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Abstract

This work concerns the maximum capture problem with random utilities, i.e., the prob-

lem of seeking to locate new facilities in a competitive market such that the captured demand

of users is maximized, assuming that each individual chooses among all available facilities

according to a random utility maximization model. The challenge when solving this prob-

lem is the nonlinearity of the objective function. Existing approaches often only use the

multinomial (MNL) logit model due to its simple structure, and address this challenge by

formulating the problem into Mixed-Integer Linear Programing (MILP) models, so it can

be solved by a MILP solver. There are two issues associated with this approach, namely,

(i) the use of the MNL model retains the well-known independence of irrelevant alternatives

property that may be undesirable in the context, and (ii) the MILP model could be difficult

to solve for large instances.

In this paper, we address the aforementioned issues by dealing with the facility location

problem under the mixed MNL (MMNL) model, which is general and fully flexible, compared

to the MNL model. In addition, we do not solve equivalent MILP models, instead we

propose an exact algorithm based on the outer approximation framework to quickly solve

the associated 0-1 nonlinear problems. We test our algorithm using generated instances

of different sizes, and show that our algorithm is much faster, compared to other existing

approaches in the context. Especially, for several large-scale instances (thousands of locations

and zones) under the MMNL model, our algorithm manages to find an optimal solution in

few seconds, while other approaches cannot converge within a time budget of several hours.

Keywords: competitive facility location, maximum capture, multinomial logit, mixed multi-

nomial logit, outer approximation.

1 Introduction

This paper concerns the facility location problem in competitive market, which has been receiv-

ing a growing attention in the last decade due to its appealing properties. In this problem, two

∗CERC - Data Science for Real-time Decision-making, Polytechnique Montréal
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aspects are taken into account, namely, the demand of customers and the competitors in the

market. For the latter, the companies that would like to locate new facilities have to compete

for their market share. Several competitive facility location models have been proposed. In

general, theses models are based on the assumption that customers choose among different fa-

cilities based on a given utility that they assign for each location, and these utilities are typically

functions of facility attributes/features, e.g., distances, prices, transportation costs. There are

basically two main modeling approaches for the problem. The first approach, which we refer to

as the deterministic approach, is based on the assumption that customers choose a facility in a

deterministic way. For example, ReVelle (1986) proposes a model in which customers choose the

closest facility among different competitors. This model therefore implies that all the demand

of a zone is assigned entirely to a facility, which is not realistic. An alternative approach is

the model proposed in Huff (1964), in which the demand captured by a facility is proportional

to the attractiveness of the facility and inversely proportional to the distance. The reader can

consult Berman et al. (2009) for a review.

The second modeling approach is referred to as the probabilistic approach, in which the demand

of customers is captured by a probabilistic model, i.e., a model that can assign a probability

distribution over the facilities. The random utility maximization framework (Ben-Akiva and

Lerman, 1985, McFadden, 1978) is convenient to use in the context. Under this framework, a

random utility is associated with each facility, and a customer is assumed to choose a facility

by maximizing his/her utilities. More precisely, we assume that there is an utility uj associated

with a facility j, and it includes the attributes/features of the facility, i.e., uj = βTaj +εj , where

aj is the vector of attributes of facility j and β is the vector of the model parameters, which

can be obtained by estimating/training the choice model, and εj is the random component that

cannot be observed by the analyst. Under the “utility maximization” assumption, this way of

modeling allows us to compute the probability that a customer chooses a facility i versus other

facilities as P (ui ≥ uj , ∀j). In this context, the facility location problem can be described as

follows: How to locate facilities in a competitive market such that the expected market share

captured by the new facilities is maximized (so the problem is also called as the “maximum

capture” problem). This modeling approach was first introduced by Benati and Hansen (2002)

and had several applications afterward (Aros-Vera et al., 2013, Haase and Müller, 2013, 2015).

The advantage of this approach, compared to the deterministic one, is that the probabilistic

models can be trained/estimated using real data, so the demand of customers can be predicted

more accurately. The challenge, however, lies in the fact that the corresponding data-driven

discrete optimization problems are nonlinear, thus they are typically difficult to solve. Existing

approaches address this challenge by linearizing the problems into Mixed-Integer Linear Pro-

graming (MILP) models, so they become more convenient to solve (Benati and Hansen, 2002,

Hasse, 2009, Zhang et al., 2012). Recently, Haase and Müller (2014) have made a comparison be-

tween three MILP formulations in the literature, and concluded that the one proposed in Hasse

(2009) is the most efficient. Even more, Freire et al. (2016) have proposed a Brand-and-Bound

algorithm to strengthen the MILP approach of Hasse (2009).
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There are two different aspects that need to be taken into account when using the random

utility maximization framework, namely, the prediction performance of the choice model and

the complexity of the resulting optimization problems. For the first aspect, existing studies that

we mentioned only focus on the multinomial logit (MNL) model due to its simple structure. The

MNL model is based on the assumption that the random components εj , ∀j, in the utilities are

independent and identically distributed (i.i.d.) and follow the standard Gumbel distribution, so

the model exhibits the so-called independence of irrelevant alternatives (IIA) property, which

could be an issue in many contexts (see Ben-Akiva and Lerman, 1985, for instance). In Section

2.1 we present a counter example showing why the use of the MNL model can lead to inaccurate

prediction results in the context of facility location. There are other advanced choice models

that can be used to relax the IIA property and provide better prediction, namely, the mixed

MNL (MMNL) (McFadden and Train, 2000) and multivariate extreme value (MEV) (McFadden,

1978). In particular, the MMNL model is fully flexible, as it can approximate any random utility

model (McFadden and Train, 2000). The use of these models, however, results in complicated

optimization problems, which could be intractable to solve.

Regarding the second aspect, there is a trade-off between using advanced choice models and

the complexity of the resulting optimization problem. To be more precise, the use of models

that relaxes the IIA could lead to intractable optimization models. An mentioned, existing

studies are only based on the MNL model. Moreover, even with the simple MNL, the MILP

formulations only enable commercial solvers (e.g., CPLEX) to solve quite small instances (less

than 100 locations) (see Haase and Müller, 2014, for instance).

In this paper, we advance the state of the art for the aforementioned aspects. More precisely,

we propose a new algorithm solution that allows to quickly solve large-scale instances under the

MMNL model.

