M

CANADA
EXCELLENCE
RESEARCH
CHAIR

4 DATA SCIENCE
FOR REAL-TIME
d DECISION-MAKING

N

§

A COMPARISON OF OPTIMIZATION
METHODS FOR MULTI-OBJECTIVE
CONSTRAINED BIN PACKING
PROBLEMS

Philippe Olivier
Andrea Lodi
Gilles Pesant

December 2017

DS4DM-2017-015

POLYTECHNIQUE MONTREAL
DEPARTEMENT DE MATHEMATIQUES ET GENIE INDUSTRIEL

Pavillon André-Aisenstadt
Succursale Centre-Ville C.P. 6079
Montréal - Québec

H3C 3A7 - Canada

Téléphone: 514-340-5121 #3314

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

A Comparison of Optimization Methods for
Multi-Objective Constrained Bin Packing
Problems

Philippe Olivier, Andrea Lodi, and Gilles Pesant

Ecole Polytechnique de Montréal, Montreal, Canada
{philippe.olivier, andrea.lodi, gilles.pesant}@polymtl.ca

Abstract. Despite the existence of efficient solution methods for bin
packing problems, in practice these seldom occur in such a pure form
but feature instead various considerations such as pairwise conflicts or
profits between items, or aiming for balanced loads amongst the bins.
The Wedding Seating Problem is a combinatorial optimization prob-
lem incorporating elements of bin packing with conflicts, bin packing
with profits, and load balancing. We use this representative problem to
present and compare constraint programming, integer programming, and
metaheuristic approaches.

1 Introduction

In the optimization version of the classical bin packing problem, a set of items of
various weights must be packed into as few bins of limited capacities as possible.
Despite the existence of efficient solution methods for bin packing problems, in
practice these seldom occur in such a pure form. They instead feature various
considerations such as pairwise conflicts or profits between items, or aiming for
balanced loads amongst the bins. The objective then becomes to minimize some
scoring function by selecting an optimal distribution of items in the available
bins.

In our representative problem, the Wedding Seating Problem (WSP) [4], groups
of guests of different sizes must be seated at tables of limited capacities. Some
of these groups may or may not like each other, thus some relation is defined
over each pair of them. Pairs of groups whose relation is definitely apart can
never be seated at the same table. While not strictly necessary, pairs of groups
whose relation is either rather together or rather apart should, if possible, be
seated together or apart, respectively. Pairs which have no specific relation are
indifferent. Note that an implicit relation, definitively together, is baked into the
problem as groups of guests, the smallest indivisible entity that can be assigned
to a table.

Section 2 gives a formal definition of our problem, and Section 3 reviews current
methods of solving the WSP and similar problems. Sections 4 to 6 introduce,

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

respectively, our constraint programming (CP) model as well as our two integer
programming (IP) models. Sections 7 and 8 present the results of our experi-
ments.

2 Description of the Problem

Let

— Z={1,...,n} be the index set of items,

— B={1,...,m} be the index set of bins,

— { and u be, respectively, the lower and upper bounds on the load of a bin,

— w; denote the weight of item ¢ with w =), _; w; representing the combined
weight of all the items,

— ¢;; the cost incurred if items ¢ and j are packed into the same bin.

Entries in the cost matrix C can take any integer value. Namely,

, if 7 and j are in conflict and must be packed into separate bins,

=0, if ¢ and j have no cost,
Coi
Y] <o, if ¢ and j should rather be packed into the same bin,

> 0, if 7 and j should rather be packed into separate bins.

Since a conflict is expressed as being a prohibitive cost, the initial cost matrix
can be enhanced by adding this prohibitive cost for each pair of items whose
combined weights is greater than u, since they can never be packed together.

The problem consists of packing all items into the available bins such that
conflicting items are packed into separate bins, while optimizing cost and balance
objectives. The cost objective f is to minimize the combined cost of all available
bins. The balancing objective is to maximize the balance of loads amongst the
bins, which is somewhat abstract as balancing loads with different norms will
yield incomparable results. The Lg-norm will minimize the number of values
different from the mean bin load (which is not useful unless the mean is an
integer). The Lo,-norm will minimize the maximum deviation from the mean.
In this paper, we will focus on the Li- and Ls-norms which will, respectively,
minimize the sum of deviations and the sum of squared deviations from the
mean.

