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Abstract

Integer Linear Programming (ILP) formulations of
Markov random fields (MRFs) models with global connec-
tivity priors were investigated previously in computer vi-
sion, e.g., [16, 17]. In these works, only Linear Program-
ing (LP) relaxations [16, 17] or simplified versions [21]
of the problem were solved. This paper investigates the
ILP of multi-label MRF with exact connectivity priors via a
branch-and-cut method, which provably finds globally op-
timal solutions. The method enforces connectivity priors
iteratively by a cutting plane method, and provides feasi-
ble solutions with a guarantee on sub-optimality even if we
terminate it earlier. The proposed ILP can also be applied
as a post-processing method on top of any existing multi-
label segmentation approach. We demonstrate the power
and usefulness of our model by several experiments on the
BSDS500 image dataset, as well as on medical images with
trained probability maps.

1. Introduction

Most early vision problems can be formulated using
Markov Random Fields (MRFs), hence its solution al-
gorithms are of pivotal importance in computer vision.
The MAP-MRF (maximizing a posteriori in an MRF) has
proven to be successful for many computer vision problems
such as image segmentation, denoising and stereo, among
others. We refer to [9, 10, 20] for an overview of MRF op-
timization techniques and applications in vision.

In the standard case of MRF with pairwise potentials, we
have an undirected graph G = (V,E), where V represents

∗Electronic address: ruobing.shen@informatik.uni-heidelberg.de

a set of pixels (or superpixels) from an input image, and E
denotes a set of edges consisting of unordered pairs of nodes
indicating adjacency relations. We consider the problem of
minimizing the following energy function:

E(x) =
∑

p∈V
θp(xp) +

∑
(p,q)∈E

θpq(xp, xq). (1)

Here, we use xp to denote the label of node p ∈ V , which
belongs to a pre-defined finite set L = [k] representing k
classes, where [k] = {1, . . . , k}. θp(xp) is usually called
unary potential, and is derived from the observed data. It
measures how well label xp fits node p. Vpq(xp, xq) is of-
ten referred to as pairwise potential. It measures the cost of
assigning labels xp, xq to adjacent nodes p, q. Typically, it
is used to impose spatial smoothness or to align the solution
boundaries to image edges. The goal is to find a labeling x
(i.e., a mapping from V to L) that minimizes E(x). The
Potts function θ(α, β) = λ · 1(α 6= β), where λ is a con-
stant, and 1(·) is 1 if its argument is true and 0 otherwise, is
widely used, among many other models.

Minimizing energy (1) is a difficult problem (NP-hard in
general). In the case of an undirected graph, and by intro-
ducing binary variables x`i , i ∈ V , ` ∈ L, which indicate
whether node i is assigned label ` (x`i = 1 in this case),
the corresponding ILP formulation with Potts function boils
down to:

minx (1− λ)
k∑

`=1

n∑
i=1

c`ix
`
i + λ

k∑
`=1

∑
(i,j)∈E

|x`i − x`j | (2)

∑k

`=1
x`i = 1, ∀i ∈ [n], (2a)

x`i ∈ {0, 1}, ∀i ∈ [n], ` ∈ [k], (2b)
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where c`i denotes the unary data term for label ` and node i,
and λ ∈ [0, 1] is a positive constant weighting the contribu-
tion of the smoothness term. Constraint (2a) enforces that
each node is assigned exactly one label.

Since (2) is NP-hard and difficult to solve to optimal-
ity, it is common in vision to solve the corresponding
LP relaxation [12, 13]. There have been works on solv-
ing approximations of (2), for instance, message pass-
ing algorithms [11, 22] and α-expansion [4] with guaran-
teed approximation ratios. The corresponding condition is
nonnegative edge weights and Vpq(β, γ) + Vpq(α, α) ≤
Vpq(β, α) + Vpq(α, γ), for all labels α, β, γ ∈ L.

