.2 Comparing the weights W2 histogram of fitted models M2 (in first hidden layer)
using different activation functions when the primary model M1 using sigmoid (left column)
and relu (right column). The origin weights W1 in M1 were initialized from a mixture of
{N (−1, 0.5),N (1, 0.5)} and weights in M2 initialized by (LeCun et al., 1998b). Both M1 and
M2 models in each single graph have same configuration in terms of number of layers and
neurons at each layer. The hyper parameters in all models are set as λ1 = .001, λ2 = .001, γ =
.01, batch size = 20, number of examples = 10000, number of features 10, number of classes
= 2, number of neurons at each hidden layer = 10 (Simulated data).

103

sigmoid relu

1N
N

2N
N

4N
N

8N
N

Figure 5.3 Comparing the weights difference Y2 histogram of fitted models M2 using different
activation functions when the primary model M1 using sigmoid (left column) and relu (right
column). Both M1 and M2 models in each single graph have same configuration in terms
of number of layers and neurons at each layer. The hyper parameters in all models are set
as λ1 = .001, λ2 = .001, γ = .01, batch size = 20, number of examples = 10000, number of
features 10, number of classes = 2, number of neurons at each hidden layer = 10 (Simulated
data).

104

as expected. Moreover, fitting models with standard proposed activation functions could
approximate the true labels to the same extend in almost all configurations.

The final evaluation that we care for is the success of the learned models in error and cost
convergence. Figures (5.4) and (5.5) demonstrate a zoom-in of the error and cost curves,
respectively during the training.

These curves show the effect of choosing different activation functions in model training.
Several conclusions could be inferred from the error and cost curves :
– The classical M2 models with standard sigmoid neurons converge more slowly compared
to their counterparts associated with adaptive-sigmoid in terms of error and cost.

– M2 models with relu and adaptive-relu always converge faster than sigmoid.
– Deeper M1 models with relu yield poorer convergence for M2 with sigmoid.
– For approximating the M1 models with sigmoid, fitting M2 with adaptive functions seems
to be more robust to the size of the network than the standard sigmoid and relu.

The performance of the predictions are also evaluated by Precision (Pr), Recall (Re) and F1
in each experiment.

The Pr, Re and F1 of the M2 model per each class using various activation functions when
the M1 is designed by Sigmoid are demonstrated in Figure (5.6).

If the original model is designed by sigmoid, fitting models with adaptive-sigmoid gives the
better classification performance compared to standard sigmoid in 1NN and 2NN models.
On contrary, sigmoid is superior compared to adaptive-sigmoid in deeper networks. In 1NN
and 2NN networks, M2 models fitted by adaptive-sigmoid and adaptive-relu outperform mo-
dels with standard sigmoid and relu activation functions, respectively. In 2NN models, M2

models fitted with ada-sigmoid outperforms the other activation functions. In 4NN and 8NN
networks, M2 with adaptive-relu considerably results in better performance than other acti-
vation functions. Furthermore, comparing the sigmoid and adaptive-sigmoid, fitting models
with adaptive-sigmoid produces poor results in terms of precision, recall and F1. It is also
inferred that relu and adaptive-relu could predict the same classification results in deeper
networks.

Similar experiments were performed for measuring the Pr, Re and F1 of the M2 model per
each class using various activation functions when the M1 is designed by the standard relu.
Results are illustrated in Figure (5.7).

In two-hidden layer models, M2 with adaptive-sigmoid or adaptive-relu work better than the
standard sigmoid or relu, respectively. In four hidden-layer models, it is evident that using
adaptive-relu remarkably outperforms the other activation functions. In eight-layer models,

105

sigmoid relu

1N
N

2N
N

4N
N

8N
N

Figure 5.4 Compare the error curve of fitted models M2 using different activation functions
with the primary model M1 using sigmoid (left column) and relu (right column). Both M1
and M2 models in each single graph have the same configuration in terms of number of layers
and neurons at each layer. The hyper parameters in all models are set as λ1 = .001, λ2 =
.001, γ = .01, batch size = 20, number of examples = 10000, number of features 10, number
of classes = 2, number of neurons at each hidden layer = 10 (Simulated data).

106

sigmoid relu

1N
N

2N
N

4N
N

8N
N

Figure 5.5 Comparing the cost curve of fitted models M2 using different activation functions
with the primary model M1 using sigmoid (left column) and relu (right column). Both M1
and M2 models in each single graph have the same configuration in terms of number of layers
and neurons at each layer. The hyper parameters in all models are set as λ1 = .001, λ2 =
.001, γ = .01, batch size = 20, number of examples = 10000, number of features 10, number
of classes = 2, number of neurons at each hidden layer = 10 (simulated data).

107

(a) 1NN

(b) 2NN

(c) 4NN

(d) 8NN

Figure 5.6 Comparing the Pr, Re and F1 of the four M2 models fitted with sigmoid, ada-
sigmoid, relu and ada-relu activation functions when their corresponding M1 models designed
with sigmoid in a) 1NN, b) 2NN, c) 4NN and d) 8NN hidden layer MLPs (Simulated data).

108

M2 models with sigmoid and adaptive-relu give the better classification performance compa-
red to relu and adaptive-sigmoid. Overally, adaptive-relu often outperforms other activation
functions regardless of network size and it mostly gives the better performance compared to
standard relu.

5.2.4 Conclusions

Our motivation is to compare the performance of the proposed adaptive activation functions
in approximating the biases, weight representations, prediction and convergence of the MLP
models, when the original simulated models are designed by standard sigmoid or relu, sepa-
rately. Additionally, we aimed at understanding how accurate the deep MLP models using
our proposed activation functions could approximate the targets which are originated from
a simulated model.

Comparing standard sigmoid and adaptive-sigmoid, fitting MLPmodels with adaptive-sigmoid
is the model of choice to produce more accurate predictions. Comparing the standard relu
and adaptive-relu in deep networks, MLP using relu is the model of choice to produce more
accurate prediction.

Comparing sigmoid and adaptive-sigmoid, fitting a model with adaptive-sigmoid is superior
to approximate bias in all model architectures. Comparing relu and adaptive-relu, relu fits
the better bias distribution, generally.

Due to the non-identifiability of neural networks, fitting models with standard and adaptive
activation functions could not approximate the pre-defined weight parameters of the original
models.

The empirical evidence shows that using adaptive activation functions in fitting models could
approximate the distribution of true labels correctly in (deep) networks.

By designing a deep MLP using adaptive sigmoid or adaptive-relu, fitted models would be
able to converge more rapidly than their counterparts with standard sigmoid and standard
relu, respectively in terms of error and cost.

Fitting models with adaptive-relu could be the model of choice to have a better classification
performance in terms of accuracy, precision, recall and F1 metric, regardless of the network
size and activation functions used in original model.

When the original model is designed with relu, model approximation with adaptive-sigmoid
could not produce good results in terms of precision, recall and F1. However, by increasing the
network size, adaptive-relu gives the better performance than relu in classification metrics.

109

(a) 1NN

(b) 2NN

(c) 4NN

(d) 8NN

Figure 5.7 Comparison of the Pr, Re and F1 of the four M2 models fitted with sigmoid, ada-
sigmoid, relu and ada-relu activation functions when their corresponding M1 models designed
with relu in a) 1NN, b) 2NN, c) 4NN and d) 8NN hidden layer MLPs (Simulated data).

110

5.3 Experiment 2 : MNIST Benchmark

Motivated by the results obtained from experiment on simulated data, we tend to evaluate
the performance of the MLP and CNN models accompanied with our proposed activation
functions compared to standard ones, on MNIST benchmark.

5.3.1 data

The MNIST dataset 2 is a widely used benchmark for image recognition problems in the lite-
rature. Huge amount of comparative experiments have been studied on MNIST with different
variants of ANNs (LeCun, 1998; Jain et Ko, 2008; Jou et al., 2004; LeCun et al., 1998a). This
data set is a collection of 60,000 hand written digits ranging from ’0’ to ’9’, written by Ame-
rican high school students. The samples in this original data set are black and white and are
centered and normalized to a 28 × 28 image size. The full MNIST dataset contains 50,000
training, 10,000 validation and 10,000 testing instances. Each image is constituted by a set of
pixels represented by possible values between 0 and 255 which denote how bright that pixel
is and what color it should be in grey scale. Zero represents black and 255 is taken to be
white color. Other pixel values in between are taken to be different shades of gray (LeCun,
1998).

5.3.2 Tools and Technologies

Training and results of the MLP and CNN models were implemented using a modified imple-
mentation of original code developed by Theano development team 3. After performing the
data preparation step, the Theano tools can be employed for model training implementation.
The results of the training step are dumped and stored as separate files including the learned
parameters wherein these parameters together could be retrieved for classification of test
images.

5.3.3 Models

In this work, several variants of MLP and CNN algorithms accompanied with our proposed
adaptive activation functions as classifiers have been trained to test their performance on
MNIST. Selecting the best values for hyper parameters, e.g. λ1 and λ2 are performed by
designing a 5-fold cross-validation for MLP with one hidden layer and 1000 neurons on

2. http ://yann.lecun.com/exdb/mnist/
3. http ://deeplearning.net/tutorial/code/mlp.py

111

MNIST data. These hyper parameters in other MLP models remain fixed to only evaluate
the effect of varying activation functions on final predictions. Hyper parameters for CNN
models are chosen according to the primary settings of LeNet5 implementation developed by
Theano development team. Similar to MLP models, we select fixed hyper parameters in all
CNN models to study the effect of changing activation functions on final performance.