Our contributions:

(i) We formulate and solve the maximum capture problem under the MNL and MMNL mod-

els. To the best of our knowledge, this is the first study in the context that deals with the

MMNL model. We propose an algorithm based on the outer approximation scheme (Du-

ran and Grossmann, 1986) that allows to solve large-scale instances much more quickly,

compared to the existing approaches in the literature. The idea is that we formulate the

equivalent minimization of the maximum capture problem, and we iteratively generate

linear cuts in order to create an outer-approximation of the objective function, which is

piecewise-linear and convex, and we minimize this piecewise linear function instead of the

nonlinear objective to obtain optimal solutions.

(ii) We test our algorithm on several instances of different sizes, and show that even for

instances of thousands of locations, our approach manages to find an optimal solution in

fews seconds, while other existing approaches cannot converge after several hours, even

with small instances of less than 100 locations.
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(iii) The use of the MMNL model allows to flexibly and accurately predict the customers’

demand. Our algorithm opens a very efficient way to deal with the problem under the

MMNL model, and we believe that it is a significant step forward in the facility location

literature.

(iv) Our approach also opens the possibility to deal with more complicated variants of the

problem considered in this paper, e.g., the maximal covering salesman problem (Church

and Velle, 1974), where the demands of users are captured by a random utility maximiza-

tion model.

The paper is structured as follows. Section 2 presents the random utility maximization frame-

work and the maximum capture problem under random utility choice models. In Section 3

we present how to formulate the problem into MILP formulations. Our algorithm is presented

in Section 4. Section 5 reports the computational results comparing the performance of our

approach with the MILP formulations and some existing mixed integer nonlinear programming

solvers. Finally, Section 6 concludes.

2 Facility location under the random utility maximization

In this section we first present the discrete choice framework used for analyzing and predicting

the behavior of decision makers. We then describe the maximum capture problem in competitive

market under these models.

2.1 Random utility maximization models

The random utility maximization (RUM) framework (McFadden, 1978) is the most widely used

approach to model discrete choice behavior. Under this framework, each customer (decision

maker) n associates an utility uni with each alternative/location i in a choice set Sn. This

utility consists of two parts: a deterministic part vni that contains observed attributes/features,

and a random term εni that is unknown to the analyst. In general, a linear-in-parameters

formula is used, i.e, vni = βTani, where T is the transpose operator, β is a vector of parameters

to be estimated and ani is the vector of attributes of alternative i as observed by customer n.

The framework assumes that the customer aims at maximizing the utility, and the choice prob-

ability that an alternative/option i in choice set Sn is chosen by individual n is given as

P (i|Sn) = P (uni ≥ unj , ∀j ∈ Sn) = P (vni + εni ≥ unj + εnj , ∀j ∈ Sn). (1)

Different assumptions for the random terms lead to different types of discrete choice models.

The MNL model is widely used in this context. This model results from the assumption that
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the random terms εni, i ∈ Sn, are i.i.d. and follow the standard Gumbel distribution. The

corresponding choice probability has the simple form

P (i|Sn) =
evni∑

j∈Sn
evnj

.

If the model is linear-in-parameters, the choice probabilities can be written as a function of

parameters β as

P (i|Sn) =
eβ

Tani∑
j∈Sn

eβ
Tanj

.

It is well known that the MNL model exhibits the IIA property, which implies proportional

substitution across alternatives. This property implies that for two alternatives, the ratio of

the choice probabilities is the same no matter what other alternatives are available or what

the attributes of the other alternatives are. However, if alternatives share unobserved attributes

(i.e., random terms are correlated), then the IIA property does not hold. In the following we give

a counter example showing that the use of the MNL and the IIA property would be undesirable,

and may lead to inaccurate predictions in the context of facility location.

We consider an example of one zone and three locations. We assume that customers are located

at Zone i (i.e., a geographical area), and there are three facilities located at Location 1, 2 and 3.

Moreover, the distances between Zone i and the three locations are equal, but Location 2 and

Location 3 are close to each other (see Figure 1). Now we want to have a model that can predict

the probabilities that customers located at Zone i select locations, under the assumption that

the decisions of customers are only driven by the distances, i.e., the utility associated with a

location j depends only on the distance between j and Zone i, i.e., vij = αd(i, j), where d(i, j)

is the distance (or travel time) from Zone i to location j, and α is a negative constant.

Zone i

Location 1
Location 2

Location 3

Figure 1: Example of one zone and three locations

If the MNL model is used, because d(i, 1) = d(i, 2) = d(i, 3) = d∗, then the probabilities that a
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customer located at Zone i selects the three locations are equal, i.e.,

Pi1 = Pi2 = Pi3 =
exp(αd∗)

3× exp(αd∗)
=

1

3
.

However, we expect that the probability that the customer goes to the left side and select

Location 1 is 1/2, and the probability that he/she goes to the right side and select Location

2 or 3 is 1/2, i.e., Pi1 = 1/2, and Pi2 = Pi3 = 1/4. Another illustration for the drawback of

the IIA property is as follows. Assuming that a MNL model can assign a probability of 1/2

for Location 1, and probabilities of 1/4 for Locations 2 and 3. The ratio between probabilities

Pi1 and Pi2 is Pi1/Pi2 = 2. The IIA property of the MNL model leads to the fact that this

ratio does not change even when the facility at Location 3 is closed. However, we expect that

when there are only two facilities at Locations 1 and 2 in the market, Pi1 and Pi2 should be

the same. This inaccurate prediction is due to the fact that the MNL cannot account for the

correlation between the utilities of Locations 2 and 3. In this context, other more advanced

choice models like the mixed logit or nested logit models (Train, 2003) could be used to correct

the random utilities for the correlation and provide better prediction. This counter example

is similar to the well-known “three paths” example in transportation demand modeling (Ben-

Akiva and Bierlaire, 1999), which is also used to illustrate why it is important to relax the IIA

property of the MNL model.

As mentioned, several choice models have been proposed to relax the IIA property from the

MNL, and the mixed MNL (MMNL) is one of the most preferable, as it is fully flexible in the

sense that it can approximate any random utility model (McFadden and Train, 2000). The

model has been widely used in practice due to this convenience.

In the MMNL model, the parameters β are assumed to be random, and the choice probabilities

are the integrals of standard MNL probabilities over a density f(β) of parameters β

P (i|Sn) =

∫
eβ

Tani∑
j∈Sn

eβ
Tanj

f(β)dβ.

