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This paper presents a variation of the single allocation hub location problem under demand uncertainty.

Namely, we consider variable allocations, meaning that the allocation of the spokes to the hubs can be altered

after the uncertainty is realized. This is in contrast to the fixed allocation that is addressed in the literature

where the spokes are allocated to the chosen hubs before the uncertainty is realized. As shown in the paper,

the fixed allocation case can be solved as a deterministic problem using the expected values of the random

variables. However, the variable allocation model is a two-stage stochastic program that is challenging to

solve. An alternative convex mixed-integer nonlinear formulation is presented for the variable allocation and

a customized solution approach based on cutting planes is proposed to address the computational challenges.

The proposed solution approach is implemented in a branch-and-cut framework where the cut-generating

subproblems are solved combinatorially, i.e. without an optimization solver. Extensive computational results

on the single allocation hub location problem and two of its variants, the capacitated case and the single

allocation p-median problem are presented. The proposed cutting plane approach outperforms the direct

solution of the problem using the state-of-the-art solver GUROBI as well the L-shaped decomposition which

is a common approach for addressing two-stage stochastic programs with recourse.

Key words : Single allocation hub location, demand uncertainty, stochastic programming, outer

approximation, cutting planes

1. Introduction

A transport network with many sources and sinks can be very expensive to operate if all shipments

are transported directly from the source locations to the destination locations. To benefit from

economies of scale, a number of hubs are often established to act as transshipment nodes that can

handle the passing flow at a reduced cost. Hub nodes are used to sort, consolidate, and redistribute

flows and their main purpose is to achieve economies of scale. While the construction and operation

of hubs and the resulting detours lead to extra costs, the bundling of flows decreases the overall

1
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cost of operation. The hub location problem optimizes the location of hubs and the allocation of

origin and destination nodes to the selected hubs in order to route the flow from the origin nodes

to the corresponding destinations while minimizing the total cost of the network. The hub location

problem arises in several important applications including telecommunication systems (Klincewicz

1998), airline services (Jaillet et al. 1996), postal delivery services (Ernst and Krishnamoorthy

1996), and public transportation (Nickel et al. 2001), among several others.

Hub location problems are part of the strategic planning decisions and thus the exact operational

data of the network is usually unknown and can only be approximated at the time the network is

planned. One main source of uncertainty are the stochastic shipping volumes. As hub locations are

planned well in advance of the actual operation of the network, only statistical data about shipment

sizes are typically available. The usual approach of using average values makes it difficult to give

a correct estimate of the necessary hub sizes and the optimal allocation and flow routing. Thus it

is often necessary to include uncertainty when deciding the location of hubs and the allocation of

nodes to the hubs.

This paper considers the single allocation hub location problem (SAHLP) with demand uncer-

tainty. The single allocation problem denotes the case where each node is assigned to a single hub.

We also distinguish between fixed and variable allocations. For fixed allocation, the assignments of

the spokes (i.e. non-hub nodes) to the hubs are considered as part of the strategic decisions and

therefore are first-stage decisions and remain fixed when uncertainty is realized. Alternatively, for

variable allocation, the assignments of the spokes to the hubs are more flexible and can be adjusted

when the uncertainty is realized and thus the allocation decisions are considered as second-stage

decisions which is in line with real-world practices where the hubs are chosen before knowing

the demand while the allocations are determined/altered when the actual demand is realized. As

detailed next, prior work has addressed the fixed allocation case, while in this paper the variable

allocation stochastic hub location problem is introduced and a computationally efficient solution

approach based on exploiting the problem formulation using cutting planes is proposed.

1.1. Literature review

Several variations of the hub location problem have been discussed in the literature. One such

variation is the multiple allocation problem where the flow of the same spoke node can be routed

through different hubs, i.e. the node is allocated to multiple hubs (Ernst and Krishnamoorthy 1998,

Campbell 1996). Alternatively, the single allocation problem assigns each spoke node to exactly

one hub and accordingly routes the flow (O’Kelly 1987, Campbell 1996, Rostami et al. 2016, Meier

et al. 2016). Furthermore, each of these variations can be classified as capacitated or uncapacitated

depending on the type of capacity restriction. In particular, there can be limitations on the total
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flow routed on a hub-hub link (Labbé and Yaman 2004) or on the volume of flow into the hub

nodes (Ernst and Krishnamoorthy 1999).

The first mathematical model for the deterministic hub location problem was proposed in O’Kelly

(1987) as a quadratic integer programming formulation to minimize the total transport cost for

a given number of hubs that need to be located (p-Hub Median Problem). Since then, the hub

location literature mainly focused on the deterministic hub location problem where all the data are

assumed to be known in advance. Among the related publications are Ernst and Krishnamoorthy

(1996), Skorin-Kapov et al. (1996), Campbell et al. (2005a,b), Elhedhli and Wu (2010), Contreras

et al. (2011c), Contreras et al. (2011a), Carlsson and Jia (2013), and Meier and Clausen (2017)

where different models and solution methods are considered. The recent surveys of Alumur and

Kara (2008) and Campbell and O’Kelly (2012) provide a comprehensive overview of the various

variations and solution approaches of the hub location problem.

While deterministic hub location problems and their variants have been extensively studied, the

literature addressing data uncertainty in the context of hub location problems is rather limited.

Among the first articles related to stochastic hub location problems is Marianov and Serra (2003)

which focuses on airline services as an application and considers the multi-allocation variant of the

problem. In that context, hub airports are modeled as M/D/c queuing systems in order to limit

the congestion caused by queuing airplanes at an airport. The authors obtained feasible solutions

for instances up to 30 nodes using a tabu search heuristic. Yang (2009) proposes a multi-allocation

hub location problem in the context of air freight transportation. The problem is modeled as a

two-stage stochastic program where the demand and the discount factors that are associated with

hub-to-hub links are stochastic. In the first stage of the problem, the hub locations are decided

while the flight routes are second stage decisions. The stochastic program is formulated as a mixed-

integer program (MIP) and instances based on an air freight market in China and Taiwan are

solved for sizes up to 10 airports while uncertainty is captured by a discrete probability distribution

involving only three different scenarios. Contreras et al. (2011b) examine the multi-allocation hub

location problem under uncertain shipping volume and transportation cost. In case of demand

uncertainty, they show that the proposed stochastic formulation for multi-allocation hub location is

equivalent to the deterministic problem in which all random variables are replaced by their average

values. However when the transportation costs are stochastic, this result does not apply in general

since the routing decisions depend on the transport costs in each scenario. The authors present a

Monte-Carlo simulation coupled with a Benders decomposition algorithm and solve instances with

up to 50 nodes.

For the single allocation variant of the hub location problem, Alumur et al. (2012) proposes

two-stage stochastic programs that consider uncertainty in hub costs and in the demands. They
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consider the fixed allocation case, since the first stage determines both the locations of the hubs and

the allocation of the spokes to the hubs. The second-stage then only calculates the routing costs per

scenario based on the first-stage allocation decisions. To capture stochasticity, a discrete probability

distribution is assumed and the problem is then reformulated as a MIP. Optimal solutions are

presented for instances with up to 25 nodes with a discrete probability distribution of five different

scenarios. Qin and Gao (2017) considers a stochastic single allocation hub location problem with

deterministic fixed costs and uncertain demands. The problem is formulated as a quadratic program

where the hub locations and the allocations are first stage decisions, and the routing decisions are in

the second stage of the problem. The authors show that the proposed stochastic quadratic program

is equivalent to a deterministic quadratic program in the special case of continuous and strictly

increasing uncertainty distribution functions and provide results for instances with 10 nodes and 3

scenarios using a genetic algorithm. Uncertainties in single-allocation hub location problems were

not only studied in the input data but also in the operation of hubs (see, for instance, Tran et al.

2016, Rostami et al. 2018) for more details.

1.2. Contribution of this paper

The main contributions of this paper are as follows. (a) We show that the stochastic optimization

model that is proposed by Alumur et al. (2012) for the fixed allocation SAHLP is equivalent to

the expected value program of SAHLP where the expected values of the demands are used. (b) We

propose a two-stage stochastic program for the variable allocation SAHLP and two of its variants

the capacitated SAHLP (CSAHLP) and the Single Allocation p-Hub Median Problem (SApHMP).

(c) We propose an alternative mixed integer nonlinear programming (MINLP) formulation and a

customized solution approach based on cutting planes that computationally outperforms the state-

of-the-art solvers. (d) We show that the cutting planes can be generated by solving a cut generation

subproblem without using an optimization solver. (e) We conduct extensive computational testing

using a well-known data set from the literature to assess the performance and value of the proposed

fixed allocation models for the three problem variants SAHLP, CSAHLP, and SApHMP.

Outline of this paper. Following this introductory section, Section 2 introduces the deterministic

SAHLP while Section 3 presents the stochastic SAHLP and discusses its two variants, the fixed

allocation and the variable allocation. The proposed MINLP reformulation and the cutting plane

solution approach are presented in Section 4 while the computational results are discussed in

Section 5. Finally a conclusion is given in Section 6. The attached Appendix A discusses and

evaluates an alternative solution approach based on L-shaped decomposition.
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2. The deterministic single allocation hub location problem

To introduce the notation of SAHLP, we first provide the deterministic formulation. We consider a

directed graph G= (N,A), where N = {1,2, . . . , n} corresponds to the set of nodes that denote the

origins, destinations, and possible hub locations, and A is set of arcs that indicate possible direct

links between the different nodes. Let wij be the amount of flow to be transported from node i to

node j and dij the distance between two nodes i and j. We denote by Oi =
∑

j∈N wij and Di =∑
j∈N wji the total outgoing flow from node i and the total incoming flow to node i, respectively.