5.3.4 Results and Evaluations

First, the ability of some variants of fully-connected MLP models with standard and proposed
adaptive activation functions are evaluated to compare how accurately they could predict
digit characters. The models are fed with raw images as inputs to recognize the corresponding
characters they represent. The models characterizations are different in terms of number of
hidden layers, number of neurons and the type of the activation functions at each layer.
The hyper-parameters of the MLP models are obtained by running a 5-fold cross-validation
experiment for MLP with one hidden layer and 1000 neurons on MNIST data and remain
fixed to only evaluate the effect of varying activation functions on final predictions. The hyper
parameters are chosen as γ = 0.01, λ1 = 0.0, λ2 = 0.0001, batch-size = 20 and epochs = 500.
The accuracy of each model is reported by running the corresponding algorithm on standard
test set provided in MNIST data.

Several conclusions are drawn from the study of the accuracy in these MLP models from
Table (5.3).
– The best accuracy is gained by the one fully-connected MLP with adaptive-relu activation
function at each layer.

– By increasing the number of fully-connected layers from 1 to 2 and preserving the number
of neurons fixed on 500, the performance of the MLP with sigmoid and adaptive-sigmoid
functions decrease while the accuracy of models with relu and adaptive-relu improve.

Table 5.3 Accuracy table : MLP models with different number of hidden layers, number of
neurons and the type of activation functions at each layer. The hyper-parameters are γ =
0.01, λ1 = 0.0, λ2 = 0.0001, batch− size = 20, epochs = 500 (MNIST data).

model # of neurons sigmoid ada-sigmoid relu ada-relu

1NN 500 97.65 97.6 98.22 98.77
1000 97.95 97.36 97.85 97.99

2NN 500 97.55 97.59 98.27 98.29
1000 97.95 97.36 97.85 97.99

112

– By increasing the number of fully-connected layers from 1 to 2 and preserving the number
of neurons fixed on 1000, no improvement was observed in performance of the MLP models.

– In one hidden-layer models (1NN), regardless of the number of neurons, the accuracy
of MLP models with sigmoid, relu and adaptive-relu are always higher than MLP with
adaptive-sigmoid. Also, using adaptive-relu outperforms its counterpart with relu activa-
tion function.

– In two hidden layer models, using adaptive-sigmoid almost yields poor results and using
adaptive-relu always outperforms other models regardless of number of neurons.

– In almost all models, using adaptive-sigmoid reports the poorest results compared to relu
and adaptive-relu.

– Using the adaptive-relu as the activation function always produces the best results in
terms of accuracy. Using the adaptive-sigmoid is not recommended in fully-connected MLP
models.

The potential of some variants of CNN models with standard and proposed adaptive activa-
tion functions are also studied in our MNIST experiments. Our CNN models are built based
on the generic form of the LeNet5 introduced by (LeCun et al., 1998a) and implemented in
Theano. Each model architecture contains two convolutional layers and each of them is follo-
wed by a max-pooling layer. The model characterizations are different in terms of activation
functions at convolutional and hidden layers. Number of hidden layers in a fully-connected
network is 1 and includes 1000 neurons. The hyper-parameters are chosen as following : num-
ber of kernel window sizes = [20, 50], image shapes = [28, 12], filter shapes = [5, 5], pool
sizes = [2, 2], λ1 = 0.0 and λ2 = 0.0001. For all experiments, we train our model parameters
using the stochastic gradient descent with a fixed learning rate γ = 0.01, mini-batches of size
100 during 150 epochs and it takes about 25 epochs to converge. The accuracy of each model
is reported by running the corresponding algorithm on standard test data in Table 5.4.

The following conclusions are inferred from the evaluation of accuracy in our CNN models
(Table 5.4) :
– Applying the adaptive-sigmoid in fully-connected layers significantly improve the accuracy
of the corresponding models compared to the models that use tanh function in their hidden
layers, regardless of what function is used in their convolution layers.

– On the contrary, using adaptive-relu rather than standard relu in fully-connected layers
drops the performance of the models considerably regardless of the choice of activation
function in convolution layers.

– CNNs with adaptive-relu in fully-connected layers often give the better results compared
to models with tanh in fully-connected layers.

– Using standard relu in fully-connected layers always outperforms its counterparts with

113

Table 5.4 CNN models with two convolution layers (each of them following a max pooling
layer) and one fully-connected MLP at the end. The functions in rows represent the activation
functions used in convolutional layers while the functions in columns denote the activation
functions employed in fully-connected network. The hyper parameters of the all models are
the same in all experiments including # of kernel window sizes = [20, 50], image shapes =
[28, 12], filter shapes = [5, 5], pool sizes = [2, 2] and hyper-parameters γ = 0.01, λ1 = 0.0,
λ2 = 0.0001, batch− size = 100, iterations = 150. In all CNN models batch normalization is
used (MNIST data).

Fully-connected layer
sigmoid ada-sigmoid relu ada-relu

Convolutional layer

tanh 98.56 98.79 98.91 98.77
ada-sigmoid 98.55 98.74 98.89 98.78
relu 98.95 99.07 99.09 98.77
ada-relu 98.75 98.76 98.85 98.9

standard sigmoid or adaptive-sigmoid in fully-connected layers.
– The best accuracy is gained by the CNN using standard relu activation function in both
convolutional and fully connected layers.

– Compared to tanh, using adaptive-sigmoid in convolutional layers almost leads to a drop
in accuracy performance.

– Using relu in convolutional layers almost outperforms the CNN models accompanied with
sigmoid, adaptive-sigmoid or adaptive-relu except when those models are associated with
adaptive-relu in fully-connected layers.

– Although applying adaptive-sigmoid in MLPs yiels poor results on MNIST data, using it
as an activation function in fully-connected layers in CNN models leads to a fairly large
increase in accuracy.

– For convolutional layers, using adaptive-relu is a good choice versus adaptive-sigmoid, but
not relu.

In terms of convergence, as understood from Figures 5.8 and 5.9, in one-hidden layer MLPs
by increasing the number of neurons, error curve for those models associated with standard
sigmoid and adaptive-sigmoid converges slightly slower. A similar trend was seen in cost
curves as well. Furthermore, MLP models with adaptive-sigmoid converge faster than their
counterparts with sigmoid in terms of error and cost.

On the contrary, in two hidden layer MLPs, models with adaptive-sigmoid activations converge
slower than those using sigmoid in terms of error. But their corresponding cost curves converge
considerably faster. In all models, MLPs with relu and adaptive-relu activations converges
significantly faster in competition with sigmoid and adaptive-sigmoid in terms of cost and

114

error.

In Figure (5.10), as understood from the comparison of the error and cost curves, CNN
models with adaptive-relu in fully-connected layer work excellent compared to other models,
except when relu is used in convolutional layers. Models with adaptive-sigmoid in fully-
connected layer always converge slower than sigmoid, regardless of the activetion function in
convolutional layers.

Classification reports according to Precision (Pr), Recall (Re) and F1 are also performed and
the results are provided in appendix A.

5.3.5 Conclusions

In this experiment, we have motivated to study the effect of using proposed adaptive-sigmoid
and adaptive-relu in two classical MLP and CNN models and evaluate the performance of the
learned models in comparison with standard activation functions tanh and relu on MNIST
data.

Using adaptive-relu is strongly recommended in MLP networks in terms of accuracy. However,
applying adaptive-sigmoid results in failure compared to other activation functions.

Although using adaptive-sigmoid in MLP models exhibits poor accuracy, applying it in fully-
connected layers of CNNs are recommended, but not in convolutional layers.

Compared to tanh and adaptive-sigmoid, using adaptive-relu is strongly recommended to be
employed in either convolutional or fully-connected layers. However, it could not outperform
the accuracy obtained by relu, regardless of where it is applied.

In terms of error and cost convergence, empirical results show that MLP models with
adaptive-sigmoid converge more faster compared to the standard sigmoid while the error and
cost curves for adaptive-relu remain same compared to the standard relu. Adaptive-sigmoid
curves could not exceed the relu and adaptive-relu, evidently.

In CNN experiment, models with adaptive-relu converge more rapidly than adaptive-sigmoid.
Adaptive-sigmoid could not exceed tanh curves in terms of error and cost convergence.

To summarize, experiments on MNIST data show that an MLP or CNN model using adaptive
activation functions could perform excellent in both prediction and convergence compared to
models using only standard activation functions.

115

500 1000
1N

N
2N

N

Figure 5.8 Comparison of the errors curves for MLP models with different configurations :
rows represent the number of hidden layers (1NN and 2NN) and columns indicate the number
of neurons at each hidden layer (500 and 1000). The comparisons are based on MLP models
using four different activation functions : sigmoid, adaptive-sigmoid, relu and adaptive-relu
(MNIST data).

500 1000

1N
N

2N
N

Figure 5.9 Comparison of the cost curves for MLP models with different configurations : rows
represent the number of hidden layers (1NN and 2NN) and columns indicate the number of
neurons at each hidden layer (500 and 1000). The comparisons are based on MLP models
using four different activation functions : sigmoid, adaptive-sigmoid, relu and adaptive-relu
(MNIST data).