In most of the cases, P (i|Sn) has no closed form, so in order to estimate the model, the proba-

bilities need to be approximated by a Monte Carlo method. To be more precise, if we assume

β1, . . . , βT are T realizations sampled over the distribution of β, then the choice probabilities

can be approximated as

P (i|Sn) ≈ P̄T (i|Sn) =
1

T

T∑
t=1

eβ
T
t ani∑

j∈Sn
eβ

T
t anj

.

There are two ways of modeling the MMNL model. The first way is based on random parameters

where the parameters β of the utilities vni are random and vary over the decision makers in

the population with density f(β), and the second way adds error components with zero means

to the utilities in order to create correlation between alternatives. Although these approaches
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are formally equivalent, they are associated different interpretations (see Train, 2003, for more

details).

In general, the parameters of a MNL or MMNL model can be obtained by maximum likelihood

estimation, i.e., we maximize the log-likelihood function defined over observations i1, . . . , iN

(the observations that customers choose facilities among a set of availability ones)

max
1

N

N∑
n=1

logP (in|Sn), (2)

where (2) can be solved using an unconstrained nonlinear optimization algorithm (Nocedal and

Wright, 2006). Note that the estimation of the MMNL model is more complicated, compared

to the MNL, as it requires an integration over the distribution of the random parameters. The

integration can be approximated numerically by sampling over the random parameters, and the

sample can be generated by standard Monte Carlo or quasi-Monte Carlo techniques (Munger

et al., 2012).

There are also several ways to relax the IIA property from the MNL model by making different

assumptions on the random terms of the utilities, i.e., εni. For example, the nested logit (Ben-

Akiva, 1973), the cross-nested logit Vovsha and Bekhor (1998), or generalized network MEV

model (Daly and Bierlaire, 2006). These models all belong to the multivariate extreme value

(MEV) family of models. Such models are convenient to use in some contexts, due to the fact

that they allow to represent the correlation between alternatives by a network (Daly and Bier-

laire, 2006). Even MEV models can be trained/estimated quickly using dynamic programming

techniques (Mai et al., 2017), but the use of these models in the context of competitive facility

location leads to complicated optimization models in which the objective functions are highly

nonlinear and non-convex, so difficult to solve.

It is interesting to mention that there is a number of non-parametric choice models having

been proposed as alternatives to the classical parametric models presented above. In particular,

Farias et al. (2013) have proposed a general model of choice where one represents choice behavior

by a probability distribution over all of the possible rankings of the alternatives. This model

has received a growing attention in the literature of revenue management (Bertsimas and Mǐsic,

2016, Farias et al., 2013). This model has an advantage of being able to represent a wide variety

of choice models, but the disadvantage is that the estimation and application are still difficult,

as it is based on all possible rankings of alternatives, and the number of rankings are typically

very large (the factorial of the number of alternatives).

2.2 Facility location in competitive market

In the market we assume that there are V = {1, . . . ,m} available locations, and we denote by

Y ⊂ V the set of locations that have facilities of the competitor company. Let I the set of

zones where customers are located, and qi be the number of customers located in zone i ∈ I.
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The objective is to maximize the market share (i.e. number of customers) by locating facilities

in a subset of locations X ⊂ V . We denote by R(X) the expected market share given by X

facilities. So, R(X) can be computed as

R(X) =
∑
i∈I

qi
∑
j∈X

P (i, j|X,Y ),

where P (i, j|X,Y ) is the probability that a customer located in i selects facility j ∈ X. If the

MNL model is used to predict the choice probabilities of customers, then R(X) can be computed

as

R(X) =
∑
i∈I

qi

∑
j∈X e

vij∑
j∈X e

vij +
∑

j∈Y e
vij
,

where vij = (β∗)Taij is the utility associated with location j and a customer located in zone

i, and β∗ is the vector of the model parameters of the choice model, and aij is the vector of

features/attributes associated with location j and customers at zone i.

For the MMNL model, it is assumed that the parameters β are random numbers. The choice

probabilities as well as the expected market share can be obtained by taking the expectation

over distribution of β, i.e.,

R(X) =
∑
i∈I

qi

∫ ( ∑
j∈X e

vij∑
j∈X e

vij +
∑

j∈Y e
vij

)
f(β)dβ,

where f(·) is the density function of β. As mentioned, this integration can be approximated by

a Monte Carlo method

R̄T (X) =
∑
i∈I

qi
T

T∑
t=1

( ∑
j∈X e

vijt∑
j∈X e

vijt +
∑

j∈Y e
vijt

)
,

where vij1, . . . , vijT are T realizations of the random utility vij , i ∈ I, j ∈ V , taking over the

randomness of parameters β. The maximum capture problem under the MNL can be written

as

max
X⊂V

∑
i∈I

qi

∑
j∈X e

vij∑
j∈X e

vij + U iY
, (3)

where U iY =
∑

j∈Y e
vij , which is a constant in the optimization problem. We also can formulate

(3) into a mixed integer nonlinear programming model as

max
xj∈{0,1}

j∈{1,2,....,m}

n∑
i∈I

qi

( ∑m
j=1 xje

vij∑m
j=1 xje

vij + U iY

)
, (FL-MNL)

where xj , j ∈ V , is equal to 1 if location j is selected, and 0 otherwise. If the MMNL is used to
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predict the choice probabilities, the maximum capture problem is written in a similar way as

max
X⊂V

∑
i∈I

qi
T

T∑
t=1

( ∑
j∈X e

vijt∑
j∈X e

vijt + U iY

)
,

and this is equivalent to the mixed-integer nonlinear programming problem

max
xj∈{0,1}

j∈{1,2,....,m}

n∑
i∈I

qi
T

T∑
t=1

( ∑m
j=1 xje

vijt∑m
j=1 xje

vijt + U itY

)
. (FL-MMNL)

Due to the nonlinearity of the objective function, (FL-MNL) and (FL-MMNL) are typically

difficult to solve. Note that we write (FL-MNL) and (FL-MMNL) in their simplest forms, and

different business constraints can be included, e.g., a constraint on the number of facilities that

the firm would like to locate, or constraints on the budget the firm has to open facilities.

Basically, (FL-MNL) and (FL-MMNL) are 0-1 fractional linear programming models, for which

it is possible to reformulate the nonlinear models into mixed-integer linear programming ones

(Wu, 1997). In the context of competitive facility location, this has been done in some previous

studies, e.g., Benati and Hansen (2002), Hasse (2009) and Zhang et al. (2012). We present this

approach in detail in the following section.