The correct way to compare solutions with one another is debatable. Both
objectives use different units, so at the very least they should be weighted in order
to obtain some sort of solution ranking. In this paper, we have instead opted
to construct a Pareto set: We bounded the cumulative deviation at successively
higher values, each time solving the problem by minimizing objective f. The
correspondence between multiple objectives is often not directly proportional in
practice. As such, presenting the balancing objective with a Pareto set has the
advantage of offering decision-makers multiple optimal solutions to choose from
depending on their perception of the trade-offs amongst them.

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

The problem of packing items into bins is the same as that of seating groups
of guests at tables, as described by Lewis and Carroll. It has been shown to be
NP-hard as it generalizes two other A/P-hard problems: the k-partition problem
and the graph k-coloring problem [5].

3 Related Work and Existing Methods

The problem of constructing seating plans was originally introduced by Bellows
and Peterson [1]. The authors used an IP model to solve various instances of this
problem for their own wedding. They were able to solve small instances of 17
guests in a few seconds. For a larger instance of 107 guests, however, no optimal
solution could be found in reasonable time.

This seating assignment problem was later formally described as the Wedding
Seating Problem by Lewis [4]. The author solved the problem with a metaheuris-
tic model based on a two-stage tabu search. In a further paper [5], Lewis and
Carroll devised their own quadratic TP model (of which our close variant is dis-
cussed in Section 5) to be compared with the metaheuristic approach. This latter
approach outperformed their IP model both in solution quality and in running
time in most cases. The authors also reimplemented the IP model of Bellows
and Peterson, which they found performed poorly.

Most research on bin packing with conflicts, such as [8], focuses on minimizing
the number of bins used as in the classical problem (albeit with the added con-
flict dimension). In contrast, the WSP uses a fixed number of bins of dynamic
capacities, the objective being to optimize a scoring function subject to addi-
tional balancing constraints. The notion of pairwise costs between items used in
the WSP is somewhat unconventional, but a similar idea can be found in some
bin packing games where selfish agents (items) strive to maximize their payoffs
by packing themselves into the most profitable bin, which is determined by its
item composition [9].

4 CP Model

For each item i we define a decision variable b; whose value is the bin in which
the item will be packed. For each bin k£ we define an auxiliary variable o;, whose
value is the load of the bin. To pack the items into the bins, the model uses
a binpacking constraint. The balancing objective represented by variable o is
taken care of by a balance constraint [7], which can handle L;- and Ly-norms.

binpacking ((bi), (wi), (ok)) (1)
balance ({ox},w/m, o) (2)
(<o, <u (3)

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

bieB, i€l (4)
liu,op, €N, keB (5)

The model uses a conflict graph to infer alldifferent constraints, similar to
what has been used by Gualandi and Lombardi in their decomposition of the
multibin packing constraint [3]. In a conflict graph, each item is represented by
a vertex, and an edge joins two vertices if they are conflicting. By extracting all
the maximal cliques of this graph, it is possible to add alldifferent constraints
to the model for each one of those cliques. Furthermore, the maximum clique of
an instance (the largest of all the maximal cliques) determines a lower bound
on the number of bins necessary to find a feasible solution to that instance. The
Bron-Kerbosch algorithm is an exact method which can be used to find all the
maximal cliques of the conflict graph [2]. Let M be the set of all maximal cliques
(maximal clique & being, for example, M, = {b7,...,b7}):

alldifferent ({M.}), Vze{l,...,|M[} (6)

While we have not explored all specific edge cases in this paper, if we were
to solve highly constrained instances of the problem (i.e., with a dense conflict
graph) these could be intractable for the Bron-Kerbosch algorithm. A heuristic
for finding cliques could instead be applied, or simple binary disequality con-
straints could be used in lieu of the conflict graph.