For each k ∈N , fk represents the fixed set-up cost for locating a hub at node k. The cost per unit

of flow for each path i− k− `− j from an origin node i to a destination node j passing through

hubs k and m respectively, is χdik +αdk` + δd`j, where χ, α, and δ are the nonnegative collection,

transfer, and distribution costs respectively and dik, dk`, and d`j are the distances between the

pair of nodes. Note that given that hub nodes are fully interconnected, every path between an

origin and a destination node will contain at least one and at most two hubs. SAHLP consists of

selecting a subset of nodes as hubs and assigning the remaining nodes to these hubs such that each

spoke node, is assigned to exactly one hub with the objective of minimizing the overall cost of the

network.

To formulate SAHLP, the following allocation variables are introduced

xik =

{
1 if node i is allocated to a hub located at node k

0 otherwise.

In particular for every node k, xkk indicates whether k is a hub (xkk = 1) or not (xkk = 0). SAHLP

can then be formulated as the following binary quadratic program:

[SAHLP] : min
∑
k∈N

fkxkk +
∑
i∈N

∑
k∈N

dik (χOi + δDi)xik +
∑

i,k,j,`∈N

αwijdk`xikxj` (1)

s.t.
∑
k∈N

xik = 1 i∈N (2)

xik ≤ xkk i, k ∈N (3)

xik ∈ {0,1} i, k ∈N. (4)

The objective is to minimize the total cost of the network which includes the cost of setting up

the hubs, the cost of collection and distribution of items between the spoke nodes and the hubs,

and the cost of transfer between the hubs. Constraints (2) indicate that each node i is allocated to

precisely one hub (i.e. single allocation) while Constraints (3) enforce that node i is allocated to a

node k only if k is selected as a hub node. The binary conditions are enforced by Constraints (4).

Note that the formulation of SAHLP can be extended to the Single Allocation p-Hub Median

Problem (SApHMP) which denotes a variation of SAHLP where a fixed number of nodes are
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required to act as hubs. SApHMP is thus formulated by replacing the fixed set-up costs of opening

the hubs in SAHLP by the requirement of opening exactly p hubs, i.e.,

[SApHMP] : min
∑
i∈N

∑
k∈N

dik (χOi + δDi)xik +
∑

i,k,j,`∈N

αwijdk`xikxj` (5)

s.t.
∑
k∈N

xkk = p (6)

(2), (3), (4),

where Constraint (6) enforces the number of open hubs to be p.

Another variation of SAHLP is the Capacitated Single Allocation Hub Location Problem

(CSAHLP) which introduces capacity constraints at the hub nodes. Given Γk the capacity of node k

if that node is selected as a hub, CSAHLP is formulated as

[CSAHLP] : min
∑
k∈N

fkxkk +
∑
i∈N

∑
k∈N

dik (χOi + δDi)xik +
∑

i,k,j,`∈N

αwijdk`xikxj` (7)

s.t.
∑
i∈N

Oixik ≤ Γkxkk k ∈N (8)

(2), (3), (4),

where Constraints (8) restrict the incoming flow of hub nodes to its capacity limit.

In order to solve SAHLP and its variants, many approaches have been proposed in the literature

to linearize the quadratic objective function. Skorin-Kapov et al. (1996) and Ernst and Krish-

namoorthy (1996) proposed two mixed-integer linear programming (MILP) formulations for the

problem based on a path and a flow representation, respectively. The path-based formulation of

Skorin-Kapov et al. (1996) has O(|V |4) variables and O(|V |3) constraints and its linear program-

ming (LP) relaxation was shown to provide tight lower bounds. However, due to the large number

of variables and constraints, the path-based formulation can only be solved for instances of rela-

tively small sizes. Alternatively, the flow-based formulation uses only O(|V |3) variables and O(|V |2)
constraints to linearize the problem and is typically regarded as the most effective formulation. To

formulate the flow-based SAHLP model (SAHLP-flow), a new variable yik` is defined as the total

amount of flow originating at node i and routed via hubs located at nodes k then `, respectively.

SAHLP-flow is formulated as

[SAHLP-flow]:min
∑
k∈N

fkxkk +
∑
i∈N

∑
k∈N

dik (χOi + δDi)xik +
∑
i∈N

∑
k∈N

∑
`∈N

αdk`yik`

s.t. (2), (3), (4)∑
`∈N

yik`−
∑
`∈N

yi`k =Oixik−
∑
j∈N

wijxjk ∀i, k (9)∑
`∈N

yik` ≤Oixik ∀i, k (10)

yik` ≥ 0 ∀i, k,m. (11)
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Similar to SAHLP, the objective function minimizes the hub setup costs, the cost of collection and

distribution, and the inter-hub transfer costs. Besides Constraints (2), (3), (4) which are used in

SAHLP, Constraints (9) are flow balance constraints while Constraints (10) ensure that a flow is

possible from spoke i to hub k only if node i is allocated to hub k (Correia et al. 2010). Finally,

Constraints (11) indicate the non-negativity restriction on variables y.

3. The stochastic SAHLP under demand uncertainty

The deterministic formulation that is presented in Section 2 assumes that the volume of the flow

between each of the source-sink pairs is known which may be unrealistic in practice. In reality, flow

volumes are stochastic and long term deterministic forecasts are unreliable. Thus the stochastic

SAHLP models stochasticity in the flow by the use of random variables with realization only after

the hubs are selected. The goal is to account for demand uncertainty in the design phase of the

hub and spoke network in order to maintain the operational reliability of the network when the

actual demand is realized.

To model demand uncertainty, we consider for each i, j ∈ N , a random variable wij(ξ), ξ ∈ Ξ

(Ξ is the support of ξ) representing the future flow that needs to be sent from node i to node j.

Moreover, let Oi(ξ) =
∑

j∈N wij(ξ) and Di(ξ) =
∑

j∈N wji(ξ) be random variables representing the

total outgoing flow from node i and the total incoming flow to node i, respectively. Next, two

variations of SAHLP are presented: fixed allocation and variable allocation. The fixed allocation

proposed by Alumur et al. (2012) uses a two-stage stochastic program where the first-stage decisions

correspond to the location and allocation decisions, while in the second stage problem, the flows

are consolidated and routed through the network. We show that the two-stage stochastic program

of SAHLP with fixed allocation is equivalent to solving the deterministic equivalent using the

expected value of the random variables. Then for SAHLP with variable allocation, we propose

a two-stage stochastic program with recourse, where the first-stage decisions correspond to the

location of the hubs and the second-stage decisions correspond to the optimal allocation decisions

and the routing of the commodities.

3.1. Stochastic SAHLP with fixed allocation

Following Alumur et al. (2012), a flow based formulation of SAHLP is considered where the alloca-

tions are first stage decision variables, i.e., the decisions of which nodes are hubs and the allocation

of the spoke nodes to the selected hubs is made before knowing the demands. SAHLP with stochas-

tic demand is then formulated as

SPf : min
∑
k∈N

fkxkk +Eξ[Qf (x, ξ)] (12)

s.t. (2), (3), (4),
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where Eξ denotes the mathematical expectation with respect to ξ ∈Ξ and

Qf (x, ξ) = min
∑
i∈N

∑
k∈N

dik (χOi(ξ) + δDi(ξ))xik +
∑
i∈N

∑
k∈N

∑
`∈N

αdk`yik`

s.t.
∑
`

yik`−
∑
`

yi`k =Oi(ξ)xik−
∑
j

wij(ξ)xjk ∀i, k (13)∑
`

yik` ≤Oi(ξ)xik ∀i, k (14)

yik` ≥ 0 ∀i, k,m. (15)

The first stage decision variables x that denote the hub selection and node allocation are included

in problem SPf while the variables y that denote the flow decisions are second stage decisions and

included in problem Qf (x, ξ). The first term of the objective function (12) represents the total

set-up cost for installing the hubs while the second term evaluates the expected collection, transfer,

and distribution costs. All the constraints have the same meaning as in SAHLP-flow.

Alumur et al. (2012) assumes that the uncertainty that is associated with demands can be

described by a finite set of scenarios each having a known probability. Thus by defining new flow

variables y for each scenario, an equivalent deterministic formulation can be obtained and solved.

In the following theorem, we show that problem SPf regardless of the support Ξ is in fact a

deterministic SAHLP in which each random variable wij(ξ) for each i, j ∈N can be replaced by its

expected values.

Theorem 1. The stochastic program SPf is equivalent to the following expected value program:

min
∑
k∈N

fkxkk +
∑
i∈N

∑
k∈N

dik
(
χEξ[Oi(ξ)] + δEξ[Di(ξ)]

)
xik +

∑
i∈N

∑
k∈N

∑
`∈N

αdk`yik`

s.t. (2), (3), (4)∑
`

yi`k−
∑
`

yik` =Eξ[Oi(ξ)]xik−
∑
j

Eξ[wij(ξ)]xjk ∀i, k (16)∑
`

yik` ≤Eξ[Oi(ξ)]xik ∀i, k (17)

yik` ≥ 0 ∀i, k,m. (18)

Proof. The proof follows from the definition of the y variables as the total amount of flow

originating at a node and routed through the hubs, and the fact that in the second stage problem,

variables x (the hub decisions) are fixed. Thus for any i, k, `, if xik = 0 then yik` = 0, i.e. there will

be no flow originating at node i and routed via hubs located at nodes k and `. If xik = 1, then the

total flow originating at node i and routed via hubs located at nodes k and ` is equal to
∑

j wijxj`.

Therefore, for any value of x, the second stage objective value is

Eξ[Qf (x, ξ)] =
∑
i∈N

∑
k∈N

dik
(
χEξ[Oi(ξ)] + δEξ[Di(ξ)]

)
xik +

∑
i∈N

∑
k∈N

∑
`∈N

αdk` xik
∑
j∈N

Eξ[wij(ξ)]xj`.
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This is true since the x variables are fixed, and thus the summation and the expectation can be

interchanged. By linearizing the objective function using the y variables, the results follow and the

proof is complete.