3 Mixed integer linear programing formulations

In this section we present how (FL-MNL) and (FL-MMNL) can be formulated as MILPs, so

these problems can be solved using a general-purpose MILP solvers (e.g., CPLEX). First, for

the ease of notation, we define Vij = evij and rewrite (FL-MNL) as

maximize
x

∑
i∈I

qi

( ∑m
j=1 xjVij∑m

j=1 xjVij + U iY

)
subject to Ax ≤ b

x ∈ {0, 1}m,

(4)

where Ax ≤ b are some linear business constraints. There are different ways of formulating

the above problem as a MILP (Benati and Hansen, 2002, Hasse, 2009, Zhang et al., 2012).

Haase and Müller (2014) show that among different MILP formulations in the literature, the

one proposed by Hasse (2009) performs the best. In the following, we present Hasse (2009)’s

formulation and use it as a benchmark for comparison with our approach.

Following Hasse (2009), if we define variables and constants as

zij =
Vijxj∑m

j=1 xjVij + U iY
, yi =

U iY∑m
j=1 xjVij + U iY

, φij =
Vij
U iY

,
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then (4) can be written equivalently as

maximize
x

∑
i∈I

qi

m∑
j=1

zij

subject to Ax ≤ b

yi +
m∑
j=1

zij ≤ 1, ∀i ∈ I

zij −
φij

φij + 1
xj ≤ 0, ∀i ∈ I, j ∈ V

zij − φijyj ≤ 0, ∀i ∈ I, j ∈ V

zij , yj ≥ 0, ∀i ∈ I, j ∈ V

xi ∈ {0, 1}, ∀i ∈ I.

(MILP-MNL)

Under the MMNL model, if we define (FL-MMNL) V t
ij = evijt , then (FL-MMNL) can be written

as

maximize
x

1

T

T∑
t=1

∑
i∈I

(
qi
∑m

j=1 xjV
t
ij∑m

j=1 xjV
t
ij + U itY

)
subject to Ax ≤ b

x ∈ {0, 1}m.

(5)

Even if Hasse (2009) only formulate the problem under the MNL, it is straightforward to for-

mulate the maximum capture problem under the MMNL model as a MILP. More precisely, we

can define

ztij =
V t
ijxj∑m

j=1 xjV
t
ij + U itY

, yti =
U itX∑m

j=1 xjV
t
ij + U itY

, φtij =
V t
ij

U itY
,

then (4) can be written equivalently as

maximize
x

1

T

T∑
t=1

∑
i∈I

qi

m∑
j=1

ztij

subject to Ax ≤ b

yti +
m∑
j=1

ztij ≤ 1, ∀i ∈ I, t = 1, . . . , T

ztij −
φtij

φtij + 1
xj ≤ 0, ∀i ∈ I, j ∈ V, t = 1, . . . , T

ztij − φtijytj ≤ 0, ∀i ∈ I, j ∈ V, t = 1, . . . , T

ztij , y
t
j ≥ 0, ∀i ∈ I, j ∈ V, t = 1, . . . , T

x ∈ {0, 1}m, ∀i ∈ I.

(MILP-MMNL)

For the problem under the MNL model, the MILP formulation has |V | binary variables, and

(|I|+ |V |+ |I| × |V |) continuous variables, and the number of constraints is |I|+ 2× |I| × |V |.
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Under the MMNL model, these numbers are multiplied by the sample size T . This means

that these MILP formulations would become heavy and difficult to solve with large instances,

especially for the case of the MMNL model. The approach in the following section open a

possibility to solve large problems very quickly.

4 Outer approximation algorithm

We first write (4) as follows

minimize
x

Q(x) = −
∑
i∈I

qi

( ∑m
j=1 xjVij∑m

j=1 xjVij + U iY

)
subject to Ax ≤ b

x ∈ {0, 1}m,

(P1)

and in the case of the MMNL model, (FL-MMNL) can be written as

minimize
x

QT (x) = −
∑
i∈I

qi
T

T∑
t=1

( ∑m
j=1 xjVijt∑m

j=1 xjVijt + U itY

)
subject to Ax ≤ b

x ∈ {0, 1}m.

(P2)

We introduce the following proposition that supports the use of the outer approximation scheme.

Proposition 1 The continuous relaxation of Q(x) and QT (x) is convex.

The convexity of the objective function in the case of the MNL was also established in Benati

and Hansen (2002), and their proof can be adapted for the case of the MMNL model. For

the sake of self-containment we provide a proof in Appendix A for the both MNL and MMNL

models.

The idea of the outer approximation method (Duran and Grossmann, 1986) is to create a

piecewise linear and convex function G(x) that underestimate Q(x), i.e., G(x) ≤ Q(x), ∀x.

If this function is tight at every integer point in the feasible set of the problem, i.e., G(x) =

Q(x), ∀x ∈ {0, 1}n, Ax ≤ b, then we can find an optimal solution to (FL-MNL) by solving

min{G(x)| x ∈ {0, 1}n, Ax ≤ b}.

In order to create such function, we first consider the following mixed integer equivalence of
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(P1).

minimize
x

θ (P3)

subject to Ax ≤ b

θ ≥ Q(x) (6)

xi ∈ {0, 1}.

The idea of the algorithm is to relax (6) and consider θ as an underestimator of Q(x), and

successively add cuts in the (x, θ)-space to better approximate the shape of Q(x). This is

done until an optimal solution (x∗, θ∗) satisfying θ∗ = Q(x∗) is found. Now, we describe the

algorithm. We first define the master problem by projecting the feasible region of (P3) onto the

x-space

minimize
x

θ (MP)

subject to Ax ≤ b

Πx− 1θ ≤ π0 (7)

θ ≥ L

xi ∈ {0, 1}

where 1 denotes a vector of ones of appropriate size, and L is a lower bound of Q(x) in the

feasible set. Since Q(x) is convex in [0, 1]n, L can be computed by solving the following nonlinear

continuous optimization problem, which is the continuous relaxation of (P1)

L = min
x∈[0,1]n
Ax≤b

Q(x). (8)

In some cases solving (8) could be costly, so we can simply choose L according to the following

proposition

Proposition 2 The following inequalities are valid ∀x ∈ {0, 1}m,

Q(x) ≥ −
∑
i∈I

qi

( ∑m
j=1 Vij∑m

j=1 Vij + U iY

)
,

QT (x) ≥ −
∑
i∈I

qi
T

T∑
t=1

( ∑m
j=1 Vijt∑m

j=1 Vijt + U itY

)
.