Some symmetry is broken by fixing items of weights strictly greater than u/2
to separate bins. In theory, better symmetry breaking could be achieved first by
fixing each item in the maximum clique of the conflict graph to a separate bin,
and then by forcing an order on the loads of the remaining bins. In practice,
however, symmetry breaking for the CP model is tricky as it interferes with
the branching heuristic, whose strength lies in finding very good solutions very
quickly. While the overall time needed to solve an instance to optimality de-
creases with the use of symmetry breaking, the downside is that early solutions
will be worse with it than without. Without symmetry breaking, the branching
heuristic basically packs the heaviest items at the bottom of the bins (i.e., they
are assigned to a bin near the top of the tree). The top items of the bins are thus
of lighter weights, and it is naturally less constraining to swap them around and
pack them more profitably. Symmetry breaking forces some packings of lighter
items at the bottom of the bins, constraining the swapping of items at the top
of the bins.

Finally the objective is to minimize f subject to a constraint bounding the
value of the cumulative deviation of the bins. Considering disjoint intervals of
deviation ensures that the trees explored in each step of the construction of the
Pareto set are nonoverlapping, preventing identical solutions from being found in
different steps. Let dyin and dpax be, respectively, the lower and upper bounds
on the cumulative deviation of a solution:

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

dmin <o S dmax (7)
minZZ(bi =b;)cij (8)
=1 j=1

The model branches on the decision variables according to a heuristic which
was inspired by the standard best fit decreasing strategy used to solve the bin
packing problem. It first chooses the item of the greatest weight yet unassigned
and will pack it into an empty bin, if one is available. Otherwise, the heuristic
will pack the item into the bin which would most increase the f value. This
heuristic tends to find a good first solution very early in the search.

We have also further tested the CP model by including a large neighborhood
search (LNS) strategy. The model finds a good initial solution, after which the
LNS strategy takes over. The LNS will iteratively freeze different parts of the
solution and search afresh from there for a set amount of time. About a third
of the bins are frozen as such, with the most profitable bins having the most
chance of being frozen.

5 IP Model A

The first IP model (IP,) is a generalization of the natural quadratic IP model
proposed by Lewis and Carroll [5]. A n x m matrix of decision variables x rep-
resents packing assignments of items into bins (9)

, if item ¢ is packed in bin k,
Tik = .
0, otherwise.

n—1 n
min ZZ Z Tk jkCij (10)

kEB i=1 j=i+1

s.t.
> =1 VieZ (11)
keB
Tip +xjr < 1 Vi,jeZL:cy =00, VkeB (12)
> wpw; > L Vk e B (13)
i€T
inkwi <u Vk e B (14)
i€
inkwik —w/m < oy Vk e B (15)

i€l

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

inkwik —w/m>—op VkeDB (16)
=
Z Ok Z dmin (17)
keB
Z Ok S dmax (18)
keB
T =0 VieZ, Vke{i+1,...,m} (19)
zi € {0,1} VieZ, VkebB (20)
o €{Y,...,u} Vk e B (21)

This model minimizes the sum of all pairwise costs between items in each
bin (10). The items are required to be packed into one and only one bin (11),
and conflicting items may not be packed into the same bin (12). Constraints (13)
and (14) require that the load of every bin be within bounds ¢ and w. This
model computes the deviation according to an Li-norm; Constraints (15)-(16)
emulate an absolute value function and constraints (17)-(18) stipulate that the
cumulative deviation of the solution must be bounded by dpin and dpyax (since
we are constructing a Pareto set). Some symmetry breaking is achieved with
constraints (19).

This model has been constructed to handle deviation according to an Li-norm.
Integrating convex relaxation with McCormick envelopes [6] to the model would
allow the use of the Lo-norm.