116

Error Cost

ta
nh

ad
ap

ti
ve
-s
ig
m
oi
d

re
lu

ad
ap

ti
ve
-r
el
u

Figure 5.10 Comparison of the errors and cost curves for CNN models with different configu-
rations. The activation functions in convolutional layers of CNN models are tanh, adaptive-
sigmoid, relu and adaptive-relu. All CNN models are trained with batch normalization.
The comparison of the error curve of fitted CNNs with sigmoid, adaptive-sigmoid, relu and
adaptive-relu are demonstrated in each single graph (MNIST data).

117

5.4 Experiment 3 : Sentiment Analysis

In this work, a series of experiments using CNN-based models trained on top of pre-trained
word vectors for sentiment analysis task is reported. We show that a generic form of LeNet5
CNN with adaptive activation function achieves good results on Movie Review benchmark
for sentiment analysis application.

5.4.1 Data

The data in this experiment is a version of the Movie Review (MR) dataset 4 which is intro-
duced in (Pang et Lee, 2004) and it consists of 2000 movie reviews, 1000 positive and 1000
negative reviews considered as labels all submitted before 2002. The review classification of
positive or negative are extracted automatically from rating information of the original re-
viewer. The data only includes the reviews where the author marked the movie’s rating with
stars or some numerical values. The maximum number of reviews that each author is allowed
to have is determined to be 20 in the original corpus. This corpus is also referred to as the
polarity dataset (Pang et Lee, 2004). Since the data is not splitted separately as training,
test and validation sets, one should perform a cross-validation analysis to report the average
performance evaluation and compare the final results.

5.4.2 Data preparation

It should be noted that for the sentiment analysis applications a feature vector for each review
is required. The desired feature vector could be obtained using Bag of Words (BOW) or Tf-
idf methods. In our experiment, a typical CNN was trained with one convolution layer on
top of word vectors fitted from an unsupervised neural language model. These word vectors
were trained based on the word2vec method proposed in (Mikolov et al., 2013) on 100 billion
words of Google News which is publicly available 5. The dimensionality of these word vectors
is 300 and they are trained using the continuous BOW model. The word2vec method was
used to transform each word into a vector such that the transformation should preserve the
words semantics. This means that if two words have similar meaning, therefore we expect
that their corresponding vectors should be close as well. If a word does not exist in the set
of pre-trained words, it would be initialized randomly (Mikolov et al., 2013).

4. http ://www.cs.cornell.edu/people/pabo/movie-review-data/
5. https ://code.google.com/archive/p/word2vec/

118

5.4.3 Models

A generic architecture of CNN in (Kim, 2014) with two convolutional layers is used to classify
the sentences. This model takes concatenated word2vec vectors as input and fed them into the
convolutional layers. Filter windows with fixed size and same weights in convolutional layers
move across the sentence and produce the feature maps by convolving with each small part
of the sentence. Convolutional layers extract the spatial features from the sequence of words
arranged in a sentence almost the same way that high-order n-gram features collect locally
features from a text. The CNN model could be comprised of several filters with different
window sizes and weights so that each one establish a channel. Each word is a k-dimensional
word vector represents the word i in the given sentence. Sentences are aligned to a specific
size, such that sentences with smaller sizes will be padded by zeros.

A convolution operation is applied over a window of a small number of words to generate a
new feature. The relative significance of the words are captured by applying the max-pooling
layer in order to choose the maximum value from each new feature vector and down-sampled
to a new sentence vector as well. The sentence vector is often fed into a one or two hidden-
layer network with fully-connected weights to finally produce the output vector at softmax
layer. A generic variant of CNN model for sentence classification is illustrated in Figure below.

Figure 5.11 CNN architecture with two channels for sentence classification reproduced from
(Kim, 2014).

A CNN model with pre-trained word2vec vectors called static in (Kim, 2014), is used in our
experiments. In this variant, all known and unknown words are considered fixed and the other
parameters of the model will be fitted. The static CNN we use involves two convolutional
layers each of them followed by a max-pooling layer and a fully-connected layer at the end.

119

The fully-connected network includes one hidden layer with 100 neurons and a softmax output
layer for binary text classification. Model fitting is performed using the stochastic gradient
descent across the mini batches of size 50. The optimization process iterated in 50 epochs
and the mini batches are shuffled at the end of each epoch. Two commonly-used penalization
methods, Dropout (with probability = 0.5) and L2 regularization are considered as well.

For consistency, same data, pre-processing and hyper-parameter settings are used as reported
in (Kim, 2014) . Since MR data does not include a separate standard test set, each result
in our experiments is reported by an average of accuracy with confidence intervals measured
over running a 5-fold cross- validation.

The effect of choosing different CNN configurations regarding activation functions on the
model performance is evaluated in terms of accuracy, error and cost convergence. We also
evaluated the performance of these models in terms of precision, recall and F1 which the
results are reported in appendix B.

5.4.4 Tools and Technologies

Training and results of the CNN models were implemented using a slightly modified imple-
mentation of original code 6 in Theano.

5.4.5 Results and Evaluations

The following conclusions are inferred from the evaluation of accuracy of the CNN models
on MR benchmark from Table (5.5).
– Using adaptive-sigmoid in convolutional layers yields poor results versus CNN models using
tanh, relu or adaptive-relu in convolutional layers, regardless of the choice of activation
function for fully-connected layer.

– Using adaptive-relu in convolutional layers accompanied with any activation function in a
fully-connected layer often produces fairly good results. The best result is obtained with
adaptive-relu in convolutional layers and with sigmoid in fully-connected networks.

– Using adaptive-sigmoid in a fully-connected network nearly gains better accuracy than
sigmoid, except when adaptive-relu employed in convolutional layers. Similarly, adptive-
sigmoid in fully-connected outperforms the CNN with relu and adaptive-relu regardless of
the choice of activation function in convolutional layers.

– According to our results, one could say that adaptive-sigmoid could be employed as the
activation function for fully-connected layer in a CNN model. Furthermore, adaptive-relu

6. https ://github.com/yoonkim/CNN-sentence

120

Table 5.5 Static CNNs models with two convolution layers (each of them following a max
pooling layer) and one fully-connected network at the end. Functions in rows indicate the
activation functions used in convolutional layers and functions in columns show activation
functions in fully-connected network. The hyper parameters in all models are same inclu-
ding image dimensions (img_w) = 300, filter sizes = [3, 4, 5], each have 100 feature maps,
batch_size = 50, γ = 0.05, dropout = 0.5, λ2 = 3, number of hidden layers = 1, number
of neuron = 100, number of epochs = 50. The results are reported as the average accuracy
from 5-fold cross-validation (MR data).

Fully-connected layer
sigmoid ada-sigmoid relu ada-relu

Convolutional layer

tanh 78 ± .55 78.6 ± .47 77.9 ± .37 77.7 ± .45
ada-sigmoid 78 ± .56 78.7 ± .46 52.3 ± .71 77.4 ± .49
relu 79.7± 52 78.9 ± .51 79.1 ± .29 79.1 ± .47
ada-relu 79.8± .62 79.3± .49 78.9 ± .31 78.5 ± .51

works excellent when it is used as the activation function in convolutional layers.
The best results of our models versus results reported in (Kim, 2014) are presented in Table
(5.6). Despite our best static CNN models with relu or adaptive-adaptive-relu in convolu-
tional layers and sigmoid in fully-connected layer, we do not outperform the CNN-static,
CNN-nonstatic and CNN-multichannel in (Kim, 2014), but they produce extremely close
results to those reported in (Kim, 2014). These results suggest that our proposed activation
functions work good on benchmark data and could be employed in text classification and
sentiment analysis as well. Applying the proposed adaptive activation functions in nonstatic
and multichannel variants of CNN, along with fine-tuning the hyper parameters may yield
further improvements.

As can be observed from Figure 5.12, the error curves corresponding the CNN model with
adaptive-sigmoid in fully-connected layers, converges fastest of all models, regardless of the
activation function used in convolutional layers. By contrast, models with adaptive-relu in
fully-connected layers always show a slow convergence. CNN model associated with ada-
sigmoid in convolutional layers and relu in fully-connected layers does not converge during
the time that most of the models converge.

Likewise, cost curves for models along with adaptive-sigmoid in convolution layers achieve
the minimum cost in contrast to their counterparts but with different convergence speeds.
Like error, the cost curve shows a poor convergence when the CNN model uses ada-sigmoid
in convolutional layer and relu in fully-connected.

121

Error Cost

ta
nh

ad
ap

ti
ve
-s
ig
m
oi
d

re
lu

ad
ap

ti
ve
-r
el
u

Figure 5.12 Comparison of the error and cost curves of our static CNNs models with two
convolution layers (each of them following a max pooling layer) and one fully-connected
network at the end. The hyper parameters in all models are same including image dimensions
(img_w) = 300, filter sizes = [3, 4, 5], each have 100 feature maps, batch_size = 50, γ = 0.05,
dropout = 0.5, L2 = 3, number of hidden layers = 1, number of neuron = 100, number of
epochs = 50. a) CNN with tanh in convolutional layer, b) CNN with adaptive-sigmoid in
convolutional layer, c) CNN with relu in convolutional layer and d) CNN with adaptive-relu
in convolutional layer (MR data).