Proposition 2 also indicates that in the context of the MNL or MMNL model, if there is no

restriction on the number of facilities, then the optimal solution is xj = 1, j = 1, . . . ,m, i.e., all

the locations should be selected to locate facilities.

It can be shown that (P3) is equivalent to (MP) if for each x∗ ∈ M = {{0, 1}m|Ax ≤ b} the
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constraint set (7) contains cuts of the form πkx − θ ≤ πk0 such that πkx − πk0 ≤ Q(x) for all

x ∈ M , and πkx∗ − πk0 ≤ Q(x∗). The idea of the approach is that we initialize the master

problem (MP) with empty constraint (7). Given that Q(x) is convex, thus for any x∗ ∈ X the

following equality is valid

Q(x) ≥ ∇Q(x∗)(x− x∗) +Q(x∗),

where ∇Q(x∗) is the gradient of Q(x) at x∗. Because we want θ ≥ Q(x), we can add a sub-

gradient cut of the form

θ ≥ ∇Q(x∗)(x− x∗) +Q(x∗). (9)

Note that ∇Q(x∗) can be easily computed analytically using (P1). Before presenting the algo-

rithm we highlight some properties of the approach that were already verified by Duran and

Grossmann (1986). Namely,

(i) Let (x∗, θ∗) be a solution to (MP), if θ∗ ≥ Q(x∗), then x∗ is an optimal solution and θ∗ is

the optimal value of the problem.

(ii) If the master problem contains cuts based on a set of binary solutions Z, then if at an

iteration we find a solution (x∗, θ∗) such that x∗ ∈ Z, then x∗ and θ∗ are an optimal

solution and the optimal value, respectively.

Property (ii) can be easily verified by the fact that if we find a solution (x∗, θ∗) such that x∗ ∈ Z,

then (x∗, θ∗) is a solution to (MP) containing constraint θ ≥ ∇Q(x∗)(x− x∗) +Q(x∗), meaning

that θ∗ ≥ Q(x∗). Hence, according to Property (i), x∗ is an optimal solution. Property (ii) also

suggests a way to avoid recomputing the objective function (Q(x) or QT (x)), which could be

costly with large instances. More precisely, each time a solution x∗ is found, we can add it to Z

and also save the objective value Q(x∗) or QT (x∗). At each iteration, after solving the master

problem to obtain (x∗, θ∗), we can first check if x∗ is in Z, then we can return x∗ as an optimal

solution. Otherwise we compute the gradient of Q(x∗) to create and add a sub-gradient cut to

the master problem.

This description of the outer approximation method is summarized in Algorithm 1. The differ-

ence between Algorithm 1 and the outer-approximation algorithm presented in Bonami et al.

(2008) is that: (i) we do not solve the continuous relaxation of the problem to get the first cut,

instead, we compute the lower bound using Proposition 2, and (ii) we save the set of binary

solutions found at each iteration to avoid recomputing the objective function and its gradient.

Actually, in our numerical studies, for the maximum capture problem the OA algorithm only

needs a few iterations to converge, so these modifications would help to remarkably reduce the

computational cost, in particular for large instances.

We have the following remarks for Algorithm 1. First, the theoretical results from Duran

and Grossmann (1986) guarantee that the outer approximation algorithm finishes after a finite

number of iterations, and returns an optimal solution. Second, the algorithm is described based

on function Q(x) but it can apply for QT (x) in a similar way. Third, in order to compute
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Algorithm 1: Outer approximation algorithm

begin
# Initialization
Step 1. Chose a lower bound L according to Proposition 2, a convergence tolerance ε > 0,
and Z = ∅.
Step 2. Initialize the master problem (MP) with empty Π.
Step 3. Compute (x∗, θ∗) as the first solution by solving (MP).
# Iteratively adding cuts until getting an optimal solution
Step 4. If x∗ ∈ Z then go to Step 6, otherwise w set Z = Z ∪ {x∗} and compute Q(x∗)
Step 5. If θ∗ ≥ Q(x∗)− ε, then go to Step 6, otherwise

- Compute ∇Q(x∗) and add subgradient cut to the master problem (MP)

θ ≥ ∇Q(x∗)(x− x∗) +Q(x∗)

- Solve (MP) to obtain new solution (x∗, θ∗), and move back to Step 4

# Finalization
Step 6. Return x∗ as an optimal solution and θ∗ as the optimal value.

sub-gradient cuts, we need to have the first derivative of Q(x), which can be easily derived

analytically. Fourth, the use of the algorithm requires the convexity of the objective function

(expected maximum capture), which does not hold under the MEV model. So, in the context of

the MEV model, the algorithm is no-longer exact but heuristic. Finally, the size of the master

problem (in terms of number of variables and constraints) in (MP) is remarkably smaller than

the MILP models in (MILP-MNL) and (MILP-MMNL), and the size of this master problem

is independent of the choice model (the MNL or MMNL model) that we use, so with this nice

property, we expect that (MP) can be quickly solved for large-scale instances under the MMNL

model.

5 Computational studies

In this section we test our algorithm using generated datasets of different sizes. We first show

how the cutting algorithm performs with the MNL model, in comparison with the MILP ap-

proach. We then extend the experiments with the MMNL model.

5.1 Experimental setting

In this section we present computational results comparing our integer cutting plane to the

MILP approach in Hasse (2009), which has been showed to have the best performance among the

existing MILP formulations in the literature (Haase and Müller, 2014). We generate instances

of different sizes for the experiments. More precisely, we generate sets of locations by randomly

and uniformly generating their coordinates in a two dimensional rectangular. For each set
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of locations, we generate 4 sets of zones, and the coordinates of these zones are also generated

uniformly in the same rectangular containing the locations. For each set of location, we randomly

take a subset to locate facilities of the competitor. This way of generating instances is similar

to those in previous studies (Benati and Hansen, 2002, Freire et al., 2016). The constraints that

we consider in this experiment have the form

L ≤
∑
j∈V

xj ≤ U,

where L and U are integer constants such that 1 ≤ L ≤ U ≤ |V |. These lower and upper

bounds are also generated randomly such that L is greater than 25% of the total number of

locations, i.e., |V |. We also set the time limit for the MILP solver to 1,200 CPU seconds. If

the solver stops because it exceeds the time limit, we report the percentage gaps (%) between

the objective values given by the solver and the corresponding optimal values. The experiments

were conducted on a PC with processor Intel(R)Core(TM) CPUs of 2.8 Ghz, RAM of 8 GB

and operating system Window 10. The algorithms were coded in MATLAB and linked to

IBM-ILOG CPLEX 12.6 optimization routines under default settings. We use the MILP solver

of CPLEX to solve (MILP-MNL) and (MILP-MMNL), and the master problem of the cutting

plane algorithm, i.e., (MP). In these numerical studies we assume that the estimation procedure

is done, so all the model parameters are known for the optimization problem. For the sake of

simplicity, we use the rectangular distance as the only attribute of the facilities, and we choose

the model parameters for the utilities β = −1.