6 IP Model B

Our second IP model (IPg) is based on the definition of an exponential-size
collection of possible bin compositions as for the classical bin packing problem.
Indeed, as for bin packing, the resulting formulation can be solved by column
generation with either a set covering (SC) or set partitioning (SP) model. Let S
be the collection of all subsets of items that can be packed into the same bin

S = {Sg{l,...,n}:ﬁgzwiéu, Vi,jGSiCz‘j?éOO}

i€S

We can observe that it may not be possible to only construct maximal sets with
regards to the bin capacity due to conflicts between items and the constraints
enforcing them. There is a binary variable for each subset S € S representing a
combination of items, or pattern, to be packed into the same bin

1, if pattern S is selected,

= 22
s {O, otherwise. (22)

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

The sum of all pairwise costs for the items of a pattern and the deviation of
the weight of that pattern from the mean bin load are represented by « and 3,
respectively. In regards to the balancing objective, using a fixed number of bins
has two major advantages over using a variable number of bins. First, the values
of @ and f need to be computed only once per pattern (when it is generated) and
remain constant throughout the process. Second and more importantly, since 3
is computed outside of the program, the norm according to which it is computed
does not complexify the problem (i.e., the program remains linear even when
balance is computed according to an La-norm).

While the solution of a SP model is always directly feasible, that of a SC model
must be transformed in order to be feasible for our problem (i.e., we must remove
all duplicate items from the bins). This has the unfortunate effect of potentially
worsening the objective funtion. Example 1 illustrates the underlying issue of
using a SC model to solve our problem.

Ezxample 1. Assume an instance of the problem with 2 bins and 4 items A, B,
C, and D. The pairwise costs of AB, BC, CD, and DA are 0, while the pairwise
cost of AC is 1 and that of BD is —2. We also have £ = 2 and u = 3. The
two most profitable maximal subsets are ABD and BCD which both have a
value of —2 and cover all the items. The initial solution of the SC model would
be (—=2) + (—2) = —4, which must be rendered feasible for our problem by
removing B from one bin and D from the other. This modified solution would
have a value of (0) + (0) = 0, while the solution of a SP model would be to pack
AC and BD in separate bins, for a value of (1) + (-2) = —1.

The master problem (MP) is thus based on a SP model.

min Z asTg (23)

Ses
s.t.
Y ag=1 Vierl (24)
Sesiies
ZBS:L'S Z dmin (25)
Ses
Zﬁsﬂfs S dmax (26)
Ses
zg € {0,1} vSes (27)

The MP minimizes the combined costs of all bins (23), under the conditions
that each item be packed into one and only one bin (24) and that the cumulative
deviation of a solution be within bounds dpi, and dpax (25)-(26). In order to
begin solving the problem, the column generation algorithm needs m columns
making up an initial feasible solution of the problem and of the continuous

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

relaxation obtained by replacing constraints (27) with xg > 0,VS € S. These

columns are generated by a compact CP model defined by (1)-(5), (7), and

b; # by,

bi,bjEB, Vi,jEIICijZOO

(28)

which searches for the first feasible solution safisfying these constraints. The m
columns found by this CP model make up the initial restricted master prob-

lem (RMP). The dual of the MP is

E Yi + dmin'y + dmax(s
i=1
s.t.

> yi+Bs(y+0)<as VSES

€S

y; free
720
0<0

Vie S

which is all that is needed for the column generation algorithm to take over:

1. Solve the continuous relaxation of the RMP to get dual values y*.

2. Solve the subproblem, or pricing problem (PP), to generate S* C {1,...

(the most promising new column). Let

otherwise.

n

n
E l]ZiZj

max Zyzzz—l—ﬁ v 4 6) —
=1 j=1
n n—1 n
max z:y:‘zZ —B8(y" +6%) — Z Z Cij%i%;
i=1 i=1 j=i+1
s.t.

n
Z wizi >4
i=1

n
Z wizi < U
i=1

if item 4 is packed into the new bin/pattern,

ify* 46" <0

ify*4+6">0

Vi,jGI:cij:oo

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

Zwizi—w/mgﬁ (40)
i=1
Zwizi—w/mz -3 (41)
i=1
2 €{0,1} Viel (42)

The PP minimizes the value of a bin (35)/(36) under the conditions that no
conflicting items be packed into it (37), and that its load be within bounds
¢ and u (38)-(39). Constraints (40)-(41) work in the same manner as con-
straints (15)-(16) and ensure that deviation S is always positive.