The standard model in (2), which combines unary and
pairwise potentials, can impose only a limited class of con-
straints on the solution. Therefore, there is an ongoing re-
search effort in computer vision towards embedding high-
order constraints in MRFs. These includes, for instance,
region connectivity [16, 17, 21], shape convexity [8], curva-
ture regularization [15] and shape compactness [6], among
other high-order priors. In this paper, we investigate ex-
act region connectedness priors. More precisely, we are in-
terested in solving (2) to global optimality, while adding a
global (high-order) potential function C(x) to (2) to explic-
itly enforce the connectivity of each segment (to be made
more precise in Sec. 2). A k-label partitioning of the im-
age in this paper is a partition of V into connected subsets
{C1, C2, . . . , Ck} such that ∪ki=1Ci = V , and Ci∩Cj = ∅,
i 6= j. Without loss of generality, we assume that segment
Ci is assigned the label i. Enforcing the connectivity poten-
tial itself is proven to be NP-hard in [21].

1.1. Related Works

Image segmentation under approximate connectivity
constraints has been considered in [21], where a binary
MRF is solved. Exact connectivity is not considered in [21].
Instead, a simplified version of the problem is proposed,
where only a given (user-provided) pair of nodes must
be connected. Following this assumption, the problem is
solved with a heuristic-based graph cut algorithm [3], ob-
taining connected foreground (binary segmentation).

Exact global connectivity potentials are formulated as an
ILP in [17], where connected subgraph polytopes are intro-
duced. Due to the high computational cost of solving the
corresponding NP-hard problem, the work in [17] exam-
ined only LP relaxations of the ensuing ILP. Although the
general formulation works for multi-label MRFs, the au-
thors applied it only to binary MRF problems. In [18], the
authors optimized a linear (unary-potential) objective sub-
ject to connectivity constraint in a binary (two-region) par-
titioning problem. The model does not apply to the general
multi-label pairwise MRF objective in (1), which is of wide
interest in vision applications. Finally, it is worth mention-
ing that the subgraph connectivity problem also plays an

important role in the operations research community, and
has been applied, for instance, to the forest planning prob-
lem [5], where each subregion of the forest is constrained to
be connected.

1.2. Contribution

This paper investigates multi-label MRFs with exact
connectivity constraints. To solve the ensuing ILP prob-
lem, we propose a branch-and-cut method, which provably
finds globally optimal solutions. The method enforces con-
nectivity priors iteratively by a cutting plane method, and
provides feasible solutions with a guarantee on suboptimal-
ity even if we terminate it earlier. Unlike [16, 17], which
examines LP relaxations of the initial ILP, our method pro-
vides global optimality guarantee. Different from [21], we
consider exact connectivity and we do not reduce the prob-
lem to connectivity between a given pair of points. The
proposed ILP is quite general, and can also be applied as a
post-processing method on top of any existing multi-label
segmentation approach.

2. Connected Subgraphs

In this section we introduce the set of all connected sub-
graphs, where a connected subgraph is just a set of nodes
with the same label that are connected.

Connected subgraph. Given a connected, undirected
graph G = (V,E), we call C` = G`(V`, E`) a connected
subgraph with label ` if G` is connected, where V` = {i ∈
V : x`i = 1} and E` = {(i, j) ∈ E : i, j ∈ V`}. Recall that
a subgraph G′(V ′, E′) is connected if ∀i, j ∈ V ′, ∃ a path
in G′ that connects i and j. We call a node i ∈ V active in
V` if x`i = 1, i.e., if it has label `.

Vertex-Separator Set. Given a subgraph G` = (V`, E`),
for any pair of active nodes i, j ∈ V`, i 6= j, (i, j) /∈ E`,
the set S` ⊆ V \ {i, j} is said to be a vertex-separator set
with respect to {i, j} if the removal of S` from G discon-
nects i and j in G. It also means that there exists no path
between i and j in G′ = (V \ S`, E \ (S` × V )). As an
additional definition, a set S̄` is said to be a minimal vertex-
separator set in label ` if it is a vertex-separator set with
respect to a pair {i, j} of active nodes in V` and any strict
subset T ⊂ S̄` is not.

Let S`(i, j) = {S` ⊂ V : S` is a vertex-separator with
respect to active node pair {i, j} in V` } be the collection of
all {i, j} vertex-separator sets, and S̄`(i, j) ⊂ S`(i, j) be
the subsets of minimal vertex-separator sets.