5.2 Case study 1: MNL model

In the first case study we test our algorithm on the problem under the MNL model. Table 1

reports the computational results for small- and medium-size instances (the number of locations

varies from 50 to 500), where OA stands for Algorithm 1, and MILP denotes the approach that

in which MILP formulation in (MILP-MNL) is solved directly by CPLEX. The symbol “-” in the

table indicates the cases when the MILP fails to return an optimal solution within 1,200 seconds.

In this case, we report the gaps (%) between the best objective values given by CPLEX and the

corresponding optimal values computed by the OA. The results clearly show the superiority of

our OA approach. The OA algorithm manages to find an optimal solution within 0.1 seconds for

all the instances, while the MILP exceeds the time limit for 22/24 instances. When the number

of locations becomes large, the gaps are also increased and significant. We note that when the

number of locations is larger then 200, the MILP approach fails to return optimal solutions

within several hours. These results are also consistent with those reported in previous studies

(Benati and Hansen, 2002, Haase and Müller, 2014), which point out that when the number

of locations is larger than 100, the MILP approach cannot find an optimal solution within 30

minutes.

It is important to mention that Freire et al. (2016) has strengthened the MILP approach from
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|V | |I| OA MILP
Time(s) Time(s) Gap (%)

50

20 0.05 23.8 0.0
30 0.10 121.4 0.0
40 0.07 - 0.0
60 0.06 - 0.0

100

60 0.10 - 0.0
80 0.05 - 0.0
120 0.06 - 0.1
140 0.06 - 0.0

200

100 0.06 - 0.1
200 0.08 - 0.4
300 0.08 - 1.8
400 0.08 - 11.3

300

200 0.11 - 4.8
300 0.08 - 5.9
400 0.09 - 15.9
500 0.12 - 7.7

400

300 0.09 - 17.4
400 0.09 - 6.9
500 0.10 - 5.2
600 0.14 - 17.2

500

400 0.13 - 9.8
500 0.13 - 16.9
600 0.12 - 21.8
700 0.14 - 4.4

Table 1: Comparison results with small and medium instances, the “-” indicates that the MILP
solver fails to give an optimal solution within the time budget (1200 seconds)

Hasse (2009), but their computational results show that their Brand-and-Bound (B&B) algo-

rithm does not make a “huge” improvement, e.g., for the largest instance that they considered

(100 locations), the B&B needs about 300 seconds to find an optimal solution, and there are

several instances that cannot be solved to optimality. Even if their computational results may

be based on a different experimental setting, it is enough to say that the B&B is much slower

and less efficient, compared to the OA, as our OA algorithm can easily find optimal solutions

for larger instances (up to 500 locations) in less than 0.2 seconds.

Given that with the small and large instances reported in Table 1, the OA needs only less than

0.2 seconds to find an optimal solution, we challenge our algorithm by testing on much larger

instances. More precisely, we test with the numbers of locations varying from 1, 000 to 10, 000.

Table 2 reports the computational time and the number of iterations for 20 large instances. The

results clearly show the power of the OA algorithm, since it needs only less than 0.5 second to

solve instances of 1,000 locations, and less than 4 seconds to solve those of 10,000 locations. It

is important to note that the computing time for the OA algorithm can be approximated as

(νQ(x) + νMP )× n-iters, where νQ(x) stands for the computational time to evaluate Q(x), νMP

is the computational time to solve the master problem by CPLEX, and n-iters is the number of
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iterations. In the cases we test, the number of iterations is small (less than 6) and seems to be

not affected by the size of the instances. This explains why the OA runs quickly even for the

cases of very large instances. Note that with these large instances and under our experimental

setting, it is impossible for the MILP approach to find an optimal solution within several hours,

even days.

|V | |I| OA
Time(s) No iterations

1000

200 0.36 4
300 0.45 5
400 0.29 4
600 0.29 5

2000

1000 0.52 5
1200 0.53 5
1400 0.53 5
1600 0.53 4

5000

1000 1.77 4
2000 1.94 6
3000 1.41 6
4000 1.14 2

7000

3000 2.05 5
4000 1.55 2
5000 2.21 5
6000 2.01 4

10000

3000 3.66 6
4000 3.99 5
6000 2.63 4
8000 3.66 6

Table 2: Computational results for the OA with large instances

5.3 Case study 2: Mixed MNL model

In this section we report the computational results with the MMNL model. In order to gener-

ate datasets, we assume that the utilities vij associated with a customer located in zone i and

location j is no-longer deterministic, but contains an error component that follows a normal

distribution of zero mean. We also assume that the variance of the error component is propor-

tional to the distance d(i, j) between zone i and location j. More precisely, vij can be written

as

vij = βTaij + αςij ,

where α and β are the parameter estimates of the MMNL model, which are constants in the

optimization problem, and ςij is a N(0, d(i, j)) random number. Note that the parameters α,

β can be obtained by estimating/training the corresponding MMNL model specification, and

different assumptions can be made on the error component. In this paper we do not explicitly

explain how to do it, but the reader is refereed to several studies in discrete choice modeling
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(e.g., Train, 2003) for more details. In this experiment, we choose β as the one used for the MNL

model, and α = 0.5. For each sample size T , we generate T realizations of {vij , i ∈ I, j ∈ V }
by a Monte Carlo method.

We test the OA and MILP approaches on sets of 50, 100, 200, 300, 500, 1000, 2000 and

3000 locations. For each set of locations we also randomly generate 4 sets of zones. For

each dataset, we solve the maximum capture problem with the sample size T being chosen

in the set {100, 200, 400, 600, 800, 1000}. In total we have 192 instances. Table 3 reports the

computational results for the OA and MILP approaches. On each OA column we report the

computational time and number of iterations (in the parentheses). The “-” on MILP columns

indicates that the CPLEX solver fails to return an optimal solution with a time budget of 1,200

seconds. In this case we compute the percentage gaps (%) between the best objective values

and the corresponding optimal values given by the OA, and if the gaps are less than 20% we

report them in the parentheses.