3. Determine if S* should be added to the RMP. If the inequality), . g. yj +
BOYH07) > D icse 2jes Cig (08 D U =BV +07) > Dics- D jes- Cigs
alternatively) is true, compute ag~ and Sg+, and add column S* to the RMP
before going back to step 1. Otherwise, the current solution of the continuous
relaxation of the RMP is the lower bound of the initial problem.

The optimal solution of the continuous relaxation of the RMP provides a lower
bound to the problem. We subsequently enforce constraints (27) and solve the
RMP with the columns which were previously generated by the algorithm in
order to find an integral solution. We know such an integral solution exists since
we started off with one with our initial columns. While this final integral solution
offers no proof of optimality, it is most often relatively close to the lower bound.

Depending on the norm used to balance the bins and on the value of bound d .,
we can make arithmetic deductions to determine the optimal ¢ and v bounds
which should help prematurely prune nodes leading to infeasible solutions, with-
out eliminating any feasible solution:

£ > max{0, [w/m — dmax/2]} (43)
u < |w/m + dmax /2| (44)
¢ > max{0, [w/m — Ve X (M — 1) /m—‘} (45)
u < {w/m—i-\/dmax X (m—l)/mJ (46)

For the Li-norm, in the worst case a single bin can account for at most half
of the deviation, since the cumulative weight in excess of the mean bin load will
always be equal to the cumulative weight short of the mean bin load (43)-(44).
For the Lo-norm we must also take the number of bins into account in order
to tightly bound the most deviative bin (45)-(46). This offline optimization of
bin load bounds makes a noticeable difference for both IP models, cutting the
execution time by half on average. This optimization is of no use for the CP
model, as the balancing constraint already ensures that bin loads be consistent
with dpyax-

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

7 Benchmark Results

Our testbed includes instances of 25 and 50 items, of weights chosen uniformly
at random from 1 to 8 (in a similar fashion as Lewis [4]). Costs and conflicts are
introduced according to probability p of a pairwise negative cost, probability ¢
of a pairwise positive cost, and probability r of a conflict (i.e., p+q+r < 1, with
the remainder being the probability that the pair incurs no cost). Costs range
from —5 to 5, and the number of bins has been chosen so that the mean load is
closest to 10.

The experiments were performed on dual core AMD 2.2 GHz processors with
8 GB of RAM running CentOS 7, and all models were constructed with IBM
ILOG CPLEX Optimization Studio v12.5. Pareto sets are constructed for the
smallest integral ranges of deviations (i.e., min/max deviations of 0/1, 1/2, ...,
19/20). Time limits cover only one range of deviations, meaning that the results
for one method, for one figure, involve solving 20 independent problems. This
also means that construction of the Pareto sets is easily parallelizable and can be
scaled to limited resources by modifying its resolution (e.g., if 4 instances can be
solved in parallel, a lower-resolution Pareto set can be constructed with min/max
deviations of 0/5, 6/10, 11/15, 16/20). Each data point shows the average results
of 5 different cost matrices applied to the same set of items. All figures show the
results for instances of 25 or 50 items with the deviations computed according
to an Li-norm. For Figs. 1-3 the cost probabilities are p = 0.25, ¢ = 0.25, and
r = 0.25.

Fig. 1. Instances of 25 items with a time limit of 600s.

Objective

cp
CP+LNS
IPa

IPg

=75 — LB.

X+ 0O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deviation

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

Fig. 2. Instances of 50 items with a time limit of 6s.

X X X X X X X X X X X X X
-20 *

+ 0+ 4+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+
40

—60

[
>
G -80
g o 0 o
° 100 1 o ©
© 0% 6 o0 0 0
& CPICP+LNS
-1204 + IPa
X IPg
— L.B.

~140 A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deviation

Fig. 3. Instances of 50 items with a time limit of 600s.

—704 + 0+ +F o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

—804

—90

—100 -

—110 A

Objective

—1204

cp
CP+LNS
1Pa
IPg
— LB.