�

3.2. Stochastic SAHLP with variable allocation

As discussed in Section 3.1, the fixed allocation formulation assumes that the allocation of the

spokes to the hubs cannot be changed when the demand is realized. Alternatively, this section

considers the variable allocation problem where the hubs are chosen before knowing the actual

demand while the allocation is determined when the actual demand is realized. The advantage of

taking variable allocations into account is illustrated in two examples shown in Figures 1 and 2.

Each subfigure shows the choice of the hubs and the allocation from the spokes to the hubs for an

example of the capacitated hub location problem. Figures 1a and 2a show the solution of the fixed

allocation for a case with 5 scenarios. For each of these scenarios the individual spoke allocations

are displayed in Figures 1b–1f and Figures 2b–2f. resulting in an overall decrease of 2.0% (from

387599 to 379783) for the example in Figure 1 and of 8.7% (from 410325 to 374532) for the example

in Figure 2 in the objective function value. We observe in both examples that different hubs are

chosen when variable allocation is used compared to fixed allocation.

The stochastic SAHLP with variable allocation is formulated as a two-stage stochastic program

with recourse. The first-stage decisions are the location of the hubs to be opened while the second-

stage decisions are the optimal allocation of the spoke nodes to the hub nodes as well as the

routing of the flows. To formulate the stochastic SAHLP with variable allocation, we distinguish

the hub selection variables from the allocation variables and define the binary variables zk, k ∈N

to indicate whether a hub is located at node k or not. The problem is then formulated as

SPv : min
∑
k∈N

fkzk +Eξ[Qv(z, ξ)]

s.t.
∑
k∈N

zk ≥ 1 (19)

zk ∈ {0,1} k ∈N, (20)

where Eξ denotes the mathematical expectation with respect to ξ ∈Ξ and

Qv(z, ξ) = min
∑
i,k∈N
i6=k

dik (χOi(ξ) + δDi(ξ))xik

+
∑
i,j∈N

αwij(ξ)
(
dijzizj +

∑
`∈N
`6=j

di`zixj` +
∑
k∈N
k 6=i

dkjxikzj +
∑
k,`∈N
k 6=i,`6=j

dk`xikxj`

)
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s.t.
∑
k∈N
k 6=i

xik = 1− zi i∈N (21)

xik ≤ zk i, k ∈N, i 6= k (22)

xik ∈ {0,1} i, k ∈N, i 6= k. (23)

Constraint (19) is added to force the opening of at least one hub since in any solution of SAHLP

there should be at least one hub. Contrary to the fixed allocation case, wij(ξ) in SPv cannot be

substituted by its expected value in order to obtain an equivalent deterministic problem since the

optimal solution of the second stage depends on the particular realization of the random variables ξ.

A deterministic equivalent formulation of SPv can be obtained by assuming that the random

parameter ξ follows a discrete distribution with finite support Sw = {s1, . . . , sm} and the corre-

sponding probabilities are ps1 , . . . , psm where ps = P (ξ = s), s ∈ Sw. Accordingly, for each scenario

s∈ Sw, wsij denotes the amount of flow from node i to node j, Os
i =
∑

j∈N w
s
ij is the total outgoing

flow from node i, and Ds
i =

∑
j∈N w

s
ji is the total incoming flow to node i. Since the node alloca-

tions are decisions that will be taken in the future when scenario s is observed, the x variables are

redefined as:

xsik =

{
1 if a node i is allocated to a hub located at node k under scenario s∈ Sw
0 otherwise.

The deterministic equivalent formulation of SPv is then stated as:

DEFv : min
∑
k∈N

fkzk +
∑
s∈Sw

ps
∑
i,k∈N
i6=k

csik x
s
ik+

∑
s∈Sw

ps
∑
i,j∈N

αwsij

(
dijzizj +

∑
`∈N
j 6=`

di`zix
s
j` +

∑
k∈N
i6=k

dkjx
s
ikzj +

∑
k,`∈N
i6=k,j 6=`

dk`x
s
ikx

s
j`

)
s.t.

∑
k∈N
i6=k

xsik = 1− zi i∈N,s∈ Sw (24)

xsik ≤ zk i, k ∈N, i 6= k, s∈ Sw (25)

zi ∈ {0,1} ∀i∈N (26)

xsik ∈ {0,1} ∀i, k ∈N,s∈ Sw. (27)

where csik = dik (χOs
i + δDs

i ).

In the following section, an alternative MINLP formulation for the variable allocation SAHLP

is proposed and an exact solution approach based on cutting planes is presented.
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4. A MINLP reformulation and a cutting plane approach

Due to the quadratic structure of DEFv, a natural way to tackle this problem is to lineraize it using

either the path-based (Skorin-Kapov et al. 1996) or the flow-based (Ernst and Krishnamoorthy

1996) representations and solving the resulting MILPs using a commercial solver. However, it is

practically impossible to solve these MILPs for large-size instances in reasonable computational
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(f) Variable Allocations for Scenario 5.

Figure 1 Fixed and Variable Allocations for a 40 node instance. The area of each node is proportional to its

outgoing flow.
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(e) Variable Allocations for Scenario 4.
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(f) Variable Allocations for Scenario 5.

Figure 2 Fixed and Variable Allocations for a 50 node instance. The area of each node is proportional to its

outgoing flow.

times (see Section 5). The L-shaped decomposition is an alternative approach that is typical applied

to solve two-stage stochastic programs with recourse. However, as discussed in Appendix A, its

performance is very poor even in solving medium-size instances.

This section thus proposes a MINLP reformulation of problem DEFv. This new MINLP model

has a special structure that can be exploited to develop an effective solution approach as described

in Section 4.2.
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4.1. MINLP reformulation

The MINLP reformulation of DEFv is

Rv : min
∑
k∈N

fkzk +
∑
s∈Sw

ps
∑
i,k∈N
i6=k

csik x
s
ik+

∑
s∈Sw

ps
∑
i,j∈N

αwsij

(
usiizi +

∑
k∈N
k 6=i

usikx
s
ik + vsijzj +

∑
`∈N
`6=j

vsi`x
s
j`

)
(28)

s.t. (24)− (27)

usik + vsi` ≥ dk` i, k, `∈N, s∈ Sw (29)

u, v unrestricted, (30)

where the quadratic part of the objective function has been replaced by (28), (29), and (30).

Theorem 2. Problem Rv is a reformulation of DEFv.

Proof. We need to show that for any feasible solution (z,x) of DEFv, there exists (u, v) such

that (z,x,u, v) is feasible for Rv with the same objective value. Conversely, for any feasible solution

(z,x,u, v) of Rv, the corresponding (z,x) is feasible for DEFv with the same objective value. For

each s∈ Sw, and i, k ∈N let

Xs
ik =

{
zi if i= k,

xsik if i 6= k.

Given a feasible solution X of the DEFv, then according to constraints (24), for each s∈ Sw, there

exist two possible cases for each i ∈N . In the first case, node i is a hub, i.e., zi = 1 and xik = 0,

for all k ∈N , k 6= i. In the second case, node i is not a hub, i.e., there exist a hub k 6= i such that

xik = 1. Therefore, for each i there exists a h(i) such that for each s ∈ Sw, Xs
ih(i) = 1. Hence, the

value of the objective function of DEFv is given by∑
s∈Sw

ps
∑
i∈N

c̆sih(i) +
∑
s∈Sw

ps
∑
i,j∈N

αwsijdh(i)h(j) (31)

where c̆sih(i) = csih(i) if h(i) 6= i, and c̆sih(i) = fi if otherwise.

Furthermore, for each i, k, `∈N , such that k= h(i) and `= h(j) for some j ∈N with Xjh(j) = 1,

if we set uik + vi` = dk`, then (X,u, v) is feasible for Rv. The value of the objective function of Rv

is then ∑
s∈Sw

ps
∑
i∈N

c̆sih(i) +
∑
s∈Sw

ps
∑
i,j∈N

αwsij

(∑
k∈N

usikX
s
ik +

∑
`∈N

vsi`X
s
j`

)
=∑

s∈Sw

ps
∑
i∈N

c̆sih(i) +
∑
s∈Sw

ps
∑
i,j∈N

αwsij(uih(i) + vih(j)).

which is identical to (31).
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Conversely, consider a feasible solution (X,u, v) of Rv where the inequalities (29) are tight.

Indeed, because of the sign of the objective function, for any feasible solution X there exists a (u, v)

for which the inequalities are tight. In this case X is also feasible solution for DEFv. It remains

to show that both objective values are also identical. This done by the same calculation as above,

just in reverse order.

�

By projecting out the variables u and v, Rv can be rewritten as

MPv : min
∑
k∈N

fkzk +
∑
s∈Sw

∑
i,k∈N
i6=k

ps c
s
ik x

s
ik +

∑
s∈Sw

∑
i∈N

psαη
s
i

s.t. ηsi ≥ψsi (z,x) i∈N, s∈ Sw

(24)− (27),

where for each i∈N , and s∈ Sw

ψsi (z̄, x̄) = max
∑
j∈N

wsij

(
usiiz̄i +

∑
k∈N
k 6=i

usikx̄
s
ik + vsij z̄j +

∑
`∈N
`6=j

vsi`x̄
s
j`

)
s.t. usik + vsi` ≤ dk` k, `∈N (32)

u, v unrestricted. (33)

Note that since the function ψsi (z̄, x̄) for each i∈N , and s∈ Sw is a point-wise maximum of linear

functions of (z̄, x̄) then problem MPv is a convex MINLP reformulation of DEFv.