Following [17], we can describe C` with the following
set of linear inequalities:

x`i + x`j − 1 ≤
∑

s∈S`

x`s,

∀i, j ∈ V : (i, j) /∈ E, ∀S` ∈ S`(i, j), (3)
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Figure 1: K-Nearest cut generation strategy. Active nodes
are shown in black, and the two separator sets are marked
in red and blue.

where x`i ∈ {0, 1}, i ∈ V and ` ∈ [k]. In other words,
if two nodes i and j are active in S` (left hand side of (3)
becomes 1), they are not allowed to be separated by any set
of inactive nodes of S`.

In [17], the authors also prove inequalities (3) are facet-
defining for the convex hull of C` if S`(i, j) is replaced by
S̄`(i, j).

Rooted case. In this paper, we require the user to input a
scribble for each label, so that at least one node is identified
within each label. Let r` denotes the root node for label `.
We use the first node of the scribble as the root node. Then,
it suffices to check connectivity of every active node to the
root node instead of all pairs of active nodes associated with
the label. Thus, constraints (3) become

x`i ≤
∑

s∈S`

x`s, ∀i ∈ V : (i, r`) /∈ E, ∀S` ∈ S`(i, r`).
(4)

In practice, the number of constraints (4) is exponentially
large for any label `, hence they cannot be considered all si-
multaneously for graphs of large sizes. However, given a
labeling x`, we can identify a subset of violated connectiv-
ity constraints in polynomial time and iteratively add them
to the ILP while searching for new integer solutions. This
is known as the cut generation approach. We will look into
this in detail in Sec. 4.1.

3. MRFs with Connectivity Constraints
3.1. Proposed model: ILP-PC

Let fi denotes the observed image feature (e.g., color) at
spatial location i. We assume the user inputs k scribbles as
seeds for the k labels, as shown in the left image of Fig. 3.
Assuming image observations follow a piecewise constant
model within each region1, let Y` denotes the image average
of seeds within label `. In this case, unary potential c`i =
|fi − Y`| evaluates how well label ` fits node i.

1We assume a piecewise constant model for simplicity. However, our
formulation extends to any other probabilistic assumptions of observation
models.

By introducing two nonnegative variables ε`+i and ε`−i
to model |x`i − x`j |, the ILP of our multi-label MRF with
connectivity constraints becomes:

min
x

(1− λ)
k∑

`=1

n∑
i=1

c`ix
`
i + λ

k∑
`=1

∑
(i,j)∈E

(ε`+i + ε`−i ) (5)

∑k

`=1
x`i = 1, ∀i ∈ [n], ` ∈ [k], (5a)

x`i − x`j = ε`+i − ε
`−
i , ∀i ∈ [n], ` ∈ [k], (5b)

x`i ∈ {0, 1}, ∀i ∈ [n], ` ∈ [k], (5c)

x`i ∈ C`, ∀i ∈ [n], ` ∈ [k], (5d)

ε`+i , ε`−i ≥ 0, ∀i ∈ [n], ` ∈ [k], (5e)

x`i = 1, ∀i within the scribble of label `, (5f)

where constraints (5d) can be expressed as the rooted
vertex-separator constraints (4).

In the case of a superpixel graph, where a superpixel con-
tains similar pixels in terms of color or texture, we repre-
sent relations between neighboring superpixels by defining
the corresponding Region Adjacency Graph (RAG) G =
(V,E), where E contains edges between pairs of adjacent
superpixels. We multiply the unary data term by σi and the
pairwise term by γij . Here, σi denotes the number of pix-
els contained in node (superpixel) i, and γij represents the
number of neighboring pixels between node i and j.

3.2. ILP-PCB: ILP-PC with background label

If a clear background (not necessarily connected) exists
in the given image, the connectivity constraints can be ig-
nored on the specific label, which we call the background
label. This is a reasonable assumption in many cases, such
as the black-region background in the left image of Fig. 4.
In this example, the background has 4 disconnected compo-
nents. Fig. 4 depicts results with and without background
label.