—1304

X+ 0O

~140 A

—150 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deviation

We can observe in Fig. 2 that the CP model finds the best early solutions of all
methods. However it quickly reaches a plateau from which it is hard to further
improve (notice the similarity between the CP solutions of Fig. 2 with a time
limit of 6s. and those of Fig. 3 with a time limit of 600s.). The introduction
of LNS for the CP model always improves the solution quality. For the small
instances of Fig. 1, the CP model with LNS does better than IPg since the
latter only solves the relaxation of the RMP to optimality and tries to get the
best integral solution from these limited columns, with no proof of optimality.
IPA does particularly poorly compared with the other models. The results of

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

IPg are usually off to a slow start, but given enough time this model does better
than both previous ones. Similar to the CP model, this model reaches a plateau
of its own before the 600s mark. Further improvements could be achieved via
branch and price. Average computation times are shown in Table 1 (owing to
details in the implementation of the models, the execution time may be slightly
higher than the time limit in some cases).

Table 1. Average computation times for Figs. 1-3

25 items 50 items
600s. 6s. 600s.
CP 510.00 3.90 390.00
CP+LNS 508.49 3.90 379.02
1PA 589.06 6.96 602.04
1P 8.35 8.32 178.46

The average computation times for the CP model are always below the time
limit, meaning that while we reach the time limit cutoff when solving instances
with a high maximum cumulative deviation, infeasibility or optimality can be
proven for those with a low maximum cumulative deviation. The same is true
for IP, albeit only for instances of fewer items. IPg does well especially when
the time limit is high, although its solutions cannot be proven optimal without
a branch-and-price scheme (but the CP model generating its initial columns can
determine if an instance is infeasible). We have further tried solving instances
with conflicts only (p = 0, ¢ = 0, r = 0.25) and every method could find a
solution within the time limit. In Fig. 4 we show the results of instances without
conflicts and only with costs (p = 0.25, ¢ = 0.25, r = 0).

Fig. 4. Instances of 50 items with a time limit of 600s. (costs only)

+

—804

—1001

Objective

-1201

cp
CP+LNS
IPa
IPg
— LB.

—1401

X+ 0O

—160 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deviation

DS4DM-2017-015

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-015

Table 2. Average computation times

50 items
Conflicts only ~ Costs only

CP 0.03 420.00
CP+LNS 0.03 390.78
1Pa 601.11 600.62
1Pg 4.64 28.65

It is interesting to notice that with only conflicts, the CP model very easily
proves optimality for all instances in a fraction of a second, whereas both IP
models are orders of magnitude behind it. The weakness of the CP model lies
in the optimization of objective f, even with LNS. IP5 appears to generally do
better without conflicts, while the performance and results of IPg are largely
unaffected by the parameters of the instances.

Obviously, a better model would be a CP/IPg hybrid. For such a hybrid, the
CP part would generate the initial columns, those columns being the current CP
solution once the model reaches its plateau. From there, the IP part would take
over and improve this solution by bringing it to near-optimality. We have not
integrated the CP and IPg models into a hybrid in this paper, as our objective
was to compare individual methods to each other.

8 Practical Applications

The metaheuristic approach developed by Lewis [4] is used on the commercial
website www.weddingseatplanner.com as a tool to generate seating plans. The
problem is similar to ours which is described in Section 2 of this paper, with a few
exceptions: Bin loads are unbounded, negative costs are always equal to —1 and
positive costs are always equal to 1, and the deviation is computed according to
an Li-norm and directly added to the objective (i.e., the objective is to minimize
f plus the deviation). The objective functions of our models have been adapted
for these tests.

One of the design goals of the website was to solve the problem quickly since
their clients could easily grow impatient after waiting just a few seconds in front
of a seemingly unresponsive browser window. As such, their tool usually solves
the problem in less than 5 seconds, a time limit which cannot be specified by the
user. Because of this short time limit, we have bounded the maximum deviation
of our models at 20 in order to find better results. For the CP model, since
the balancing constraint and the branching heuristic are very effective, we have
further decided to solve the instances two more times by bounding the maximum
deviation at 10 and 5, respectively (since we are solving thrice as many problems,
we have also divided the time limit by three). We will be considering only the
best of those three solutions.