4.2. Exact solution approach based on outer approximation and cutting planes

Since MPv is convex, and due to the fact that its objective function is linear, then the optimal

solution of MPv always lies on the boundary of the convex hull of the feasible set and therefore

a cutting-plane approach can be used to solve the problem to optimality. More precisely, for a

feasible solution X̄ such that

X̄s
ik =

{
z̄i if i= k,

x̄sik if i 6= k,

ψsi (z̄, x̄) can be approximated by a supporting hyperplane at X̄. Particularly, given πsi ∈ ∂ψsi (z̄, x̄)

the subgradient of ψsi (z̄, x̄) at X̄ and following the approach of Duran and Grossmann (1986),

ψsi (z̄, x̄) can be approximated at X̄ using the following subgradient cuts

ηsi ≥ψsi (z,x)≥ψsi (X̄s) +πsi (X
s− X̄s) i∈N, s∈ Sw. (34)
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Thus MPv can be solved as a mixed integer linear program where cuts (34) are generated in a

branch-and-cut framework.

Given a feasible solution X̄ ∈ [0,1] for each s∈ Sw and i∈N , the cut generating subproblem is

PS(s, i, X̄s): max
∑
j∈N

wsij
(∑
k∈N

X̄s
iku

s
ik +

∑
`∈N

X̄s
j`v

s
i`

)
s.t. usik + vsi` ≤ dk` k, `∈N (35)

usik, v
s
i` ∈R ∀k, `∈N. (36)

We note that PS(s, i, X̄s) is a linear program, and hence can be solved efficiently using a state-

of-the-art optimization solver. However, as shown by the following theorem, the structure of

PS(s, i, X̄s) can be exploited to obtain an optimal solution (ū, v̄) more efficiently compared to

using a linear programming solver.

Theorem 3. Given a solution X̄ ∈ {0,1}, that satisfys constraints (24) and (25), an optimal

solution of subproblem PS(s,i,X̄) can be obtained by setting

v̄si` =
∑
k∈N

dk`X̄
s
ik ∀`∈N (37)

ūsik = min
`∈N

{
dk`− v̄si`

}
∀k ∈N. (38)

Proof. The solution (ū, v̄) is feasible for PS(s,i,X̄s), i.e. for all k, `∈N

usik + vsi` =
∑
k∈N

dk`X̄
s
ik + min

`∈N

{
dkl− v̄si`

}
≤
∑
k∈N

dk`X̄
s
ik + dk`−

∑
k∈N

dk`X̄
s
ik = dk`.

Given dual variables λsikl of Constraints (35), the dual problem of PS(s,i,X̄) is

DS(s, i, X̄s): min
∑
k∈N

∑
`∈N

dk`λ
s
ik`

s.t.
∑
k∈N

λsik` =
∑
j∈N

wijX
s
j` ∀`∈N (39)∑

`∈N

λsik` =
∑
j∈N

wijX
s
ik ∀k ∈N (40)

λsik` ≥ 0 ∀k, `∈N. (41)

Setting the dual variables to

λ̄sik` = X̄s
ik

∑
j

wsijX̄
s
j` k, `∈N, s∈ Sw, i∈N (42)
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leads to a feasible solution to DS(s,i,X̄s). By LP-duality, it then suffices to show that the objective

value of PS(s,i,X̄) at (ū, v̄) matches the objective value of DS(s,i,X̄s) at λ̄, i.e.,

∑
j∈N

wsij
(∑
k∈N

X̄s
ikū

s
ik +

∑
`∈N

X̄s
j`v̄

s
i`

)
=
∑
k∈N

Os
i X̄

s
ikū

s
ik +

∑
j,`∈N

wsijX̄
s
j`v̄

s
i`

=
∑
k∈N

Os
i X̄

s
ik(dk,a(k)−

∑
`∈N

dk,a(k)X̄
s
i`) +

∑
j,`∈N

wsijX̄
s
j`(
∑
k∈N

dk`X̄
s
ik)

=
∑
k∈N

Os
i dk,a(k) X̄

s
ik−

∑
k,`∈N

Os
i d`,a(k) X̄

s
ikX̄

s
i` +

∑
j,`∈N

wsijX̄
s
j`(
∑
k∈N

dk`X̄
s
ik)

=
∑
k,`∈N

dk`X̄
s
ik

∑
j∈N

wsijX̄
s
j` =

∑
k,`∈N

dk`λ̄
s
ik`

where for each k ∈N , a(k) = arg min`∈N
{
dk`− v̄si`

}
.

�

Thus following Theorem 3, the optimal solution ūik and v̄i` of PS(s,i,X̄) and the corresponding

subgradient cut

ηsi ≥
∑
i,j∈N

wsij

(
ūsiizi +

∑
k∈N
k 6=i

ūsikx
s
ik + v̄sijzj +

∑
`∈N
`6=j

v̄si`x
s
j`

)
(43)

are generated without the need of an optimization solver. Since the state-of-the-art optimization

solvers provide a branch-and-cut framework supported by the use of callbacks, a branch-and-cut

approach is adopted to generate cuts (43). In our implementation which is evaluated in the following

section, the violated cuts (43) are added at the root node and at nodes where a candidate incumbent

is available.

Finally we note that, while the focus throughout this paper is on demand uncertainty, the

proposed solution approach is independent of demand uncertainty and can also be applied to

solve problems with uncertainty in allocation costs and flow routing costs which are modelled as

two-stage stochastic programs with recourse.

5. Computational results

This section provides computational experiments to evaluate the proposed cutting plane approach

in solving the stochastic single allocation hub location problem (SAHLP) along with its variants:

the single allocation p-hub median problem (SApHMP) and the capacitated SAHLP problem

(CSAHLP). Details regarding the implementation and the test instances are provided first then

the computational results are presented.
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5.1. Implementation and test instances

The proposed approach is implemented in C++ using GUROBI 7.0 callback framework and the

results are compared to the direct solution of the deterministic equivalent problem (problem DEFv

and its CSHALP and SApHMP variants) using GUROBI with default settings. All the experiments

are conducted using a single Intel Xeon E5-1630v3 (3.7 GHz) processor with 16 gigabytes of RAM

and the computational CPU time is limited to 7200 seconds (two hours) for each test instance.

The test instances that are used are the well known AP instances that are commonly used in the

literature and can be obtained from the OR Library (Beasley 2012). These test instances which

were introduced by Ernst and Krishnamoorthy (1996) are based on the mail flow of the Australian

post. The transportation cost parameters are set to α= 0.75, χ= 3.0, and δ = 2.0 as specified in

the AP dataset.

5.2. Scenario generation

To generate the different flow scenarios for each source-sink pair, we make the reasonable assump-

tion that the flow takes the form of a discrete unit (ex: number of parcels, number of pallets, etc.)

and is generated by independent customers. Particularly, we assume that there are C customers

that are sending goods between two particular nodes where each customer c∈C sends a single unit

in a day with a probability pc. According to these assumptions and as shown in Harremoës (2001),

a Poisson distribution is the most appropriate distribution to model the flow between two nodes

(the Poisson distribution provides the maximum entropy). Since some nodes might have high or

low demands, we also consider for each node i ∈N a multiplicative factor πi which denotes the

deviation from the base case and assume that πi is uniformly distributed in the interval [0.5, 1.5].

Thus for every source-sink pair (i, j), we assume that the amount of flow is given by a probability

distribution P(πiπjwij) on Z≥0, where P(λ) denotes the Poisson distribution with expected value λ.

5.3. Computational evaluation of the cutting plane approach

This section provides detailed computational results that illustrate the performance of the proposed

cutting plane in solving SAHLP, SApHMP, and CSAHLP. The proposed cutting plane approach

is compared to the direct solution of the deterministic equivalent formulations using GUROBI. In

all the computational test that are presented in this section, 5 scenarios generated randomly as

discussed in Section 5.2 are considered. The following details are reported in Tables 1–7:

N : Number of nodes in the network.
Type : Type of the instance (applies only to SAHLP and CSHALP)

p : Desired number of hubs (applies only to SApHMP).
CUTS0 : Number of cuts that are generated by the cutting plane approach at the root node.
CPU0 : Computational time spent on generating cuts at the root node.
CUTS : Total number of cuts generated in the branch-and-cut tree.
Nodes : Number of nodes explored in the branch-and-cut tree.
CPU : Total computational time.
Opt : Objective function value.
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Two types of instances denoted by L and T are tested for SAHLP. As detailed in Ernst and

Krishnamoorthy (1999), the instances with type T have higher fixed costs for the nodes with large

flows while the instances of type L do not exhibit this trend. For CSHALP, four types of instances

denoted by LL, LT, TL, and TT are tested (Additional details about the characteristics of the

instances can be found in Ernst and Krishnamoorthy (1999)). The first letter denotes the fixed cost

type similar to SAHLP while the second letter indicates tight (T) and loose (L) node capacities.

In the reported results, all CPU times are given in seconds. The optimal objective function values

are displayed for the cases that were solved within the time limit whereas the best lower and upper

bounds are displayed along with the resulting percentage gap for the cases where the time limit

was exceeded. The instances that are marked by bold indicate the approach that outperforms the

others in terms of computational time if the problem is solved within the time limit or in terms of

the optimality gap if the time limit is reached.