122

Table 5.6 Comparison between our best models and the state-of-the-art results on Movie
Review data. best-CNN-1 : CNN with adaptive-relu in convolutional layer and sigmoid in
fully-connected network, best-CNN-2 : CNN with relu in convolutional layer and sigmoid
in fully-connected network and best-CNN-3 : CNN with adaptive-relu in convolutional layer
and adaptive-sigmoid in fully-connected network.

Model Accuracy
CNN-rand (Kim, 2014) 76.1
CNN-static (Kim, 2014) 81.0
CNN-non-static (Kim, 2014) 81.5
CNN-multichannel (Kim, 2014) 81.1
best-CNN-1 79.8 ± .62
best-CNN-2 79.7 ± .52
best-CNN-3 79.3 ± .49

More information is provided to compare the performance of each model, separately in terms
of precision, recall and F1 per each class in Appendix B.

5.4.6 Conclusions

In this experiment, our motivation is to evaluate the performance of a generic type of CNN
model along with proposed adaptive activation functions compared to standard functions on a
commonly-used text benchmark, Movie Review data. Furthermore, we aim at understanding
how well our proposed activation functions could perform an accurate prediction compared
to the state-of-the-art results in a sentiment analysis application.

Accordingly, our empirical results show that using adaptive-sigmoid, as the activation func-
tion, in fully-connected layer is a good choice. Moreover, adaptive-relu could work excellent
when it is applied in convolutional layers.

A comparison between the best results of our experiments (reported from 5-fold cross-
validation) and the state-of-the-art results in (Kim, 2014) on the same version of Movie
Review data for sentiment analysis application shows that our adaptive activation functions
perform fairly good results on Movie Review data in terms of accuracy. Applying those
adaptive activation functions with fine-tuning the hyper parameters may result in further
improvement.

These findings on Movie Review data motivate us to apply the proposed adaptive activation
functions on URLs dataset in order to predict the user intentions.

123

5.5 Experiment 4 : Company Data

5.5.1 Dataset

The data set collected by an e-commercial company was mainly extracted from the answers
that the anonymous visitors provided in the online surveys while they visited a commercial
website over 3 months (from July 1, 2015 to September 30, 2015). In those surveys, visitors
are typically asked to tell their purpose of visit from the "Browse-Search product", "Complete
transaction-Purchase", "Get Order-Technical Support" or "Other" options, considered as four
class labels. In this experiment, we aim at studying the relationship between user behavioral
data which includes URL sequences as features and the stated purpose of the visit provided
in the survey after the end of sessions. The data consists of approximately 13480 user sessions
and for each, we consider a maximum of 50 page visits.

5.5.2 Problem Definition

Our goal is to construct a model which can predict the e-commerce website visitors intentions
based on the URL sequence they navigated from page to page. The input is the CM data in
the form of URL sequence and for each data example the output is the purpose of visit.

5.5.3 Company Data Preparation

Each visitor navigates approximately 14 pages in each visit. Thus, our data is too sparse.
Although nearly 1% of the visits lead to a purchase, this number is not reflected in our raw
data after preparation step and feature engineering employed in our experiments.

In the raw dataset, URL features are in the form of categorical data including 187,375 URL
clicks which 29,375 URLs are unique. Due to the large number of URLs, it is impossible
to classify each URL to one unique feature. This will result in an extremely large feature
space, which in turn deteriorates our predicting performance. Therefore, to reduce the num-
ber of features, a URL feature categorization method is required to identify each URL to
a small domain of categories. This challenge could be referred to as the Web page classifi-
cation without a page content in literature (Baykan et al., 2011). In the following section,
several methods for the problem of URL categorization based on URL strings are described
and different techniques to map a given URL to a numerical feature vector are discussed. In
this project we evaluate the performance of the designed model using different feature en-
gineering methods for URL sequences categorization including Bag of Words (BOW), Term
Frequency-Inverse Document Frequency (Tf-idf), Latent Dirichlet Allocation (LDA) and k-

124

means Clustering. These methods are used since they were also employed in related work,
and they are commonly-used algorithms in unsupervised text classification applications. URL
categorization is the task of mapping a URL to a predefined category regardless of conside-
ring its content in an unsupervised learning process. The performance of the visitor intention
prediction can be very sensitive to feature representation depending on the way in which
URL sequences are encoded. Suppose we have the this URL as a string :

"http ://www.companyname.com/support/home/productsupport/servicetag/drivers ?s=DHS".
The URL must be treated like a text string. First, a text cleaning process including word toke-
nizing, removing non-ascii and stop-words, standardizing words, stemming and lemmatizing
is required to extract the following clean string made up of the token words : "company-
name", "support", "home", "productsupport", "servicetag", "drivers", "DHS". Resulting tokens
of length less than 2, "http" and "www" are removed.

In following we describe how this string of tokens could be categorized with BOW, Tf-idf,
LDA and k-means.

BOW : The BOW model is a commonly-used representation used in Natural Language
Processing (NLP) for document classification such that a sentence is represented as the
multi-set of its words without considering grammar and word order (Sivic et Zisserman,
2009). BOW creates a vocabulary set out of all the words in the corpus and for each sentence
creates a vector of word-counts pertaining to that instance. We simply put all the clean URL
strings into a single file, count the frequency of each word in our file and rank them according
to their frequencies and selecting the top N words (in our dataset, N = 30). Next, we classify
each URL in a sequence according to those top N keywords. Each URL could be categorized
into the deepest keyword from the top list if that keyword exists in the URL. Here, deepest
means the one with the maximum frequency in the corpus. Note that if a URL cannot be
categorized by using these N Keywords, it will be simply ignored. Using tokens, we could
also add 1-gram and 2-gram derived from tokens to add the encoded ordinal information
about the URLs into the feature space.

Tf-idf : The Tf-idf representation is an extension of BOW, provides a clever way of weighting
a given word for a given example. Whereas BOW weights every word across all examples,
Tf-idf provides a weight to a word based on both its frequency within the given sentence and
its frequency over all sentences in the corpus. Tf-idf provides a way of statistically linking
the weight of a word in the feature vector to its overall importance both within and across
sentences. The Tf-idf weight for word i in sentence j is :

Tf − idfij = Nij

Nj

log(Ni

N
)

125

where Nij denotes the number of times word i is in sentence j, Nj is the number of total
words in sentence j, Ni represents the number of times word i is seen in the corpus and
N is the number of total words in corpus (Ullman, 2011). Finally, we simply put all the
clean URL strings into a single file, calculate the Tf-idf score of each word in the corpus and
rank them according to their Tf-ids scores and choosing the top N words (in our dataset,
N = 30). Each URL could be categorized into the highest-scores keyword from the top list if
that keyword exists in the URL. Similar to BOW, we could add 1-gram and 2-gram features
into the categorized URL features in the dataset.

LDA : LDA is a generative probabilistic model for collections of discrete data (text corpora).
A three-level hierarchical Bayesian model, wherein each item of a collection is modeled as
a finite mixture over an underlying set of topics (Blei et al., 2003). Each topic is, in turn,
modeled as an infinite mixture over an underlying set of topic probabilities. In the context
of text modeling, the topic probabilities provide an explicit representation of a document.
The simple idea behind LDA is that documents are represented as random mixtures over
latent topics, where each topic is characterized by a distribution over words. In this method,
each document is considered as a mixture of different topics with an assumption of having
a Dirichlet prior which yields more mixtures of topics in a document (Blei et al., 2003).
To categorize the URLs using LDA, we first need to parse each URL in the sequences to
obtain the set of tokens. Now, we have a collection of tokens as the documents. We design a
document-matrix which keeps the frequency of each word (in vocab set) in each document.
Going through each URL as the document, the LDA method first assigns each token in the
URL to one of the N topics randomly, (N is the number of desired topics we tend to find).
This randomness provides the topic representations of all the URLs and token distributions
over all the topics. By iterating this process for each URL, we go through each token in
URL. For each topic, we have to calculate the probability of p(topic|URL) which is the
proportion of tokens in that URL which are currently assigned to topic, and the probability
of p(token|topic) which equals to the proportion of having that topic over all URLs that come
from this token. Repeating the assignment of tokens to a new topic, where we pick that topic
with p(topic|URL)× p(token|topic) based on the Generative model.

k-means : k-means clustering is a technique of partitioning data into k groups, where each
data example is assigned to the closest cluster based on its distance from the center of
that cluster. This clustering method could also be used as a feature in the learning phase
in unsupervised learning (Coates et Ng, 2012). In order to use k-means clustering with text
documents, we have to first transform the given text corpus into a numeric format by creating
the Tf-idf or BOW sparse document-term matrix. Next, the k-means classification method
will be applied to create k = N text categories. Finally, for each visitor in our dataset,

126

instead of using the URL sequence itself, we build a data set made up of the sequence
of URL category features belonging to N = 30 categorical set. The 2-gram features could
be added to the feature space to keep the ordinal information corresponding to each URL
category.

The data created by each of the above categorization methods will be of the form of categorical
(nominal) data. Some machine learning algorithms could work with nominal data directly
without any transformation e.g. Decision Trees. Most machine learning methods cannot work
on nominal data directly. To tackle this problem, a transformation technique is often applied
to convert the nominal data into a numerical form using the one-hot encoding method. Using
a URL categorization and one-hot encoding transformation will give us a dataset in numeric
format with 13480 samples and 1536 features.