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

Due to an error in the website’s implementation of the algorithm, all negative
costs are considered to be conflicts. In order to provide a fair comparison, the
instances we have generated for these tests do not include negative costs. The
cost probabilities are thus p = 0, ¢ = 0.3, and r = 0.3 (which implies that the
probability of a cost of 0 is also 0.3). Since the website always solves the instances
in under 5 seconds, this is what we have chosen as our time limit. Tests have
been run with 10, 20, 30, 40, and 50 items, and are again averaged for five cost
matrices. The histograms shown in Fig. 5 represent the distance in score of a
solution from the lower bound.

Fig. 5. All methods compared with a time limit of 5s.
IavHabecp/cp+LNsloIP, In1Pg

40

e}
=t
3
2 30 _
Pt
o) _
g
Q
e
Q
=
& 10
=
.8
= [I I 1 |

0 P - [a— -] L

T T T T T
10 items 20 items 30 items 40 items 50 items

Instances

When solving small instances, exact methods have a distinct advantage over
metaheuristics, often proving optimality. Both IP models scale poorly with an
increasing number of items as they usually require some time to find decent
solutions. While it can find the best solutions given enough time, IPg does
particularly badly with a short time limit as the quality of its solutions improves
relatively slowly. The metaheuristic model scales very well, with its solution
quality being constant with a varying number of items. The CP model does
well all-around, proving optimality for small instances as well as having good
solutions for all instances.

9 Conclusion

In this paper we have compared how various methods can be used to solve multi-
objective constrained bin packing problems with an aspect of load balancing. A
metaheuristic model can find good solutions in a short time and scales well to an
increasing number of items but will most likely not find optimal solutions. A CP

DS4DM-2017-015

CERC

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

model can also find good solutions quickly, but for large instances it will not reach
the best solutions in reasonable time even with the help of LNS. A natural IP
model is probably not the best choice, as it scales poorly while its strenghts can
also be found in other models. An IP model using column generation does very
well given enough time but is not a good contender to solving instances quickly.
It would be interesting to see if a CP/IP hybrid using column generation and
branch and price could prove optimality in reasonable time for larger instances
of the problem.

References

1. Meghan L. Bellows and J. D. Luc Peterson. Finding an optimal seating chart.
Annals of Improbable Research, 02 2012.

2. Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM, 16(9):575-577, September 1973.

3. Stefano Gualandi and Michele Lombardi. A simple and effective decomposition
for the multidimensional binpacking constraint. In Principles and Practice of
Constraint Programming: 19th International Conference, CP 2013, Uppsala, Swe-
den, September 16-20, 2013. Proceedings, pages 356—-364, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

4. Rhyd Lewis. Constructing wedding seating plans: A tabu subject. In Proceedings
of the International Conference on Genetic and Evolutionary Methods (GEM’13),
pages 24-32. CSREA Press, 2013.

5. Rhyd Lewis and Fiona Carroll. Creating seating plans: a practical application.
Journal of the Operational Research Society, 67(11):1353-1362, Nov 2016.

6. Alexander Mitsos, Benoit Chachuat, and Paul I. Barton. Mccormick-based relax-
ations of algorithms. SIAM Journal on Optimization, 20(2):573-601, 2009.

7. Gilles Pesant. Achieving domain consistency and counting solutions for dispersion
constraints. INFORMS Journal on Computing, 27(4):690-703, 2015.

8. Ruslan Sadykov and Francgois Vanderbeck. Bin Packing with conflicts: a generic
branch-and-price algorithm. INFORMS Journal on Computing, 25(2):244-255,
2013.

9. Zhenbo Wang, Xin Han, Gyorgy Désa, and Zsolt Tuza. Bin packing game with an
interest matrix. In Computing and Combinatorics: 21st International Conference,
COCOON 2015, Beijing, China, August 4-6, 2015, Proceedings, pages 57—69, Cham,
2015. Springer International Publishing.

DS4DM-2017-015