5.3.1. Single allocation hub location problem The results for SAHLP are reported in

Table 1. As shown, the proposed cutting plane approach is capable of solving the problem to

optimality up to sizes of 200 nodes within the two hours time limit while GUROBI reaches the time

limit starting with 125 nodes for the (L) instances and 175 nodes for the (T) instances. The (L)

instances appear to be more challenging to solve than the (T) instances for both the cutting plane

approach and GUROBI. For the cutting plane approach, all the (T) instances are solved in lower

computational time than the (L) instances. The results also show that the majority of the cuts

are generated at the root node. On average 70% of the cuts are generated at the root node while

the remaining cuts are generated at the other nodes of the tree. For the cutting plane approach,

the total number of nodes that are explored is significantly higher than GUROBI where several

instances are solved to optimality at the root node or within very few nodes. However this comes

at the expense of the total computational time where the proposed cutting plane approach solves

the problems at a fraction of the time that is taken GUROBI. The geometric mean of the ratio

of the computational times shows that GUROBI is on average 20 times slower than the proposed

cutting plane approach.

5.3.2. Single Allocation p-Hub Median Problem Another variant of SHALP is the

Single Allocation p-Hub Median Problem. As detailed in Section 2, SApHMP replaces the cost of

opening a hub by a constraint that requires exactly p nodes to act as hubs in the network. Table 2

presents the computational performance of the proposed cutting plane algorithm as well as that of

GUROBI for solving SApHMP. For each instance, the desired number of hubs p is varied between

2 and 5. The proposed cutting plane algorithm consistently outperforms GUROBI and is able to

solve 37 instances of the 44 tested instances to optimality within the two hours time limit. For
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Table 1 Computational results for SAHLP.

Instance Cutting Plane GUROBI

N type CUTS0 CPU0 CUTS Nodes CPU Opt. Nodes CPU Opt.

25 L 197 0 239 332 1 203271 0 8 203271
25 T 125 0 125 0 0 240689 0 4 240689
40 L 800 2 1153 171 5 257241 5 250 257241
40 T 554 1 930 56 3 307257 0 74 307257
50 L 802 3 1105 521 20 219345 0 161 219345
50 T 235 0 235 0 1 277276 0 120 277276
60 L 625 4 890 521 17 230305 0 307 230305
60 T 571 3 1155 1664 26 275062 12 459 275062
75 L 1467 7 2258 2418 236 271648 40 2059 271648
75 T 1096 7 1259 1034 21 325953 0 549 325953
90 L 990 11 2049 714 339 244711 3 4029 244711
90 T 1142 11 1400 3 16 278762 0 840 278762

100 L 1431 15 1781 1439 210 251871 0 2563 251871
100 T 488 11 794 5 14 331972 0 1472 331972
125 L 2172 30 3300 3863 376 233366 - > 7200∗ -
125 T 605 28 795 522 47 262691 0 3002 262691
150 L 1784 44 2137 1584 589 241412 - > 7200∗ -
150 T 748 38 960 520 64 256235 0 5532 256235
175 L 2000 126 3117 2937 953 232238 - > 7200∗ -
175 T 1038 165 2016 780 323 251119 - > 7200∗ -
200 L 2275 244 4690 1484 3555 251050 - > 7200∗ -
200 T 1823 237 3891 3828 1892 260868 - > 7200∗ -

Geometric Mean: 1 19.89

-: time limit of 7200 seconds reached at pre-solve stage.
*: 7200 was used when computing the geometric mean.

the instances that were not solved to optimality, the remaining gap between the lower and upper

bounds is relatively small ranging between 0.3% and 3.6% for the tested instances. Computing the

geometric mean of the ratio of the computational times shows that the proposed cutting plane

algorithm is 5 times faster than GUROBI in solving the tested SApHMP instances. GUROBI was

able to solve 23 instances to optimality within the 2 hours time limit while for the remaining 21

instances which are mainly with 100 nodes or more, the time limit was reached at the pre-solve

stage of the problem.

5.3.3. Capacitated Single Allocation Hub Location Problem As discussed in Section 2,

CSAHLP refers to SAHLP with an additional capacity constraint on the hubs. The addition of a

capacity constraint is known to significantly complicate the problem as flow is rerouted to accom-

modate the capacity limits. The problem thus becomes more challenging computationally. The

results for CSAHLP which are reported in Table 3 show that the problem is more computationally

challenging than SAHLP with the proposed cutting plane approach being able to solve 24 of the 44

instances to optimality within the two hours time limit while GUROBI is capable of solving only

17. Similar to SAHLP and SApHMP, the majority of the cuts are generated at the root node of

the branch-and-cut tree. In terms of computational time, the geometric mean of the computational

times shows that the proposed cutting plane algorithm is 5 times faster than GUROBI in solving

the tested CSAHLP instances. We note though that GUROBI was able to solve 5 instances in
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Table 2 Computational results for SApHMP.

Instance Cutting Plane GUROBI

N p CUTS0 CPU0 CUTS Nodes CPU Opt. Nodes CPU Opt.

25 2 359 0 509 256 1 146259 0 7 146259
25 3 317 0 412 1169 2 125011 0 8 125011
25 4 344 0 523 1267 2 110716 0 16 110716
25 5 410 0 573 459 1 97740 0 11 97740
40 2 545 1 796 830 22 197565 30 146 197565
40 3 749 1 1361 1821 66 175623 22 263 175623
40 4 590 1 1453 1254 91 159074 128 475 159074
40 5 566 1 1279 26605 247 144945 323 571 144945
50 2 291 2 373 519 5 157233 0 132 157233
50 3 468 3 628 396 8 139851 0 185 139851
50 4 696 2 927 174 5 124972 0 176 124972
50 5 675 2 839 260 6 113818 0 171 113818
60 2 722 4 920 558 23 181998 0 295 181998
60 3 829 4 1467 1170 230 162309 0 663 162309
60 4 876 4 1671 5747 211 148832 11 1771 148832
60 5 952 5 1981 2284 1605 137135 50 2772 137135
75 2 556 7 1157 732 156 217498 3 1587 217498
75 3 1170 9 2150 1112 166 192734 3 2566 192734
75 4 1184 8 1905 1608 180 175058 23 2969 175058
75 5 1069 6 1663 1325 120 159837 0 1270 159837
90 2 651 11 1634 1003 601 200327 45 3513 200327
90 3 919 13 2201 2450 278 176290 - > 7200∗ -
90 4 1432 12 2017 1374 426 158724 47 3889 158724
90 5 1589 12 3196 3417 1174 149298 - > 7200∗ -

100 2 643 13 1052 940 140 191461 3 3120 191461
100 3 1633 19 3649 562 > 7200∗ (170047, 173101; 1.8%) - > 7200∗ -
100 4 1635 17 2307 4849 413 154798 - > 7200∗ -
100 5 1480 15 3320 9513 1379 144208 - > 7200∗ -
125 2 1498 32 2796 2649 683 186248 - > 7200∗ -
125 3 2207 39 4811 5275 1709 166765 - > 7200∗ -
125 4 2255 32 4540 6061 2352 153478 - > 7200∗ -
125 5 1900 30 4981 10349 6530 143680 - > 7200∗ -
150 2 1461 38 2347 979 221 196615 - > 7200∗ -
150 3 2096 47 3920 2068 1147 175416 - > 7200∗ -
150 4 1225 42 2869 11768 1068 158099 - > 7200∗ -
150 5 1722 51 3210 55183 1942 144802 - > 7200∗ -
175 2 1459 274 2086 19584 3195 186457 - > 7200∗ -
175 3 2643 204 4259 522 > 7200∗ (165675, 168716; 1.8%) - > 7200∗ -
175 4 2334 170 4474 525 > 7200∗ (150052, 154176; 2.7%) - > 7200∗ -
175 5 2412 201 4921 522 > 7200∗ (139550, 144827; 3.6%) - > 7200∗ -
200 2 1843 213 2893 947 4283 203691 - > 7200∗ -
200 3 2835 225 3577 701 > 7200∗ (178223, 178832; 0.3%) - > 7200∗ -
200 4 2477 243 5599 519 > 7200∗ (162189, 165820; 2.2%) - > 7200∗ -
200 5 2866 264 5492 518 > 7200∗ (151382, 156660; 3.4%) - > 7200∗ -

Geometric Mean: 1 5.49

-: time limit of 7200 seconds reached at pre-solve stage.
*: 7200 was used when computing the geometric mean.

less computational time than the cutting plane approach and achieved a less gap for one instance.

For the 20 instances that were not solved to optimality by the cutting plane approach, the largest

remaining gap is 79% while GUROBI was not able to pass the pre-solve stage for 20 instances.

5.3.4. Summary of the results This section provides a summary of the computational

performance of the proposed cutting plane approach compared to the performance of GUROBI in

solving SAHLP, SApHMP, and CSAHLP. The performance profiles (Dolan and Moré 2002) shown

in Figure 3 were constructed to show, for each problem type, the percentage number of instances
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Table 3 Computational results for CSAHLP.

Instance Cutting Plane GUROBI

N type CUTS0 CPU0 CUTS Nodes CPU Opt. Nodes CPU Opt.