T 100 200 400 600 800 1000
|V | |I| OA MILP OA MILP OA MILP OA MILP OA MILP OA MILP

50

20 0.07(5) -(0.22) 0.08(6) 53.79 0.06(3) -(0.09) 0.06(3) 27.84 0.32(14) - 0.14(4) -
30 0.09(6) -(0.08) 0.06(4) -(0.02) 0.10(6) -(7.93) 0.08(3) -(0.06) 0.09(2) -(5.15) 0.20(8) 73.09
40 0.06(4) 52.46 0.13(9) -(0.03) 0.08(4) -(3.62) 0.12(5) -(13.51) 0.12(4) 72.48 0.14(5) 114.5
60 0.05(3) -(0.28) 0.06(4) -(3.77) 0.06(2) - 0.13(5) - 0.16(5) - 0.47(14) -(6.55)

100

60 0.11(5) -(5.40) 0.10(4) - 0.15(5) - 0.19(5) - 0.54(10) - 0.24(4) -
80 0.08(3) - 0.13(4) - 0.35(11) - 0.22(4) - 0.31(6) - 0.26(3) -
120 0.07(3) -(14.87) 0.10(3) - 0.20(6) - 0.36(8) - 0.36(7) - 0.60(10) -
140 0.08(3) - 0.17(5) - 0.22(4) - 0.26(2) - 0.28(3) - 0.68(8) -

200

100 0.10(3) - 0.18(4) - 0.27(5) - 0.70(10) - 0.62(7) - 0.44(3) -
200 0.11(2) - 0.26(6) - 0.29(4) - 0.33(4) - 0.48(4) - 0.65(6) -
300 0.12(2) - 0.35(6) - 0.48(7) - 0.57(7) - 0.78(4) - 1.21(8) -
400 0.17(4) - 0.21(3) - 0.31(3) - 0.49(4) - 0.69(5) - 1.17(6) -

300

200 0.33(9) - 0.25(4) - 0.45(6) - 0.55(5) - 0.63(4) - 0.91(6) -
300 0.17(2) - 0.40(8) - 0.33(2) - 0.64(6) - 0.64(4) - 1.00(7) -
400 0.20(4) - 0.60(11) - 0.55(6) - 1.64(9) - 1.20(5) - 1.46(5) -
500 0.29(5) - 0.33(5) - 0.44(4) - 0.57(4) - 0.66(3) - 2.05(4) -

400

300 0.31(7) - 0.30(4) - 0.69(4) - 0.48(2) - 2.37(9) - 1.37(5) -
400 0.38(9) - 0.73(12) - 0.82(6) - 1.39(6) - 1.74(10) - 1.03(4) -
500 0.28(5) - 0.44(7) - 0.84(4) - 1.57(2) - 1.39(8) - 2.18(10) -
600 1.04(19) - 1.01(11) - 1.18(5) - 1.34(3) - 1.88(4) - 3.93(3) -

500

400 0.22(2) - 0.55(8) - 0.63(5) - 1.12(4) - 1.31(5) - 3.80(2) -
500 0.38(5) - 0.51(3) - 1.69(8) - 2.61(7) - 1.96(4) - 1.67(6) -
600 0.53(8) - 0.77(10) - 0.90(4) - 1.31(6) - 2.95(3) - 3.23(3) -
700 0.42(7) - 0.61(6) - 1.35(6) - 1.62(2) - 1.76(4) - 2.49(2) -

1000

700 0.40(4) - 0.50(3) - 0.70(2) - 1.57(6) - 2.46(7) - 2.55(5) -
800 0.60(5) - 0.87(5) - 1.08(4) - 2.43(8) - 4.77(6) - 4.14(5) -
900 0.46(5) - 0.57(4) - 1.16(4) - 2.03(8) - 2.30(5) - 1.70(2) -
1100 1.11(13) - 0.99(5) - 1.41(3) - 5.00(15) - 4.75(7) - 5.38(9) -

2000

1000 1.11(2) - 2.02(4) - 5.47(4) - 7.97(4) - 10.91(5) - 9.85(2) -
1200 2.05(6) - 2.82(4) - 5.45(5) - 9.34(8) - 12.01(7) - 15.39(9) -
1400 1.85(8) - 2.32(5) - 6.28(7) - 10.00(7) - 9.85(3) - 10.54(4) -
1600 1.48(4) - 3.57(6) - 8.0(10) - 9.21(6) - 12.08(7) - 13.34(5) -

3000

1000 3.02(4) - 2.33(2) - 6.12(4) - 9.73(6) - 10.76(4) - 14.80(5) -
1500 2.73(5) - 4.64(4) - 8.55(4) - 10.58(2) - 21.13(7) - 24.06(6) -
2500 3.51(4) - 6.95(5) - 15.19(7) - 19.28(5) - 18.22(5) - 20.21(4) -
3000 4.11(5) - 6.23(4) - 14.21(6) - 17.24(3) - 16.11(3) - 24.45(4) -

Table 3: Comparison results under the MMNL model.

We have some remarks on the performance of the two approaches as follows. First, similar to

the case of the MNL model, the OA shows its superiority, compared to the MILP approach. For
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all the instances, the OA manages to find an optimal solution very quickly; when the number of

locations is less than 1000, the OA needs less than 4 seconds, and even for the most complicated

cases (3000 locations and 1000 samples) the computational times are less than 25 seconds. The

number of iterations are also small (less than 12) and also seems to be not affected by the size

of the instances. Therefore, the computational times mostly depend on the time to compute

the objective function QT (x) and solve the master problem, which is typically fast even with

large |V |, |I| and T . Second, the MILP only enables CPLEX to find optimal solutions for a few

instances of |V | = 50. In most of the cases, CPLEX only returns objective values with gaps are

greater than 20%. Finally, in Table 3 we report the computational results for instances of up

to 3000 locations, but note that even with larger numbers of locations (e.g., up to 10,000), the

OA also allows us to find optimal solutions within 60 seconds.

In order to give an idea of the size of the MILP model in (MILP-MMNL), in Table 4 we report

the number of variables (binary and continuous) and number of constraints (not including the

business constraints) for some large instances. Note that the number of binary variables is |V |,
which is similar to the instances under the MNL. However, under the MMNL, the number of

continuous variables and constraints is increased dramatically, which makes the MILP models

too heavy to be solved. This explains why the MILP approach is no-longer efficient under the

MMML model even for small size instances.