3.3. ILP-PCO: ILP-PC with ordering constraints

It is common practice in integer programming to use re-
dundant constraints in the formulation to speed up compu-
tation. A constraint is redundant if it is not strictly needed
for a formulation to be valid, i.e., forbidding all integer in-
feasible solutions. However, redundant constraints can be
useful because they forbid fractional solutions that could be
encountered during the branch-and-bound approach, where
one iteratively solves the LP relaxation, or because they im-
pose a structure in the solution that, for example, breaks
symmetries. The latter is the case of constraints∑

i∈V
x`i ≥

∑
i∈V

x`+1
i , ∀` ∈ [n− 1], (6)

where we assume that the number of pixels in segment ` is
at least as large as that of segment ` + 1, thus imposing an
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order of the segments that is generally beneficial (see Sec. 5)
to enumerate symmetric solutions. Indeed, two solutions
obtained by swapping labels in any pair of segments `, k
are perfectly equivalent without constraints (6).

4. Solution Techniques

4.1. Cut generation strategies

We are interested in exact connectivity and we focus
on the rooted case (4), since we assume at least one root
node r` is fixed for each label ` by the user interaction.

We concentrate on enforcing the connectivity constraints
for one label only (e.g., `). Then, the same approach will be
repeated for other label sets until they are all connected (in
the case of a background label, we could ignore its con-
nectivity). The basic idea is to omit (5d) initially, explore
the branch-and-bound tree of system (5) until an integer so-
lution is found and then check the feasibility of this solu-
tion (i.e., connectivity of G`). If not feasible, violated con-
straints (5d) are separated and added to (5) to cut off the
infeasible solution. This procedure is iterated until G` is
connected.

We treat individual connected components (see Fig. 1)
as one entity, since establishing connectivity between all
nodes in this component and r` automatically connects all
the nodes. Identifying violated constraints (5d) then boils
down to finding a vertex separator set S` between each dis-
connected active component and the root component (con-
taining r`) in the current solution.

At the heart of the above technique is that only a subset
of connectivity constraints (5d) will be active at the opti-
mum of (5). However, depending on the choice of the in-
equalities that we choose in each step, we may require a
different number of such cuts and the number of iterations
varies.

Among the many ways of separating and selecting the vi-
olated constraints (5d), we choose the so-called K-Nearest
strategy. Namely, we run a breath-first search from any
active component H to collect the K (disjoint) separator
sets Sm, m = 1, . . . ,K composed of all nodes with identi-
cal distance. The search terminates if k equals the number
of nodes in H or if another active node is reached. The idea
is illustrated in Figure 1, where active nodes are shown in
black and r denotes the root node. The two separator sets
are marked in red and blue. HereK = 2 since it reaches the
number of nodes in H .

The K-Nearest strategy is reported in [18] to be one
of the most successful (among five) in terms of solved in-
stances and computational efficiency. We will adopt this
strategy in Sec. 5.

4.2. L0-H: a region fusion based heuristic

To improve the running time of our ILP solver, we calcu-
late an initial feasible solution with a heuristic, called L0-
H , since it will be an upper bound to the branch-and-cut
method the solver uses. This, on the one hand, helps to
prune a lot of unnecessary branching nodes. On the other
hand, the solver can provide an optimality gap to the initial
solution, by solving the LP relaxation of the ILP, which will
serve as a lower bound to the problem.

We adopted the idea for the heuristic from [14], which
works by iteratively merging groups of nodes. In the be-
ginning, each scribble of nodes and every node not covered
by any scribbles are in their own groups. Then for every it-
eration, we merge two neighboring groups, if the following
condition holds and the merging does not result in the nodes
of two different scribbles being in the same group:

σi · σj · |Yi − Yj |2 ≤ β · γij · (σi + σj). (7)

where σi denotes the number of pixels in group (segments)
i, γij denotes the number of neighboring pixels (boundary
length) of two groups i and j, and Yi the mean of image
data (e.g., color) within group i.

By increasing β in (7) in every iteration, we terminate
the algorithm when exactly k groups remain. Let η denotes
the growing rate, it is shown in [14] that the following ex-
ponentially growing strategy of β gives the best results.

β = (
iter
100

)2.2 ∗ η

where iter is the current iteration number. We will show in
Sec. 5 that L0-H is fast and generates good results most of
the time, sometimes even optimal.

5. Experiments
In this paper, all computational experiments were per-

formed using Cplex 12.7.0, on a Intel i5-4570 quad-core
machine, with 16 GB RAM. We show experiments on med-
ical images, where the unary potentials are based on the
probability maps of given labels, which were trained using
convolutional neural networks (CNN) [7]. The sizes range
from 96× 96 to 256× 256.