25 LL 197 0 234 209 1 203271 0 8 203271
25 TL 382 0 841 190 3 262630 92 46 262639
25 LT 476 0 1210 1077 569 229861 260 62 229861
25 TT 464 0 1230 2037 195 289729 2697 143 289729
40 LL 521 2 1274 574 504 258881 7 184 258881
40 TL 533 1 900 868 47 309217 8 104 309217
40 LT 702 1 1611 5440 778 288546 3825 3259 288546
40 TT 640 2 1519 219441 > 7200∗ (379266, 379805; 0.1%) 17674 > 7200∗ (378017, 382241; 1.1%)
50 LL 892 3 1071 536 19 219852 0 113 219852
50 TL 538 4 921 1286 63 296194 273 1157 296194
50 LT 726 5 1765 8403 1953 251264 3772 5443 251264
50 TT 647 5 958 331900 6993 374532 8501 6478 374413
60 LL 844 5 1689 1431 168 229586 11 692 229596
60 TL 885 6 1615 7807 127 270405 326 580 270405
60 LT 936 9 2437 85420 > 7200∗ (273282, 274154; 0.3%) 525 > 7200∗ (270138, 286505; 5.7%)
60 TT 832 8 1742 29586 3440 415946 64 1322 381352
75 LL 1096 11 2301 575 > 7200∗ (276436, 327569, 15.6%) 318 > 7200∗ (279703, 322028; 13.1%)
75 TL 455 8 665 576 20 339693 0 547 339693
75 LT 1105 14 2808 14092 > 7200∗ (302231, 309403; 2.3%) - > 7200∗ -
75 TT 926 13 1726 160886 > 7200∗ (428650, 429247; 0.1%) 413 > 7200∗ (424475, 555546; 23.6%)
90 LL 1194 16 1862 2240 1085 245927 2 3832 245927
90 TL 1263 21 2173 141336 1842 326210 - > 7200∗ -
90 LT 1498 38 2779 2289 > 7200∗ (281331, 306430; 8.2%) - > 7200∗ -
90 TT 1306 33 2301 4630 > 7200∗ (422624, 544419; 22.3%) - > 7200∗ -

100 LL 1928 23 2894 5727 1276 258412 - > 7200∗ -
100 TL 1440 18 2261 42939 391 382020 1020 > 7200∗ (381692, 382125; 0.1%)
100 LT 1940 42 2470 560 > 7200∗ (270716, 303620; 10.9%) - > 7200∗ -
100 TT 1357 54 2249 5106 > 7200∗ (510734, 686823; 25.6%) - > 7200∗ -
125 LL 1778 96 2968 6110 2013 242470 - > 7200∗ -
125 TL 635 38 793 533 80 250400 4 3675 250400
125 LT 2298 109 3173 540 > 7200∗ (260806, 271381; 3.9%) - > 7200∗ -
125 TT 1356 98 1470 4464 700 304256 - > 7200∗ -
150 LL 2818 138 4317 547 > 7200∗ (228864, 232100; 1.4%) - > 7200∗ -
150 TL 3066 132 3877 7858 1377 261916 - > 7200∗ -
150 LT 2275 221 3294 541 > 7200∗ (238671, 269319; 11.4%) - > 7200∗ -
150 TT 2176 225 3408 685 > 7200∗ (291676, 376356; 22.5%) - > 7200∗ -
175 LL 2815 270 6390 540 > 7200∗ (236107, 238449; 1.0%) - > 7200∗ -
175 TL 1822 236 2551 2998 1813 250192 - > 7200∗ -
175 LT 3269 506 4689 561 > 7200∗ (249586, 254953; 2.1%) - > 7200∗ -
175 TT 2187 989 3030 1047 > 7200∗ (287615, 318347; 9.7%) - > 7200∗ -
200 LL 3224 1085 4669 516 > 7200∗ (253512, 287265; 11.7%) - > 7200∗ -
200 TL 2866 491 4353 519 > 7200∗ (262228, 1247994; 79.0%) - > 7200∗ -
200 LT 2854 631 4720 515 > 7200∗ (272447, 284455; 4.2%) - > 7200∗ -
200 TT 3042 698 4664 564 > 7200∗ (307127, 324974; 5.4%) - > 7200∗ -

Geometric Mean: 1 4.91

-: time limit of 7200 seconds reached at pre-solve stage.
*: 7200 was used when computing the geometric mean.

that were solved in less than the computational time that is given by the x-axis of the plot. As

can be seen from Figure 3, the cutting plane approach outperforms GUROBI for all the problem

variants. Furthermore the performance profiles clearly shows that CSAHLP is the most challenging

to solve for both, the proposed cutting plane approach and GUROBI.

5.4. Increasing the computational time limit

As discussed earlier, CSHALP is more computationally challenging than SAHLP and SApHMP

and a relatively large optimality gap (up to 79%) remained for some of the instances that are
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Figure 3 Performance profiles for SAHLP, SApHMP, CSAHLP

presented in Table 3. For those instances that were not solved to optimality using the proposed

cutting plane approach, the imposed computational time limit is increased to 4 hours and the

corresponding results are summarized in Table 4. Increasing the computational time leads to the

solution of only 2 of the 20 previously unsolved instances. Overall, the average gap decreased from

11.9% to 6.6%. While increasing the computational time limit beyond 4 hours might potentially

lead to the solution of the remaining instances, future research investigating a customized approach

for the particular case of CSHALP can potentially be more promising in solving larger instances.
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Table 4 Computational results with 4 hours time limit for CSAHLP

Instance Cutting Plane (2 hours time limit) Cutting Plane (4 hours time limit)

N Type CUTS Nodes Opt. CUTS Nodes Opt.

40 TT 1519 219441 (379266, 379805; 0.1%) 1519 404238 (379657, 379783; 0.0%)
60 LT 2437 85420 (273282, 274154; 0.3%) 2439 269080 (273535, 274075; 0.2%)
75 LL 2301 575 (276436, 327569; 15.6%) 2802 86069 284389
75 LT 2808 14092 (302231, 309403; 2.3%) 2905 88886 (303257, 303479; 0.1%)
75 TT 1726 160886 (428650, 429247; 0.1%) 1728 297994 (428991, 429205; 0.0%)
90 LT 2779 2289 (281331, 306430; 8.2%) 3799 74295 (288402, 289156; 0.3%)
90 TT 2301 4630 (422624, 544419; 22.3%) 2893 41525 (428066, 428432; 0.1%)

100 LT 2470 560 (270716, 303620; 10.9%) 2946 105759 279161
100 TT 2249 5106 (510734,686823; 25.6%) 2562 24373 (511935, 591384; 13.4%)
125 LT 3173 540 (260806, 271381; 3.9%) 5308 10403 (267536, 269486; 0.7%)
150 LL 4317 547 (228864, 232100; 1.4%) 4317 578 (228864, 232100; 1.4%)
150 LT 3294 541 (238671, 269319; 11.4%) 3294 551 (238692, 269319; 11.4%)
150 TT 3408 685 (291676, 376356; 22.5%) 3939 14090 (301355, 303188; 0.6%)
175 LL 6390 540 (236107, 238449; 1.0%) 6390 572 (236107, 238449; 1.0%)
175 LT 4689 561 (249586, 254953; 2.1%) 4689 587 (249616, 254953; 2.1)%
175 TT 3030 1047 (287615, 318347; 9.7%) 3636 131390 (294231, 294528; 0.1%)
200 LL 4669 516 (253512, 287265; 11.7%) 4669 520 (253545, 287265; 11.7%)
200 TL 4353 519 (262228, 1247994; 79.0%) 4353 526 (262558, 1247994; 79.0%)
200 LT 4720 515 (272447, 284455; 4.2%) 4720 520 (272569, 284455; 4.2%)
200 TT 4664 564 (307127, 324974; 5.4%) 4664 607 (307233, 324974; 5.5%)

Minimum Gap: 0.1% 0%
Average Gap: 11.9% 6.6%

Maximum Gap: 79.0% 79.0%
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Table 5 Effect of Number of Scenarios on the Cutting Plane Approach (SAHLP).

N Type #Scenarios CUTS0 CPU0 CUTS Nodes CPU

25 L 5 197 0 239 332 1
25 L 10 627 1 719 521 5
25 L 15 1123 2 1624 36 3
25 L 20 291 0 291 0 1
25 L 25 0 0 0 0 1

25 T 5 125 0 125 0 0
25 T 10 0 0 0 0 0
25 T 15 0 0 0 0 0
25 T 20 0 0 0 0 0
25 T 25 0 0 0 0 0

50 L 5 802 3 1105 521 20
50 L 10 1338 5 1926 646 102
50 L 15 1922 8 2363 9371 78
50 L 20 2726 14 5059 1947 618
50 L 25 3351 14 4089 12621 1231

50 T 5 235 1 235 0 1
50 T 10 1157 6 1889 576 36
50 T 15 1807 10 3130 13115 499
50 T 20 2446 13 3466 525 138
50 T 25 1788 18 4350 170 38

5.5. Effect of Additional Scenarios

The results of the prior sections included 5 scenarios. While this choice of the number of scenarios

is consistent with the literature such as Alumur et al. (2012) where also 5 scenarios are considered,

it is expected that the capabilities of solving the instances to optimality is strongly dependent on

the number of scenarios that are considered. Thus this section evaluates the impact of increasing

the number of scenarios on the computational performance of the proposed cutting plane approach.

Since, as expected the computational time increases relatively quickly as the number of scenarios

increases, only results for the instances with 25 and 50 nodes are reported since the majority of

these instances can be solved to optimality within the time limit as the number of scenarios is

varied from 5 to 25. The results for SAHLP, CSAHLP, and SApHMP which are summarized in

Tables 5–7, respectively, show that the increase in the number of scenarios consistently leads to an

increase in the number of cuts that are generated at the root node as well as the full branch-and-cut

tree. The general trend for the overall computational time for SAHLP, SApHMP, and CSAHLP

is also increasing as the number of scenarios increases. CSAHLP remains the most challenging to

solve where instances with 50 nodes and 10 or more scenarios fail to solve within the time limit.

While for SAHLP and SApHMP all the instances with 25 and 50 nodes are solved to optimality,

the quick increase in computational time is noticeable particularly for SApHMP with p= 5 where

the computational time increased from 6 seconds to 1141 seconds for the case with 50 nodes as the

number of scenarios increased from 5 to 25.
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Table 6 Effect of Number of Scenarios on the Cutting Plane Approach (SApHMP).