We also performed the effect of feature representation obtained by different URL catego-
rization methods on user intention prediction based on several standard machine learning
classifiers like Naive Bayes (NB), Logistic Regression (LR), Gradient Boosting (GB) and
Random Forest (RF). The results indicated that using different categorization methods does
not remarkably improve the final results of the baseline classifiers in our application. The
input is the CM data in the form of URL categories in numeric format and for each data
example the output is the purpose of visit. The class of interest in this application is "Com-
plete transaction-Purchase" and the goal is to build a model which can closely predict the
visitors with purchase intentions. Therefore, we continued our further experiments according
the URL categorized data obtained by Tf-idf due to the simplicity and resources it uses.

According to Figure (5.12), since the classes are not distributed equally in our data, accuracy
metric is not enough to measure the usefulness of the learned models. A good strategy is
to include the other appropriate metrics in our evaluation approaches. In this experiment,
we apply precision and recall metrics per class to measure the performance of the learned
classifiers according to each class.

By running a 10-fold cross validation experiment for hyper parameter tuning and compa-
ring the classification report graphs it is understood that in terms of accuracy, LR and RF
algorithms give best results.

The following conclusions are inferred from the evaluation of performances of baseline clas-
sifiers based on data categorized by Tf-idf illustrated in Figure 5.14.
– In terms of average precision, GB outperforms the other counterparts by the virtue of
its ensemble functionality. From a recall perspective, LR and RF demonstrate the better
results compared to NB and GB.

– In terms of precision per class 0, 1, 2 and 3, algorithms LR, RF, GB and GB obtain better

127

Figure 5.13 Class distribution for company data. class 0 : browse/search product, class 1 :
complete transaction/purchase, class 2 : get order support/technical support and class 3 :
other.

results respectively compared to other classifiers which means that they could perform
more relevant prediction corresponding to each class with least false positives.

– In terms of recall per class 0, 1, 2 and 3, algorithms, GB, LR, LR and LR outperform
other classifiers respectively which means that they could return more truly related results
compared to their counterparts.

Neural Network Models :

The following conclusions are derived from the comparison of accuracy obtained by classical
1NN, 2NN and CNN models with/without dropout in Figure 5.15 and Figure 5.16 :
– Using dropout as regularizer in 1NN, 2NN and CNN models improve the accuracy, average
precision, and average recall.

– In terms of accuracy and average precision, CNN with dropout outperforms the other
models.

– In terms of average recall, 1NN with dropout gives the best results among the all models.
– Using CNN without dropout considerably improves the results in terms of average accuracy,
precision and recall compared to 1NN and 2NN in Figure 5.15 (a).

– CNN with dropout improves the average accuracy and precision, but not recall compared
to 1NN and 2NN with dropout in Figure 5.16 (a).

– In Figure 5.15(b), using CNN without dropout yields a considerable improvement in pre-
cision of class 1, 2 and 3.

– Comparing figures (b) in 5.15 and 5.16, it is clear that using dropout in 1NN and 2NN
leads to a noticeable increase in precision per class 2 and 3.

128

(a) Average Performance

(b) Precision per class

(c) Recall per class

Figure 5.14 Comparison of the performance of the user intention prediction with different
baseline classifiers (NB, LR, GB and RF) over URL categorized by Tf-idf. a) comparison
based on average accuracy, precision and recall, b) comparison based on precision per class
and c) comparison based on recall per class.

129

(a) Average Performance

(b) Precision per class

(c) Recall per class

Figure 5.15 Comparison of the performance of the user intention prediction with with 1NN,
2NN and CNN without dropout over URL categorized by Tf-idf. a) comparison based on
average accuracy, precision and recall, b) comparison based on precision per class and c)
comparison based on recall per class.

130

(a) Average Performance

(b) Precision per class

(c) Recall per class

Figure 5.16 Comparison of the performance of the user intention prediction with with 1NN,
2NN and CNN with dropout (p = .5), over URL categorized by Tf-idf. a) comparison based
on average accuracy, precision and recall, b) comparison based on precision per class and c)
comparison based on recall per class.

131

– Comparing figures (c) in 5.15 and 5.16, it is evident that using dropout in 1NN, 2NN and
CNN improves the results per class 0 and 1, but not per class 2 and 3.

– For class 0, CNN with dropout and 1NN with dropout gives the best results for precision
and recall, respectively. For class 1, CNN without dropout outperforms the other models
in terms of precision while 1NN with dropout gives the best recall result. For Class 2, the
best result in terms of precision is obtained by CNN with dropout while the best results for
recall is reported by CNN without dropout. For Class 3, for precision, 2NN with dropout
reports the best performance and 2NN and 1NN both with dropout give the best recall.

5.5.4 Proposed Models

Motivated by the best results obtained from the Experiment 3 on Movie Review data, we aim
at investigating the performance of the static CNN model with proposed activation functions
on categorized URL data. Therefore, after performing the preparation step and choosing the
best categorization method (Tf-idf) for data representation, we feed the prepared data to the
convolutional CNN models applying standard and adaptive activation functions and evaluate
the performance of the fitted models on test data.

The following conclusions are inferred from comparing Figures 5.17, 5.18 and 5.19 :
– In terms of average accuracy, models employing adaptive-sigmoid in convolutional and
fully-connected layers gives the best result. In terms of precision, model with tanh and
adaptive-sigmoid in convolutional and fully-connected layers obtains the better result. Also,
models with adaptive-sigmoid and adaptive-relu in convolutional and fully-connected layers
gives similar results.

– Models using adaptie-sigmoid in convolutional layers report the best avergae recalls.
– For class 0, models with adaptive-sigmoid in both convolutional and fully-connected layers
gives the best recall.

– For class 1, models with adaptive-sigmoid and adaptive-relu in convolutional and fully-
connected layers and model with adaptive-relu in convolutional and relu in fully-connected
produce the better precision. Best recall results are reported by models with adaptive-relu
in fully-connected layers.

– For class 2, in terms of precision using tanh in convolutional layers is not recommended.
Instead models with relu or adaptive-relu in convolutional layers obtain fairly good results.
Having adaptive-sigmoid in convolutional layers produces fairly good results in terms of
recall.

132

(a) tanh

(b) adaptive-sigmoid

(c) relu

(d) adaptive-relu

Figure 5.17 Average performance : comparison of the performance of the user intention pre-
diction with different static CNN models fitted with different activation functions in convolu-
tional and fully-connected layers in terms of average accuracy, precision and recall : a) static
CNN with tanh in convolutional layers, b) static CNN with adaptive-sigmoid in convolutional
layers, c) static CNN with relu in convolutional layers and d) static CNN with adaptive-relu
in convolutional layers.

133

(a) tanh

(b) adaptivesigmoid

(c) relu

(d) adaptive-relu

Figure 5.18 Precision per class : Comparison of the performance of the user intention predic-
tion with different static CNN models fitted with different activation functions in convolu-
tional and fully-connected layers : a) static CNN with tanh in convolutional layers, b) static
CNN with adaptive-sigmoid in convolutional layers, c) static CNN with relu in convolutional
layers and d) static CNN with adaptive-relu in convolutional layers.

134

(a) tanh

(b) adaptive-sigmoid

(c) relu

(d) adaptive-relu

Figure 5.19 Recall per class : comparison of the performance of the user intention prediction
with different static CNN models fitted with different activation functions in convolutional
and fully-connected layers : a) static CNN with tanh in convolutional layers, b) static CNN
with adaptive-sigmoid in convolutional layers, c) static CNN with relu in convolutional layers
and d) static CNN with adaptive-relu in convolutional layers.

135

5.5.5 Tools and Technologies

For data cleaning, we use the NLTK 3.2.5 7 package in Python 2.7 8. To implement the BOW,
Tf-idf, and k-means, we used the scikit-learn 9 machine learning package in Python 2.7. For
LDA, we implemented the codes in genesis 10 package in Python 2.7. For the implementa-
tions of the NB, LR, GB and GB classifiers we used the scikit-learn as well and we set the
corresponding required hyper parameters to the best ones which are extracted by running a
10 cross-validation experiment, separately. Training and results for user intention prediction
using different variants of MLP including our proposed models were implemented using a
slightly modified implementation of original code developed by Theano development team 11.
The CNN-based algorithms including the proposed ones were also implemented using the
modified implementation of original code 12 in Theano.

5.5.6 Conclusions

Motivated by the good results obtained from sentiment analysis application, we aim at evalua-
ting the performance of a generic variant of CNN model using proposed activation functions
on a real-world URLs dataset. Our goal is to study the effect of using adaptive activation
functions in deep neural networks for user intention prediction.

The classes in our data are not distributed equally and the class of interest is "Complete-
transactions-Purchase". The main objective is to develop a model which can predict excellent
the visitors with purpose of purchase based on URLs they navigated at the end of the sessions.

On plus side, in terms of average accuracy, using CNN models with proposed activation
functions yields a considerable increase compared to baseline classifiers. Similarly, a negligible
improvement is reported in terms of average precision and average recall. Also, using adaptive
activation functions in CNN models could improve the results obtained by generic CNN with
standard activation functions.