We further use the Berkeley Segmentation Dataset [2]
(BSDS500), which contains 500 natural images, each of
size 321 × 481. We apply the SLIC [1] superpixel algo-
rithm to get an over-segmentation, where the superpixel size
is around 1000.

Using superpixels has several advantages. First, the
complexity of the optimization problem is drastically re-
duced with only a negligible segmentation error. Second,
the information in each superpixel is more discriminative,
and also overcomes the case of outliers. As shown in
a recent superpixel algorithms survey paper [19], a few
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advanced superpixel algorithms can achieve very accurate
over-segmentation results with around 1000 suerpixels.

We conduct a comprehensive comparison of the follow-
ing different optimization models:

• ILP-PC. Our proposed ILP formulation (5) of multi-
label MRF, under the global connectivity constraints.

• LP-PC: The LP relaxation of ILP-PC, which was in-
troduced in [17, 18].

• L0-H: Our proposed L0 region fusion based heuristic,
which was motivated by [14] and modified to generate
exactly k connected segments.

• ILP-P: The ILP formulation of (5) without connectiv-
ity constraints (5d), which is widely used in vision
(e.g., graph cuts).

• ILP-PCB: ILP-PC with the “background” label
marked by the user, where this special label is not re-
quired to be connected.

• ILP-PCO: ILP-PC plus the ordering constraints (6).

In this section, if there is no further explanation, the de-
fault setting for the pairwise potential λ is 0.2, 100 sec for
the time limit, and 0.1 for the L0-H parameter η. When we
report energy E, we use the objective function in (5).

5.1. Detailed Comparison

5.1.1 Medical images with probability maps

We report a medical image segmentation example, where
unary potentials are based on the probability maps of given
labels, which were trained using convolutional neural net-
works (CNN) [7]. The purpose here is to obtain a binary
(two-region) segmentation of a magnetic resonance image
(MRI), which depicts the abdominal aorta [6]. In this ex-
ample, the CNN probability maps yielded unsatisfying dis-
connected region due to imaging noise, the lack of boundary
contrast and limited training information.

The input image is of size 111 × 111, and the compu-
tation time is reported in Fig. 2. ILP-PC, ILP-PCB and
ILP-PCO all failed to converge given the initial solution
provided by L0-H . L0-H result is of high quality, within
1.22% of the best solution found by ILP-PC in 100 seconds.
The energy is reported in the following table.

H PC PCB PCO LPC P
864.5 854 854 839 829.5 826.8

For the sake of space, we have omitted all the prefixes of
the models, and abbreviated LP-PC as LPC.

As we see in Fig. 2, LP-PC has 0, 62% fractional solu-
tion (depicted in white). Although a post-processing round-
ing heuristic can be applied, it is not guaranteed to find a
feasible solution. ILP-P gives two separated regions, which

(a) Medical image. (b) User brushes. (c) L0-H , t = 0.83s.

(d) ILP-PC, t = 100s. (e) ILP-PCB, t= 100s. (f) ILP-PCO, t=100s.

(g) LP-PC, t=1.19s. (h) ILP-P, t = 0.46s. (i) Ground truth.

Figure 2: Comparison of 5 models on a medical image,
where user scribbles are depicted on the probability map.
Energy is reported in Sec. 5.1.1, and t denotes the time
spent. In LP-PC, 1.22% of the pixels remains unlabeled ,
colored in white. Both ILP-PC and ILP-PCB have 2.8%
gap, while ILP-PCO has 0.9% , with lower energy (not nec-
essarily visually better).

is far away from the ground truth. We notice that LP-PC and
ILP-P give lower energy than ILP-PC. This is because both
of them are relaxations for ILP-PC and, therefore, provide
lower bounds.

The inclusion of background label is not beneficial in this
example, while the ordering constraints (6) help find lower
energy, and reduces the optimality gap from 2.8% to 0.9%.
It is worth to mention that unwanted solutions like ILP-PCO
in this example (although with lower energy) can be easily
avoided by drawing slightly different scribbles on purpose.

5.1.2 Superpixels of BSDS500

In this section, we introduce another model ILP-PCW,
which is ILP-PC without the initial solution of L0-H . The
purpose is to test whether the ILP solver is able to achieve
good results by itself.