N Type #Scenarios CUTS0 CPU0 CUTS Nodes CPU

25 2 5 197 0 234 209 0
25 2 10 630 1 717 1024 4
25 2 15 861 1 1088 1180 105
25 2 20 1312 21 2770 1110 39
25 2 25 1546 61 4157 677 361

25 3 5 382 0 841 190 3
25 3 10 781 2 1510 433 10
25 3 15 955 3 2542 575 14
25 3 20 1436 17 2512 630 30
25 3 25 1807 19 2506 757 40

25 4 5 476 0 1210 1077 556
25 4 10 926 1 2128 1592 695
25 4 15 1377 4 2966 1091 2113
25 4 20 1656 16 4066 2775 2167
25 4 25 2021 10 4673 11092 2613

25 5 5 464 0 1230 2037 195
25 5 10 824 1 2175 33226 753
25 5 15 1219 4 2908 25787 1936
25 5 20 1562 8 4197 18971 2225
25 5 25 1553 8 4427 44105 1759

50 2 5 291 2 373 519 6
50 2 10 594 5 1110 536 19
50 2 15 1979 10 2337 542 204
50 2 20 2639 16 3005 592 416
50 2 25 1346 17 1908 543 60
50 3 5 468 3 628 396 8
50 3 10 885 6 1410 727 337
50 3 15 1730 10 2548 1785 240
50 3 20 3015 14 3699 3282 597
50 3 25 2933 21 4814 747 933
50 4 5 696 2 927 174 5
50 4 10 1532 5 2007 564 462
50 4 15 2337 9 2918 882 200
50 4 20 3346 15 3852 2951 980
50 4 25 3289 16 5084 3895 957

50 5 5 675 2 839 260 6
50 5 10 1296 6 1949 610 120
50 5 15 1966 9 2929 684 343
50 5 20 3251 14 3945 7644 689
50 5 25 3168 14 4717 2139 1141
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Table 7 Effect of Number of Scenarios on the Cutting Plane Approach (CSAHLP).

N Type #Scenarios CUTS0 CPU0 CUTS Nodes CPU

25 LL 5 359 0 509 256 1
25 LL 10 633 0 744 519 3
25 LL 15 904 1 1433 519 7
25 LL 20 824 4 1406 121 6
25 LL 25 1040 5 1554 545 520

25 LT 5 344 0 523 1267 3
25 LT 10 534 1 638 231 2
25 LT 15 606 1 709 526 5
25 LT 20 570 2 678 532 10
25 LT 25 637 3 756 521 9

25 TL 5 317 0 412 1169 2
25 TL 10 788 1 1133 1174 265
25 TL 15 860 1 1913 847 436
25 TL 20 1119 2 2032 903 837
25 TL 25 1892 5 2741 572 682

25 TT 5 410 0 573 459 1
25 TT 10 528 1 655 531 9
25 TT 15 945 0 1152 717 26
25 TT 20 986 3 1221 530 65
25 TT 25 1026 3 1273 538 79

50 LL 5 892 4 1071 536 22
50 LL 10 1458 6 1896 841 473
50 LL 15 2072 15 3398 3530 1282
50 LL 20 3206 27 6830 18653 > 7200
50 LL 25 4108 26 6105 113754 > 7200

50 LT 5 726 4 1765 8403 1840
50 LT 10 1793 12 3075 55517 > 7200
50 LT 15 2573 22 4937 87266 > 7200
50 LT 20 3373 34 6350 45167 > 7200
50 LT 25 3460 60 5175 764 > 7200

50 TL 5 538 4 921 1286 60
50 TL 10 1524 9 3050 928 92
50 TL 15 1262 17 3054 6747 357
50 TL 20 3143 35 5589 570 > 7200
50 TL 25 3495 47 7969 723 > 7200

50 TT 5 647 5 958 331900 6216
50 TT 10 1419 14 2989 141965 > 7200
50 TT 15 1965 27 4587 69687 > 7200
50 TT 20 2983 39 6147 21270 > 7200
50 TT 25 3488 64 5303 7923 > 7200
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(a) Performence plot for SAHLP
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(b) Performence plot for SApHMP
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(c) Performence plot for CSAHLP
Figure 4 Variable allocation vs fixed allocation performance profiles.

5.6. Variable Allocation vs Fixed Allocation

The variable allocation problem that is the main focus of this paper is computationally more

challenging to solve than the fixed allocation problem. To illustrate this, the computational time

for solving SAHLP, SApHMP, and CSAHLP with variable allocation is compared to solving the

same problems with fixed allocation. To solve the fixed allocation variation, the cutting plane

approach that is proposed in Section 4 is modified by using the expected demand value (following

Theorem 1) and replacing xsik in MPv by xik, thus forcing all the allocations to be the same in all the

scenarios. The same instances that are detailed in Tables 1–3 are solved with fixed allocation and

the performance profiles that are shown in Figure 4 show the number of instances that were solved

in less than the computational time that is given by the x-axis of the plot. The performance profiles

clearly show that for SAHLP, SApHMP, and CSAHLP the variable allocation is significantly more

challenging than fixed allocation. For SAHLP, Figure 4a shows that all the instances for the fixed

allocation are solved in less than 50 seconds while the majority of the instances for the variable
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allocation consume more time. The same result is observed in Figure 4b for SApHMP where the

majority of the instances are solved in less than 1000 seconds of computational time for the fixed

allocation case while the the instances for the variable allocation case are more challenging. Finally

as shown in Figure 4c, CSAHLP with variable allocation is the most challenging while for the fixed

allocation all the instances are solved to optimality.

6. Conclusion

This paper presented the single allocation hub location problem with variable allocation and pro-

posed a mixed-integer nonlinear programming formulation and a customized solution approach

based on cutting planes. As shown in the paper the variable allocation problem is significantly

more challenging to solve that the fixed allocation problem as the latter can be solved by only

considering the expected values of the random variables. The proposed cutting plane approach is

implemented using a branch-and-cut framework where the cuts are efficiently separated without

the need to solve a subproblem using an optimization solver. While only demand uncertainty was

considered in this paper, the proposed approach is independent of the demand uncertainty and

can be applied to the cases that include uncertainty in the allocation costs and flow routing costs.

Extensive computational tests on instances from the literature highlighted the advantages of the

proposed approach compared to L-shaped decomposition and the direct solution of the determin-

istic equivalent formulation using GUROBI.
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Appendix A: L-Shaped Decomposition

The L-shaped decomposition is a common approach to solve two-stage stochastic programs with recourse with

a finite number of realizations. In this Appendix, we illustrate the application of the L-shaped decomposition

to SAHLP. As detailed next, the L-shaped decomposition takes advantage of the decomposable structure of

the problem however the overall computational performance fails to compete with the cutting plane approach

that was proposed in Section 4.

A.1. Decomposing the Problem

Applying the L-shaped decomposition to DEFv decomposes the problem into an integer master problem

and a binary quadratic subproblem. The hub location decisions, i.e. the z variables, are incorporated in the

master problem, and then for a given choice of location variables ẑ, m subproblems are solved to obtain the

corresponding optimal values of the second stage allocation variables. Particularly, by projecting DEFv on

the space defined by the z variables, the following master problem is obtained:

MPv : min
∑
k∈N

fkzk +
∑
s∈Sw

psηs

s.t. (19), (20)

ηs ≥ φs(z),

where φs(z) is the minimum allocation and routing costs for the current locations z under scenario s. Note

that constraints (19) and (20) are enough to ensure feasibility and φs(z) is bounded.

A natural way to solve MPv is to find an affine function πT
s z+π0

s that underestimates φs(z), i.e. πT
s z+π0

s ≤
φs(z), on the feasible region such that the estimate is tight at the optimal solution z∗. The integer L-shaped

cuts (Laporte and Louveaux 1993) provide such an affine function. Let H be the index set of the chosen

hubs at the first stage and Ls a known lower bound on φs(z), then the following integer optimality cut at ẑ

is obtained

ηs ≥ (φ̄s(ẑ)−Ls)
(∑

i∈H

zi−
∑
i/∈H

zi + 1− |H|
)

+Ls s∈ Sw. (44)

Given a feasible solution (ẑ, η̂s) of MPv, the corresponding integer L-shaped cuts are added to the master

problem. Iterating the procedure provides an exact solution method in the spirit of Benders’ decomposition.

However, given that at each iteration of the algorithm, m binary quadratic programs (or their corresponds

MILPs) are solved, the integer L-shaped cuts can be complemented with other inequalities. One way to

construct such inequalities is to use the subgradient cuts that are given by the continuous relaxation of φs(z).

For each s ∈ Sw, let φ̄s(z) represent the continuous relaxation of φs(z) and us ∈ ∂φ̄s(ẑ) be a subgradient of

φ̄(s) at ẑ, then the subgradient cut is given by

ηs ≥ φ̄s(ẑ) +us(z− ẑ) s∈ Sw. (45)

The L-shaped decomposition is implemented in a branch-and-cut framework similar to the cutting plane

approach of Section 4 such that the violated cuts (44) and (45) are added at the root node and at nodes

where a candidate incumbent is available. If no violated cut exist, then the algorithm proceeds by branching

on one of the binary variables z that has a non-binary value at the current node of the tree. An optimal

solution is reached when all the nodes in the branching tree are fathomed.
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A.2. Solving the Subproblem

At each node of the Branch-and-Bound tree, an optimal solution ẑ at that node of the tree is obtained.

To solve, the corresponding subproblem which is a binary quadratic program, we adapt the flow-based

linearization technique of Ernst and Krishnamoorthy (1996) to obtain an equivalent MILP reformulation.