On the minus side, in terms of precision and recall per class 1, class of interest in this
application, CNN with proposed activation functions could not exceed the results reported
by baseline classifiers. A further downside is an unexpected drop in the performance of the
CNN models with adaptive activation functions in terms of precision and recall per class 3,

7. www.nltk.org
8. https ://www.python.org/download/releases/2.7
9. http ://scikit-learn.org/stable/

10. https ://pypi.python.org/pypi/genesis
11. http ://deeplearning.net/tutorial/mlp.html
12. https ://github.com/yoonkim/CNN-sentence

136

class with minimum number of examples, compared to baseline classifiers. This issue can be
viewed from two different aspects. First reason is the lack of enough data per each class for
model training (more data in training, more accurate result in test evaluation). Second, URL
strings are not rich to extract enough knowledge for learning representation in our studied
models. A URL string mostly includes unmeaning and senseless words which do not exist
in the set of pre-trained words. Consequently, the corresponding word2vec vectors are often
initialized randomly (compared to classical 1NN, 2NN and CNN models using Tf-idf and
one-hot encoded features).

137

CHAPTER 6 CONCLUSION

The main objective in this thesis is to explore the problem of user intention prediction on
URLs dataset. Particularly, we aim at proposing two adaptive form of standard activation
functions, sigmoid and relu, employed in MLPs and CNNs and evaluate the performance of
these suggested models on predicting the purpose of visits in our application.

In first step, we develop an asymmetric and parametrised type of sigmoid function inspired
from the Box-cox transformation, called adaptive-sigmoid. Our proposed adaptive-sigmoid
allows more skewness adaptablity controlled by a parameter and includes both standard sig-
moid and Gumbel as well. Besides, the identifiability of the adaptive-sigmoid with respect
to its parameters in a Bernouilli model is studied as well. Furthermore, a parametric smooth
relu function, called adaptive-relu is proposed in Chapter 4. We also indicate how the para-
meters of the adaptive-sigmoid and adaptive-relu could be learned along with the other MLP
parameters in backpropagation.

Next, we design a series of experiments to understand how our proposed activation functions
affect on the prediction, representation, bias and convergence of the fitted models using a
simulated data. The results of this experiment show that under the assumption of having a
simulated deep MLP model accompanied with standard sigmoid or standard relu, fitting mo-
dels with proposed activation functions approximates the bias and true labels well in original
models compared to models with standard functions. Moreover, using adaptive activation
functions in fitting models for prediction approximation is superior compared to standard
functions in terms of accuracy, precision, recall and F1, regardless of network size and ac-
tivation functions used in original model. The flaw is that models with adaptive activation
functions could not approximate the weight representations in the original models due to the
non-identifiability nature of neural networks.

In the next step, we aim at evaluating the performance of the typical MLP and CNN models
using our proposed activation functions on image and text data. Accordingly, we design a
series of experiments on MNIST as a widely-used image benchmark to understand how ac-
curate the adaptive activation functions in MLP and CNN models classify the hand-written
digit images compared to standard activation functions. The results obtained from this expe-
riment suggest using adaptive-relu in MLP to improve the accuracy and to converge faster.
Besides, compared to standard sigmoid, applying adaptive-sigmoid in fully-connected layer
of the CNN models are recommended. Overally, MLP and CNN models using proposed acti-
vation functions work excellent in prediction and convergence compared to models that work

138

exclusively with standard functions.

Additionally, a series of experiments using CNNmodels trained on a top of word2vec text data
is performed to evaluate the performance of the proposed activation functions in a sentiment
analysis application on Moview Review data. Our empirical results imply that using adaptive-
sigmoid as activation functions in fully-connected layer and adaptive-relu in convolutional
layers are strongly recommended. These observations are consistent with the findings were
noticed in experiments on MNIST data. Also, a comparison between our best observations
and the state-of-the-art results in (Kim, 2014) indicates that despite the excellent accuracy of
our static CNN with proposed activation functions, these adaptive activation functions could
not gain further improvement compared to the results reported in this paper. We believe
that applying more fine-tuning hyper parameters and using other variants of CNN models
accompanied with our proposed activation functions could improve the existing results.

Motivated by the results obtained from neural networks using adaptive activation functions
on Moview Review data, we design a series of experiments to apply our proposed activation
functions in CNN models. The application of this experiment is the user intention prediction
which performs on a real-world URLs data.

One of the main challenges in our application is the size of imbalanced data. Additionally,
using word2vec represntation for URLs data is a bit tricky due to the fact that URL strings are
too short and mostly consist of meaningless words in English dictionary. On the positive side,
results show that using CNN models with adaptive activation functions improve the average
accuracy, significantly compared to baseline classifiers. In the same way, an improvement
in average precision and average recall is reported. The downside is that using CNN with
adaptive activation functions yields a dramatic drop in performance of the prediction of
visitors with purpose of purchase (class of interest) in terms of precision and recall. This issue
could be explained in two ways. First, the data size is not large enough to train an accurate
model. Second reason might be explained in a way that URL strings are often includes
senseless tokens and not rich to extract enough knowledge for learning representation in our
studied models.

To recap, our empirical experiments on two well-known image and text benchmarks imply
that by virtue of using adaptive-activation functions in MLP and CNN models, we can
improve the performance of the deep networks in terms of accuracy and convergence. Running
deep networks with our proposed activation functions on URLs data yields a remarkable
improvement in terms of average accuracy, average precision and average recall, but does not
gain any improvement in terms of precision and recall for visitors with purpose of purchase
(class of interest). One reason might be originated from the vector representation we used as

139

URL features. Another reason is the lack of enough data for training our proposed models.
More efforts and experiments to verify the effectiveness of the CNN models with proposed
activation functions in user intention prediction application is required.

140

REFERENCES

Agostinelli, Forest and Hoffman, Matthew and Sadowski, Peter and Baldi, Pierre
(2014). Learning activation functions to improve deep neural networks. arXiv preprint
arXiv :1412.6830.

Agresti, Alan (2003). Building and applying logistic regression models. Categorical Data
Analysis, Second Edition, 211–266.

Agresti, Alan and Kateri, Maria (2011). Categorical data analysis. International Encyclo-
pedia of Statistical Science, Springer. 206–208.

Basu, Dev (1955). On statistics independent of a complete sufficient statistic. Sankhyā :
The Indian Journal of Statistics (1933-1960), 15 (4), 377–380.

Battiti, Roberto (1989). Accelerated backpropagation learning : Two optimization methods.
Complex Systems, 3 (4), 331–342.

Baykan, Eda and Henzinger, Monika and Marian, Ludmila and Weber, Ingmar (2009).
Purely url-based topic classification. Proceedings of the 18th International Conference on
World Wide Web. ACM, 1109–1110.

Baykan, Eda and Henzinger, Monika and Marian, Ludmila and Weber, Ingmar (2011). A
comprehensive study of features and algorithms for url-based topic classification. ACM
Transactions on the Web, 5 (3), 15.

Baykan, Eda and Henzinger, Monika and Weber, Ingmar (2008). Web page language iden-
tification based on urls. Proceedings of the VLDB Endowment, 1 (1), 176–187.

Bengio, Yoshua (2012). Practical recommendations for gradient-based training of deep
architectures. Neural Networks : Tricks of the Trade, Springer. 437–478.

Bengio, Yoshua and Ducharme, Réjean and Vincent, Pascal and Jauvin, Christian (2003).
A neural probabilistic language model. Journal of Machine Learning Research, 3 (Feb),
1137–1155.

Bishop, Christopher M (2006). Pattern Recognition and Machine Learning. springer.

Blei, David M and Ng, Andrew Y and Jordan, Michael I (2003). Latent dirichlet allocation.
Journal of Machine Learning Research, 3 (Jan), 993–1022.

Block, Hans-Dieter (1962). The perceptron : A model for brain functioning. i. Reviews of
Modern Physics, 34 (1), 123.

Bottou, Léon (2012). Stochastic gradient descent tricks. Neural Networks : Tricks of the
Trade, Springer. 421–436.

141

Bryson, Arthur E (1961). A gradient method for optimizing multi-stage allocation processes.
Proc. Harvard Univ. Symposium on Digital Computers and Their Applications. 72.

Bryson, Arthur E and Denham, Walter F (1962). A steepest-ascent method for solving
optimum programming problems. Journal of Applied Mechanics, 29 (2), 247–257.

Cesa-Bianchi, Nicolo and Lugosi, Gábor (2006). Prediction, Learning, and Games. Cam-
bridge university press.

Chakrabarti, Soumen and Dom, Byron and Indyk, Piotr (1998). Enhanced hypertext cate-
gorization using hyperlinks. ACM SIGMOD Record. ACM, vol. 27, 307–318.

Chakrabarti, Soumen and Van den Berg, Martin and Dom, Byron (1999). Focused crawling :
a new approach to topic-specific web resource discovery. Computer Networks, 31 (11), 1623–
1640.

Chambers, Elizabeth A and Cox, David R (1967). Discrimination between alternative binary
response models. Biometrika, 54 (3-4), 573–578.

Charnes, Abraham and Frome, Edward L and Yu, Po-Lung (1976). The equivalence of gene-
ralized least squares and maximum likelihood estimates in the exponential family. Journal
of the American Statistical Association, 71 (353), 169–171.

Cho, Youngmin and Saul, Lawrence K (2010). Large-margin classification in infinite neural
networks. Neural Computation, 22 (10), 2678–2697.

Clevert, Djork-Arné and Unterthiner, Thomas and Hochreiter, Sepp (2015). Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv :1511.07289.

Coates, Adam and Ng, Andrew Y (2012). Learning feature representations with k-means.
Neural Networks : Tricks of the Trade, Springer. 561–580.