Fig. 3 depicts an example, where ILP-PC with L0-H
does not converge within the time limit while ILP-PCW
finds the provably global optimal solution. The solution

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-016



(a) Input with 3 user scribbles. (b) L0-H , t = 0.04s, E=16088.

(c) ILP-PC, t=100 s, E=15804.9. (d) LP-PC, t=0.27 s, E=15560.9.

(e) ILP-P, t=0.08s, E=15232.5. (f) ILP-PCW, t=61s, E=15804.9.

Figure 3: Comparison of 4 models on BSDS, plus ILP-
PCW ( ILP-PC without initial solution from L0-H). t: time
spent, E: energy. Note 5.9% of the nodes remains unlabeled
in LP-PC, colored in white. The L0-H solution is within
1.76% of the optimal.

time and the energy are reported in the figure. The en-
ergy of the starting solution provided by L0-H is very good,
within 1.76% of the optimal solution found by ILP-PCW in
61 seconds. Note that ILP-PC and ILP-PCW give the same
energy, meaning they found the same solution, but ILP-PC
failed to get the tightest lower bound, having an optimality
gap of 0.3%. A closer look into the log file of Cplex shows
that, given the good initial solution of L0-H , ILP-PC found
the “best solution” in less than 1 sec, while ILP-PCW found
the same solution in 18 sec.

The inclusion of the integrality constraints and the con-
nectivity priors greatly improve solution quality. As many
as 5.9% superpixel values of LP-PC are factional. In ILP-
P, the green and black labels have several disconnected re-
gions, resulting in an worse solution.

5.1.3 More experiments on BSDS500 images

More experiments on BSDS500 images are shown in Fig. 6.
In the first column, the pairwise term λ is set to 0.1 to en-
courage thin branches of the tree, while all other parame-
ters remain at their default values. We draw much fewer

brushes in the right two columns, to show the robustness of
our model (to be discussed in Sec. 5.3 with more details).
Note that the white pixels in LP-PC denote fractional so-
lutions, and ILP-P is without connectivity constraints, thus
allowing disconnected regions with the same label. We ob-
serve that L0-H gives good results in the right two images,
while not being satisfying in the left two cases. Our pro-
posed model ILP-PC achieves the best overall results.

5.2. Quantitative Comparison

In this section, we give a detailed analysis of the dif-
ferent models with respect to energy, computational time
and parameters. They are based on computational experi-
ments of 15 images from BSDS500 and real medical images
from [6].

5.2.1 Time, ILP gap and fractional solutions of LP-PC

We report the average running time (T ) of all models in
the second row of the table below, where the time limit is
100 sec. The average ILP optimality gap (G) is shown in
the third row, where “Null” means no optimality gap exists
(since they are not ILP). For the sake of space, we again
omit all the prefixes of the models.

H PC PCB PCO LPC P
T 0.7 62.3 39.2 71.8 1.4 0.3
G Null 3.7% 1.9% 2.1% Null 0

We can clearly see that the ILP models often hit the 100
seconds time limit. However, the solution is within 4% of
optimality. Moreover, the inclusion of the “background la-
bel” (ILP-PCB) and ordering constraints (ILP-PCB) helps
in term of speed and optimal gap (with the exception that
ILP-PCO takes more time). It is surprising to see that ILP-
P with only pairwise priors is more efficient than L0-H .

Apart from the above statistics, we also report that
among all tested images an average of 3.5% pixels found by
LP-PC remain unlabeled (they have fractional solutions).

5.2.2 ILP-PCB against ILP-PC.

Based on the computational experiments, we report the gain
and loss on using ILP-PCB against ILP-PC, if a clear back-
ground exists in that image. The score is calculated as fol-
lows.

If both models solve the problem to optimality, we report
the computational time difference. If both models failed to
solve the problem within the time limit, we report the ILP
optimality gap difference. In the cases where one model
solves the problem to optimality while the other reaches the
time limit, we report the computational time difference as-
suming that the latter takes 100 secs.