Thus for a given s∈ Sw, the following primal subproblem PS(ẑ, s) is solved

φs(ẑ) = min
∑

i,k∈N
i6=k

c̄sik x
s
ik +

∑
i,k∈N
i6=k

∑
`∈N

αdk`y
s
ik`

s.t.
∑

k∈N:k 6=i

xs
ik = 1− ẑi ∀i∈N (46)

xs
ik ≤ ẑk ∀i, k ∈N, i 6= k (47)∑

`∈N

ysik`−
∑
`∈N
`6=i

ysi`k =Os
ix

s
ik−

∑
j∈N:j 6=k

ws
ijx

s
jk−ws

ikẑk ∀i, k, i 6= k (48)

∑
`∈N

ysik` ≤Os
ix

s
ik ∀i, k, i 6= k (49)

xs
ik ∈ {0,1} ∀i, k ∈N, i 6= k

ysik` ≥ 0 ∀i, k, `∈N.

where for each i, k ∈N , i 6= k and s∈ Sw

c̄sik = csik +
∑
`∈N

αws
i`dk`ẑ`.

Note that because of constraints (19), PSub(ẑ, s) is always feasible and integer optimality cuts (44) are

generated by solving PS(ẑ, s) for each s∈ Sw. Furthermore, to obtain the subgradient cuts (45), consider the

LP relaxation of PS(ẑ, s) and let (x̂, ŷ) be the optimal solution. Moreover, let β̂s
i , λ̂s

ik, µ̂s
ik, and v̂sik be the

optimal dual variables associated with constraints (46), (47), (48), and (49), respectively. The subgradiant

cut at (x̂, ŷ) is then

ηs ≥
∑
k∈N

β̂s
k(1− zk) +

∑
i,k∈N
i6=k

(λ̂s
ik−ws

ikµ̂
s
ik)zk. (50)

A.3. Computational Evaluation

The L-shaped decomposition is implemented in C++ using GUROBI 6.5 callback framework. The results

for SAHLP and SApHMP are shown in Tables 8 and 9, respectively. These results are based on the same

dataset with the same 5 scenarios as the ones used in Section 5. The results show that the cutting plane

approach consistently outperforms the L-shaped decomposition which also performs poorly compared to

Gurobi. Several SHALP and SApHMP were not solved to optimality within the 2 hours time limit using the

L-shaped method though an advantage over Gurobi is that upper and lower bounds are returned for all the

instances. We note that CSAHLP was not evaluated due to the fact that the L-shaped method performs

poorly on SAHLP and SApHMP which are relatively less computationally challenging while CSAHLP is

more challenging and the application of the L-shaped approach requires the generation of feasibility cuts to

eliminate capacity violations.
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Table 8 L-Shaped Decomposition Computational Results for SAHLP.

Instance GUROBI L-Shaped Decomposition Cutting Plane

N type Nodes CPU Opt. CUTS Nodes CPU Opt. CUTS Nodes CPU Opt.

25 L 0 8 203271 194 369 151 203271 239 332 1 203271
25 T 0 4 240689 39 57 40 240689 125 0 0 240689
40 L 5 250 257241 890 3001 2099 257241 1153 171 5 257241
40 T 0 74 307257 65 82 149 307257 930 56 3 307257
50 L 0 161 219345 425 1316 1766 219345 1105 521 20 219345
50 T 0 120 277276 115 162 548 277276 235 0 1 277276
60 L 0 307 230305 600 1235 4496 230305 890 521 17 230305
60 T 12 459 275062 95 89 963 275062 1155 1664 26 275062
75 L 40 2059 271648 450 1247 > 7200 (244221, 272031; 10.2%) 2258 2418 236 271648
75 T 0 549 325953 135 265 1299 325953 1259 1034 21 325953
90 L 3 4029 244711 515 1120 > 7200 (215722, 257351; 16.2%) 2049 714 339 244711
90 T 0 840 278762 165 207 4629 278762 1400 3 16 278762

100 L 0 2563 251871 310 871 > 7200 (219295, 262362; 16.4%) 1781 1439 210 251871
100 T 0 1472 331972 65 102 2211 331972 794 5 14 331972
125 L - > 7200 - 225 510 > 7200 (189134, 243116; 22.2%) 3300 3863 376 233366
125 T 0 3002 262691 125 222 6934 262691 795 522 47 262691
150 L - > 7200 - 190 510 > 7200 (112285, 242871; 53.8%) 2137 1584 589 241412
150 T 0 5532 256235 60 195 6242 256235 960 520 64 256235
175 L - > 7200 - 105 512 > 7200 (192322, 260712; 26.2%) 3117 2937 953 232238
175 T - > 7200 - 300 510 > 7200 (240639, 257698; 6.6%) 2016 780 323 251119
200 L - > 7200 - 120 510 > 7200 (97528, 281991; 65.4%) 4690 1484 3555 251050
200 T - > 7200 - 300 510 > 7200 (225067, 270180; 16.7%) 3891 3828 1892 260868

-: time limit of 7200 seconds reached at pre-solve stage.
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Table 9 L-Shaped Decomposition Computational Results for SApHMP.

Instance GUROBI L-Shaped Decomposition Cutting Plane

N p Nodes CPU Opt. CUTS Nodes CPU Opt. CUTS Nodes CPU Opt.

25 2 0 7 146259 100 59 35 146259 509 256 1 146259
25 3 0 8 125011 264 399 133 125011 412 1169 2 125011
25 4 0 16 110716 685 1565 411 110716 523 1267 2 110716
25 5 0 11 97740 865 1903 582 97740 573 459 1 97740
40 2 30 146 197565 215 198 426 197565 796 830 22 197565
40 3 22 263 175623 1060 1992 1757 175623 1361 1821 66 175623
40 4 128 475 159074 3160 8777 5328 159074 1453 1254 91 159074
40 5 323 571 144945 3450 7906 >7200 (127793, 146234; 12.6%) 1279 26605 247 144945
50 2 0 132 157233 200 120 890 157233 373 519 5 157233
50 3 0 185 139851 840 1647 3621 139851 628 396 8 139851
50 4 0 176 124972 1800 5454 6217 124972 927 174 5 124972
50 5 0 171 113818 2120 7440 >7200 (104829, 114102,8.1%) 839 260 6 113818
60 2 0 295 181998 245 234 1349 181998 920 558 23 181998
60 3 0 663 162309 1240 2846 6272 162309 1467 1170 230 162309
60 4 11 1771 148832 1385 1978 >7200 (121332, 151525; 19.9%) 1671 5747 211 148832
60 5 50 2772 137135 1510 1835 >7200 (104933, 140252; 25.2%) 1981 2284 1605 137135
75 2 3 1587 217498 350 333 3417 217498 1157 732 156 217498
75 3 3 2566 192734 735 1045 >7200 (168325, 194637; 13.5%) 2150 1112 166 192734
75 4 23 2969 175058 940 1849 >7200 (145661, 179170; 18.7%) 1905 1608 180 175058
75 5 0 1270 159837 800 1606 >7200 (124026, 166532; 25.5%) 1663 1325 120 159837
90 2 45 3513 200327 473 422 >7200 (189351, 200327; 5.4%) 1634 1003 601 200327
90 3 - >7200 - 515 1051 >7200 (145840, 180152; 19.0%) 2201 2450 278 176290
90 4 47 3889 158724 430 630 >7200 (120267, 161017; 25.3%) 2017 1374 426 158724
90 5 - >7200 - 415 510 >7200 (74774.6, 154743; 51.6%) 3196 3417 1174 149298

100 2 3 3120 191461 355 649 >7200 (183066, 191559; 4.4%) 1052 940 140 191461
100 3 - >7200 - 375 837 >7200 (134599, 177946; 24.3%) 3649 562 >7200 (170047, 173101; 1.8%)
100 4 - >7200 - 440 456 >7200 (101787, 167964; 39.4%) 2307 4849 413 154798
100 5 - >7200 - 490 695 >7200 (95597.5, 149045; 35.8%) 3320 9513 1379 144208
125 2 - >7200 - 360 510 >7200 (164729, 186739; 11.7%) 2796 2649 683 186248
125 3 - >7200 - 300 510 >7200 (127954, 170852; 25.1%) 4811 5275 1709 166765
125 4 - >7200 - 275 510 >7200 (66601.3, 162452; 59.0%) 4540 6061 2352 153478
125 5 - >7200 - 480 259 >7200 (57926.7, 147219; 60.6%) 4981 10349 6530 143680
150 2 - >7200 - 255 510 >7200 (151966, 184545; 17.6%) 2347 979 221 196615
150 3 - >7200 - 195 510 >7200 (112085, 177659; 36.9%) 3920 2068 1147 175416
150 4 - >7200 - 215 510 >7200 (98756.5, 152699; 35.3%) 2869 11768 1068 158099
150 5 - >7200 - 205 510 >7200 (67209.3, 144500; 53.4%) 3210 55183 1942 144802
175 2 - >7200 - 325 510 >7200 (158175, 186457; 15.2%) 2086 19584 3195 186457
175 3 - >7200 - 155 510 >7200 (99211.3, 175000; 43.3%) 4259 522 >7200 (165675, 168716; 1.8%)
175 4 - >7200 - 155 510 >7200 (101425, 155346; 34.7%) 4474 525 >7200 (150052, 154176; 2.7%)
175 5 - >7200 - 220 510 >7200 (55762.7, 162151; 65.6%) 4921 522 >7200 (139550, 144827; 3.6%)
200 2 - >7200 - 270 510 >7200 (169583, 205604; 17.5%) 2893 947 4283 203691
200 3 - >7200 - 180 510 >7200 (128319, 182225; 29.6%) 3577 701 >7200 (178223, 178832; 0.3%)
200 4 - >7200 - 240 510 >7200 (108465, 170005; 36.2%) 5599 519 >7200 (162189, 165820; 2.2%)
200 5 - >7200 - 115 510 >7200 (68387, 166973; 59.0%) 5492 518 >7200 (151382, 156660; 3.4%)

-: time limit of 7200 seconds reached at pre-solve stage.
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