Cybenko, George (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems, 2 (4), 303–314.

Darken, Christian and Moody, John (1990). Fast adaptive k-means clustering : some em-
pirical results. Neural Networks, 1990., 1990 IJCNN International Joint Conference on.
IEEE, 233–238.

Dobson, Annette J and Barnett, Adrian (2008). An Introduction to Generalized Linear
Models. CRC press.

Dreyfus, Stuart (1973). The computational solution of optimal control problems with time
lag. IEEE Transactions on Automatic Control, 18 (4), 383–385.

Dushkoff, Michael and Ptucha, Raymond (2016). Adaptive activation functions for deep
networks. Electronic Imaging, 2016 (19), 1–5.

142

Fausett, Laurene and Fausett, Laurene (1994). Fundamentals of neural networks : architec-
tures, algorithms, and applications. No. 006.3. Prentice-Hall,.

Fawcett, Tom (2006). An introduction to roc analysis. Pattern recognition letters, 27 (8),
861–874.

Fukushima, Kunihiko and Miyake, Sei (1982). Neocognitron : A self-organizing neural
network model for a mechanism of visual pattern recognition. Competition and Cooperation
in Neural Nets, Springer. 267–285.

Gill, Jeff (2000). Generalized Linear Models : A Unified Approach, vol. 134. Sage Publica-
tions.

Glorot, Xavier and Bengio, Yoshua (2010). Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. 249–256.

Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua (2011). Deep sparse rectifier neural
networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. 315–323.

Goodfellow, Ian J and Vinyals, Oriol and Saxe, Andrew M (2014). Qualitatively characte-
rizing neural network optimization problems. arXiv preprint arXiv :1412.6544.

Goodfellow, Ian J and Warde-Farley, David and Mirza, Mehdi and Courville, Aaron and
Bengio, Yoshua (2013). Maxout networks. arXiv preprint arXiv :1302.4389.

Graves, Alex and Mohamed, Abdel-rahman and Hinton, Geoffrey (2013). Speech recognition
with deep recurrent neural networks. Acoustics, speech and signal processing (icassp), 2013
IEEE International Conference. IEEE, 6645–6649.

Harris, David and Harris, Sarah (2010). Digital design and computer architecture. Morgan
Kaufmann.

Hashemi, Homa B and Asiaee, Amir and Kraft, Reiner (2016). Query intent detection using
convolutional neural networks. International Conference on Web Search and Data Mining,
Workshop on Query Understanding.

Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome (2009). The elements of
statistical learning : Data mining, inference, and prediction. Biometrics.

Haykin, Simon S and Haykin, Simon S and Haykin, Simon S and Haykin, Simon S (2009).
Neural Networks and Learning Machines, vol. 3. Pearson Upper Saddle River, NJ, USA :.

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian (2015). Delving deep
into rectifiers : Surpassing human-level performance on imagenet classification. Proceedings
of the IEEE International Conference on Computer Vision. 1026–1034.

143

Hebb, Donald Olding (1949). The organization of behavior : A neuropsychological approach.
John Wiley & Sons.

Hinton, Geoffrey E and Srivastava, Nitish and Krizhevsky, Alex and Sutskever, Ilya and
Salakhutdinov, Ruslan R (2012). Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv :1207.0580.

Hornik, Kurt and Stinchcombe, Maxwell and White, Halbert (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2 (5), 359–366.

Hou, Le and Samaras, Dimitris and Kurc, Tahsin and Gao, Yi and Saltz, Joel (2017).
Convnets with smooth adaptive activation functions for regression. Artificial Intelligence
and Statistics. 430–439.

Hou, Le and Samaras, Dimitris and Kurc, Tahsin M and Gao, Yi and Saltz, Joel H (2016).
Neural networks with smooth adaptive activation functions for regression. arXiv preprint
arXiv :1608.06557.

Huang, Guan-Hua (2005). Model identifiability. Wiley StatsRef : Statistics Reference Online.

Hubel, David H and Wiesel, Torsten N (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology, 160 (1), 106–
154.

Ioffe, Sergey and Szegedy, Christian (2015). Batch normalization : Accelerating deep network
training by reducing internal covariate shift. International Conference on Machine Learning.
448–456.

Ivakhnenko, Alexey Grigorevich (1971). Polynomial theory of complex systems. IEEE
Transactions on Systems, Man, and Cybernetics, 1 (4), 364–378.

Ivakhnenko, Alekseui Grigorevich and Lapa, Valentin Grigorevich (1966). Cybernetic pre-
dicting devices. Rapport technique.

Jain, Gaurav and Ko, Jason (2008). Handwritten digits recognition. Multimedia Systems,
Project Report, University of Toronto, 1–3.

Jarrett, Kevin and Kavukcuoglu, Koray and LeCun, Yann and others (2009). What is the
best multi-stage architecture for object recognition ? Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2146–2153.

Jou, Chichang and Lee, Hung-Chang and others (2004). Handwritten numeral recognition
based on simplified feature extraction, structural classification, and fuzzy memberships.
Lecture Notes in Computer Science, 372–381.

Kalchbrenner, Nal and Grefenstette, Edward and Blunsom, Phil (2014). A convolutional
neural network for modelling sentences. arXiv preprint arXiv :1404.2188.

144

Kan, Min-Yen (2004). Web page classification without the web page. Proceedings of the
13th international World Wide Web Conference on Alternate Track Papers & Posters. ACM,
262–263.

Kececioglu, Dimitri (1991). Reliability Engineering Handbook (vol. 1). Prentice-Hall, Inc.

Kelley, Henry J (1960). Gradient theory of optimal flight paths. Ars Journal, 30 (10),
947–954.

Kim, Yoon (2014). Convolutional neural networks for sentence classification. arXiv preprint
arXiv :1408.5882.

Kingman, JFC (1961). A convexity property of positive matrices. The Quarterly Journal
of Mathematics, 12 (1), 283–284.

Korpusik, Mandy and Sakaki, Shigeyuki and Chen, Francine and Chen, Yan-Ying (2016).
Recurrent neural networks for customer purchase prediction on twitter. CBRecSys@ RecSys.
47–50.

Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E (2012). Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information Processing
Systems. 1097–1105.

Kustanowitz, Jack and Shneiderman, Ben and Kules, Bill (2006). Categorizing web search
results into meaningful and stable categories using fast-feature techniques. Digital Libraries,
2006. JCDL’06. Proceedings of the 6th ACM/IEEE-CS Joint Conference on. IEEE, 210–219.

LeCun, Yann (1998). The mnist database of handwritten digits. http ://yann. lecun.
com/exdb/mnist/.

LeCun, Yann and Bottou, Léon and Bengio, Yoshua and Haffner, Patrick (1998a). Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86 (11), 2278–
2324.

LeCun, Yann and Bottou, Léon and Orr, Genevieve B and Müller, Klaus-Robert (1998b).
Efficient backprop. Neural networks : Tricks of the Trade, Springer. 9–50.

LeCun, Yann and Simard, Patrice Y and Pearlmutter, Barak (1993). Automatic learning
rate maximization by on-line estimation of the hessian’s eigenvectors. Advances in Neural
Information Processing Systems. 156–163.

Lindsey, James K (2000). Applying generalized Linear Models. Springer Science & Business
Media.

Lippmann, Richard (1987). An introduction to computing with neural nets. IEEE Assp
magazine, 4 (2), 4–22.

145

Liu, Qiang and Yu, Feng and Wu, Shu and Wang, Liang (2015). A convolutional click
prediction model. Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, 1743–1746.

Lo, Caroline and Frankowski, Dan and Leskovec, Jure (2016). Understanding behaviors
that lead to purchasing : A case study of pinterest. KDD. 531–540.

Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y (2013). Rectifier nonlinearities
improve neural network acoustic models. Proc. ICML. vol. 30.

McCullagh, Peter (1984). Generalized linear models. European Journal of Operational
Research, 16 (3), 285–292.

McCullagh, Peter and Nelder, James A (1989). Generalized linear models, no. 37 in mono-
graph on statistics and applied probability.

McCulloch, Warren S and Pitts, Walter (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5 (4), 115–133.

McMahan, H Brendan and Holt, Gary and Sculley, David and Young, Michael and Ebner,
Dietmar and Grady, Julian and Nie, Lan and Phillips, Todd and Davydov, Eugene and
Golovin, Daniel and others (2013). Ad click prediction : a view from the trenches. Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1222–1230.

Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and Corrado, Greg S and Dean, Jeff
(2013). Distributed representations of words and phrases and their compositionality. Ad-
vances in neural information processing systems. 3111–3119.

Minsky, Marvin and Papert, Seymour A and Bottou, Léon (1969). Perceptrons : An Intro-
duction to Computational Geometry. MIT press.

Mohamed, Shakir (2015). A statistical view of deep learning.

Myers, Raymond H and Montgomery, Douglas C and Vining, G Geoffrey and Robinson, Ti-
mothy J (2012). Generalized Linear Models : with Applications in Engineering and Sciences,
vol. 791. John Wiley & Sons.

Nelder, John Ashworth and Baker, R Jacob (1972). Generalized Linear Models. Wiley
Online Library.

Ng, Andrew (2000). Cs229 lecture notes. CS229 Lecture Notes, 1 (1), 1–3.

Pang, Bo and Lee, Lillian (2004). A sentimental education : Sentiment analysis using
subjectivity summarization based on minimum cuts. Proceedings of the 42nd annual meeting
on Association for Computational Linguistics. Association for Computational Linguistics,
271.