On 12 instances where the application of ILP-PCB
makes sense, 8 instances benefit, 3 lose while one instance
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Figure 4: Different user scribbles on the same image. Sec-
ond row: ILP-PC with E=9544.2 and 13422.8, both reach-
ing 100 seconds time limit. Bottom row: ILP-PCB with
E=8615.3 and 10482.3, t= 2.1s and 0.4s. Note that the back-
ground label (shown in black) can be disconnected, while
the other labels (blue and green) are connected.

remains the same. The average net gain in computation time
equals 28.6 sec, in which there exist two instances that re-
duce the time of 100 secs from ILP-PC to less than one sec.
The average net gain in ILP optimality gap equals 0.9%.
This important gain results from “relaxing” one label to be
non-connected.

Apart from speed gain, it can be beneficial in practice to
use ILP-PCB when a clear background with disconnected
regions exists; See Fig. 4.

5.2.3 ILP-PCO against ILP-PC.

We use the same methodology as above. On 10 instances
where the application of ordering constraints (6) (ILP-PCO)
make sense, 7 instances benefit while 3 lose. The average
net loss on computation time equals 1.2 secs, while the av-
erage net gain in ILP optimality gap equals 1.6%. While
we do not observe a clear advantage of applying ILP-PCO,
it often works better on hard instances (in which the ILP
solver converges very slowly). It is worth to mention that in
one instance where no obvious ordering exists, it took ILP-
PCO 100 secs and still did not find any feasible solution.

Figure 5: Experiments on L0-H with different η. From top
left to bottom right: parameter η changes from 0.1 to 0.7
(with interval 0.15). The time reduces from 0.08 to 0.05
secs.

5.3. Analysis of different user scribbles

The user scribbles are used to learn the average color of
each label, which is used in the ILP as the unary term. They
also enforce hard constraints into the ILP (5), which help
fixing some of the binary variables, thus pruning the branch-
and-bound search trees within the ILP solver. Moreover, in
case of difficult situations, scribbles can also be used to ex-
clude outliers from one label, such as in Fig.2. We show in
Fig. 4 that changing the scribbles does not alter significantly
the results. While ILP-PC reaches the time limit in both
cases, ILP-PCB gets the reported optimal solution in only
2.1 and 0.4 secs. The energy differences between the two
cases are due to two factors: different scribbles resulted not
only into different hard constraints, but also different unary
potentials.

5.4. Report and analysis on L0-H

L0-H is fast to compute, only taking 0.7 seconds on av-
erage to generate a feasible solution, which could be used
as initialization for the ILP solver. Other than its efficiency,
the quality in terms of energy is on average only 7.20% with
respect to the best solution ILP-PC can find within 100 sec-
onds time limit.

For all the other experiments reported in this paper, the
growing rate parameter η is set to be 0.1. Fig. 5 shows an
experiment on adopting different η. We use 5 different val-
ues of parameter η, ranging from 0.1 to 0.7, with an in-
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Figure 6: More experiments on BSDS500 images. The pairwise term λ is set to 0.1 to encourage thin branches of the tree in
the first column, while all other parameters remain default. The user brushes in the right two columns are few on purpose, to
show the robustness of our model. The white pixels in LP-PC denote fractional solutions, and ILP-P is without connectivity
constraints, thus allowing disconnected regions with the same label.

terval of 0.15 between each pair of successive values. The
computation time decreases with the increase of η, reducing
gradually from 0.08 to 0.05 secs. One can observe that L0-
H is robust with respect to its parameter, with only slight
changes in the results.

6. Conclusion

Recent years’ algorithmic advances in Mixed Integer
Programming (MIP) plus the hardware improvements have
resulted in a enormous speedup in solving MIP. We revisit
the ILP of the multi-label MRF with connectedness priors,
and propose a cutting plane approach to exactly enforce the
connectivity constraints. A fast region fusion based heuris-
tic is designed to provide a good initial solution. The solver

provides a feasible or better solution with a guarantee on the
sub-optimality even if we terminate it earlier.

The ILP can also be applied as a post-processing method
on top of any existing multi-label segmentation methods.
Hence the advantage of ILP is two-fold. On the one hand,
it provides a guarantee (lower bound) for any given initial
solution. On the other hand, it seeks for better solutions
during its search in the branch-and-bound tree.

In this paper, we demonstrated the power and usefulness
of our model by some experiments in the BSDS500, and
medical images with trained probability maps. We show
that with moderate-sized images or superpixels of large
ones, our model achieves the best overall performance,
yielding provably global optimum in some instances.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-016



References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
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