146

Qi, Xiaoguang and Davison, Brian D (2009). Web page classification : Features and algo-
rithms. ACM Computing Surveys, 41 (2), 12.

Qian, Sheng and Liu, Hua and Liu, Cheng and Wu, Si and San Wong, Hau (2018). Adaptive
activation functions in convolutional neural networks. Neurocomputing, 272, 204–212.

Ranganath, Rajesh and Tang, Linpeng and Charlin, Laurent and Blei, David (2015). Deep
exponential families. Artificial Intelligence and Statistics. 762–771.

Richardson, Matthew and Dominowska, Ewa and Ragno, Robert (2007). Predicting clicks :
estimating the click-through rate for new ads. Proceedings of the 16th international confe-
rence on World Wide Web. ACM, 521–530.

Robbins, Herbert and Monro, Sutton (1951). A stochastic approximation method. The
Annals of Mathematical Statistics, 400–407.

Rodriguez, German (2012). Generalized linear models. Notas [acessado em 1 maio 2010].
Disponível em http ://data. princeton. edu/wws509/notes.

Rojas, Raul (1996). The backpropagation algorithm. Neural Networks, Springer. 149–182.

Rojas, Raúl (2013). Neural networks : A systematic introduction. Springer Science &
Business Media.

Rosen-Zvi, Michal and Biehl, Michael and Kanter, Ido (1998). Learnability of periodic
activation functions : General results. Physical Review E, 58 (3), 3606.

Rosenblatt, Frank (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

Rosenblatt, Frank (1958). The perceptron : A probabilistic model for information storage
and organization in the brain. Psychological Review, 65 (6), 386.

Rosenblatt, Frank (1962). Principles of neurodynamics.

Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J and others (1988).
Learning representations by back-propagating errors. Cognitive Modeling, 5 (3), 1.

Sakia, RM (1992). The box-cox transformation technique : a review. The Statistician,
169–178.

Schmidhuber, Jürgen (2015). Deep learning in neural networks : An overview. Neural
Networks, 61, 85–117.

Shen, Yelong and He, Xiaodong and Gao, Jianfeng and Deng, Li and Mesnil, Grégoire
(2014). Learning semantic representations using convolutional neural networks for web
search. Proceedings of the 23rd International Conference on World Wide Web. ACM, 373–
374.

147

Simard, Patrice and LeCun, Yann and Denker, John S (1993). Efficient pattern recognition
using a new transformation distance. Advances in Neural Information Processing Systems.
50–58.

Sivic, Josef and Zisserman, Andrew (2009). Efficient visual search of videos cast as text
retrieval. IEEE transactions on pattern analysis and machine intelligence, 31 (4), 591–606.

Snyman, Jan (2005). Practical mathematical optimization : an introduction to basic optimi-
zation theory and classical and new gradient-based algorithms, vol. 97. SpringeR.

Springenberg, Jost Tobias and Riedmiller, Martin (2013). Improving deep neural networks
with probabilistic maxout units. arXiv preprint arXiv :1312.6116.

Srivastava, Nitish (2013). Improving neural networks with dropout. University of Toronto-
Master Thesis, 182.

Srivastava, Nitish and Hinton, Geoffrey E and Krizhevsky, Alex and Sutskever, Ilya and
Salakhutdinov, Ruslan (2014). Dropout : a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15 (1), 1929–1958.

Sussillo, David (2014). Random walks : Training very deep nonlin-ear feed-forward networks
with smart ini. arXiv preprint arXiv, 1412.

Turner, Andrew James and Miller, Julian Francis (2014). Neuroevolution : evolving hete-
rogeneous artificial neural networks. Evolutionary Intelligence, 7 (3), 135–154.

Ullman, Jeffrey David (2011). Mining of Massive Datasets. Cambridge University Press.

Vieira, Armando (2015). Predicting online user behaviour using deep learning algorithms.
arXiv preprint arXiv :1511.06247.

Werbos, Paul J (1982). Applications of advances in nonlinear sensitivity analysis. System
Modeling and Optimization, Springer. 762–770.

Widrow, Bernard (1962). Generalization and information storage in network of adaline’neu-
rons’. Self-organizing Systems-1962, 435–462.

Widrow, Bernard and Hoff, Marcian E (1960). Adaptive switching circuits. Rapport tech-
nique.

Witten, Ian H and Frank, Eibe and Hall, Mark A and Pal, Christopher J (2016). Data
Mining : Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

Wu, Huaiqin (2009). Global stability analysis of a general class of discontinuous neural
networks with linear growth activation functions. Information Sciences, 179 (19), 3432–
3441.

148

Yan, Ling and Li, Wu-jun and Xue, Gui-Rong and Han, Dingyi (2014). Coupled group lasso
for web-scale ctr prediction in display advertising. International Conference on Machine
Learning. 802–810.

Yao, Xin (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87 (9), 1423–
1447.

Yih, Scott Wen-tau and He, Xiaodong and Meek, Chris (2014). Semantic parsing for single-
relation question answering.

Zhang, Chao and Woodland, Philip C (2015). Parameterised sigmoid and relu hidden activa-
tion functions for dnn acoustic modelling. Sixteenth Annual Conference of the International
Speech Communication Association.

149

Appendix A CLASSIFICATION REPORT FOR EXPERIMENT 2 ON

MNIST

(a) 1nn_500

(b) 1nn_1000

(c) 2nn_500

(d) 2nn_1000

Figure A.1 MLP models with different configurations : compare the precision, recall and F1.

150

(a) cnn_tanh_bn

(b) cnn_adasigmoid_bn

(c) cnn_relu_bn

(d) cnn_adarelu_bn

Figure A.2 CNN models : Compare the precision, recall and F1.

151

Appendix B CLASSIFICATION REPORT FOR EXPERIMENT 3 ON

MOVIE REVIEW

(a) cnn_tanh

(b) cnn_adasigmoid

(c) cnn_relu

(d) cnn_adarelu

Figure B.1 Compare the precision, recall and F1.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND NOTATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Deep Neural Networks
	1.2 Adaptive Activation Functions
	1.3 Research Objectives
	1.4 Our Contributions
	1.5 Thesis Structure

	2 OVERVIEW
	2.1 Linear Regression
	2.1.1 Maximum Likelihood Estimation and Least Squares
	2.1.2 Multiple Outputs

	2.2 Generalized Linear Models (GLMs)
	2.2.1 Exponential Family
	2.2.2 Exponential Dispersion Family
	2.2.3 Mean and Variance
	2.2.4 Linear Structure
	2.2.5 GLMs Components
	2.2.6 Maximum Likelihood Estimates
	2.2.7 Logistic Regression
	2.2.8 Maximum Likelihood Estimates in Logistic Regression

	3 DEEP NEURAL NETWORKS
	3.1 Perceptron
	3.1.1 Perceptron Algorithm
	3.1.2 Model
	3.1.3 Basic Perceptron Learning Rule and Convergence
	3.1.4 Perceptron Learning Rule on Loss Function
	3.1.5 Perceptron with Sigmoid Function
	3.1.6 Perceptron Issues

	3.2 Multi Layer Perceptrons (MLPs)
	3.2.1 Activation Functions
	3.2.2 Loss Function
	3.2.3 Backpropagation Learning Algorithm
	3.2.4 Mini-batch Stochastic Gradient Descent (Mini-batch SGD)
	3.2.5 Regularization
	3.2.6 Dropout
	3.2.7 Parameters Initialization

	3.3 Convolutional Neural Networks (CNNs)
	3.3.1 Convolutional Layer
	3.3.2 Max Pooling Layer
	3.3.3 Loss Function and Gradients

	4 ADAPTIVE ACTIVATION FUNCTIONS
	4.1 Latent Variable Formulation
	4.2 The complementary log-log transformation
	4.2.1 Maximum Likelihood Estimates with Complementary log-log

	4.3 Adaptive Sigmoid Link Function
	4.3.1 Identifiability
	4.3.2 Maximum Likelihood Estimates for Adaptive Sigmoid Link Function
	4.3.3 ANNs with Adaptive-sigmoid: Loss Function and Optimization

	4.4 Adaptive ReLu Function
	4.4.1 ANNs with Adaptive-relu: Loss Function and Optimization

	5 EXPERIMENTS AND RESULTS
	5.1 Performance Measures
	5.2 Experiment 1: Simulated Data
	5.2.1 Data
	5.2.2 Tools and Technologies
	5.2.3 Results and Evaluations
	5.2.4 Conclusions

	5.3 Experiment 2: MNIST Benchmark
	5.3.1 data
	5.3.2 Tools and Technologies
	5.3.3 Models
	5.3.4 Results and Evaluations
	5.3.5 Conclusions

	5.4 Experiment 3: Sentiment Analysis
	5.4.1 Data
	5.4.2 Data preparation
	5.4.3 Models
	5.4.4 Tools and Technologies
	5.4.5 Results and Evaluations
	5.4.6 Conclusions

	5.5 Experiment 4: Company Data
	5.5.1 Dataset
	5.5.2 Problem Definition
	5.5.3 Company Data Preparation
	5.5.4 Proposed Models
	5.5.5 Tools and Technologies
	5.5.6 Conclusions

	6 CONCLUSION
	REFERENCES
	APPENDICES