T 400 600 800 1000

|V | |I| no var. no cons. no var. no cons. no var. no cons. no var. no cons.

1000
700 2.81E+08 5.60E+08 4.21E+08 8.40E+08 5.61E+08 1.12E+09 7.02E+08 1.40E+09
1100 4.41E+08 8.80E+08 6.61E+08 1.32E+09 8.82E+08 1.76E+09 1.10E+09 2.20E+09

2000
1000 8.01E+08 1.60E+09 1.20E+09 2.40E+09 1.60E+09 3.20E+09 2.00E+09 4.00E+09
1600 1.28E+09 2.56E+09 1.92E+09 3.84E+09 2.56E+09 5.12E+09 3.20E+09 6.40E+09

3000
1000 1.20E+09 2.40E+09 1.80E+09 3.60E+09 2.40E+09 4.80E+09 3.00E+09 6.00E+09
3000 3.60E+09 7.20E+09 5.40E+09 1.08E+10 7.20E+09 1.44E+10 9.01E+09 1.80E+10

Table 4: Size of the MILP (numbers of variables and constraints) under the MMNL model

5.4 Comparison of the OA algorithm and existing mixed integer nonlinear

programming (MINLP) solvers

In this section we compare the performance of Algorithm 1 to other existing convex MINLP

solvers that are also based on the outer approximation scheme. More precisely, we compare

our OA algorithm with algorithms implemented in the BONMIN package (Bonami et al.,

2008). Note that the BONMIN contains 4 different algorithms for solving convex MINLP

problems, and two of them are based on the outer approximation scheme, i.e., one is an outer-

approximation decomposition algorithm (denoted as BONMIN-OA) and the other one is a

hybrid outer-approximation based branch-and-cut algorithm (denoted as BONMIN-HYB). We

refer the reader to Bonami et al. (2008) for a detailed description of these algorithms. We use an

MATLAB interface of BONMIN, i.e., the OPTI Toolbox (http://www.i2c2.aut.ac.nz/Wiki/

OPTI/) for the experiment.

19

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-007

http://www.i2c2.aut.ac.nz/Wiki/OPTI/
http://www.i2c2.aut.ac.nz/Wiki/OPTI/


We first group instances into sets that have the same number of locations, we then report the

average computing time for each set. Figures 2 and 3 show the average computing time for

the MNL and MMNL models, where the vertical axis is the computing time (seconds), and the

horizontal one is the number of locations. We first remark that all the approaches are able to

find optimal solutions in less than 80 seconds, which clearly shows the superiority of the outer-

approximation based approaches, compared to the MILP one. Even the number of iterations

required by the OA and BONMIN-OA is similar, the OA is generally faster than the BONMIN

solvers, and the difference between the OA and BONMIN-OA/BONMIN-HYB becomes more

remarkable on MMNL instances, especially when the sample size T is increased. This is due

to the difference between our OA and the outer-approximation algorithm described in Bonami

et al. (2008), namely, we do not solve the continuous relaxation of (P1) and we save solutions

after each iteration to avoid recomputing the objective function.

Figure 2: Comparison results under the MNL model

6 Conclusion

In this paper we presented an innovative (and exact) algorithm to deal with the competitive

facility location problem under random utility maximization framework. Two aspects have been

considered, namely, the IIA property of the MNL model used in the existing studies, and the

intractability of large-scale instances. We deal with these aspects by formulating the problem

with the MMNL model, which is known to be fully flexible to capture customers’ demand.

Under this model, existing approaches in the context (based on MILP formulations) are no-

longer efficient, even with small instances. We have proposed a new algorithm based on the

convexity of the objective functions, and the outer-approximation scheme. We have tested our

algorithm using generated large-scale instances and showed that the OA algorithm impressively

dominated the MILP approach, especially in the case of the MMNL model. For example, the

OA manages to easily find optimal solutions for very large instances (up to 3,000 locations, and
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Figure 3: Comparison results under the MMNL model, with T ∈ {100, 200, 400, 600, 800, 1000}

sample size is 1,000) in seconds, while the MILP approach fails to converge to optimal solution

within 1,200 seconds for several small instances (50 locations) and seems to never converge to

optimality for larger instances (more than 200 locations).

We also compared the performance of our algorithm with two outer-approximation based algo-

rithms implemented in the BONMIN package (Bonami et al., 2008). The results showed that

these algorithms also manage to quickly find optimal solutions for all the instances considered,

which demonstrates the efficiency of the outer approximation scheme in the context. We also

showed that the BONMIN’s solvers perform quickly for small and medium size instances, but

become less efficient for large size instances, compared to our OA algorithm.
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The impressive performance of the OA opens many interesting directions for future research,

e.g., the facility location under more complicated constraints, the maximal covering salesman

problem under random utility maximization models. This is also interesting to apply the models

and methods presented in this paper to real large-scale applications, so the advantages of the

MMNL model as well as the power of the OA algorithm can be better demonstrated.

Finally, we note that the MEV model is also flexible to model the customers’ demand. However,

the use of such model would result in highly nonlinear non-convex objective functions, which

is difficult to solve. The algorithm proposed in this paper is designed based on the convexity

of the objective function, so it cannot apply for the case of MEV model. Nevertheless, the

problem under the MEV remains to be interesting to investigate. We are also interested in non-

parametric choice models, e.g., the generic ranking-based choice model (Farias et al., 2013),

which is able to represent any choice models based on random utility maximization.
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A Proof of Proposition 1

We first introduce the following lemma

Lemma 3 Given a vector α of size (n× 1), and a scalar α0, function f : Rn → R defined as

f(x) =
1

αTx+ α0
,

is a convex function.

Proof. Proof of Lemma 3. We just need to prove that the second derivative of f(x) is positive

semidefinite. We have the first and second derivatives of f(x) are

∇f(x) =
−α

(αTx+ α0)2

∇2f(x) =
2ααT

(αTx+ α0)3
.

So it is obvious that ∇2f(x) is a rank-1 positive semidefinite matrix (positive definite if α 6= 0),

thus f(x) is a convex function. Now we prove that Q(x) in (P1) is a convex function. Indeed,

we have for each i ∈ I,

−
∑m

j=1 xjVij∑m
j=1 xjVij + U iY

= −1 +
U iY∑m

j=1 xjVij + U iY
.

According to Lemma 3 we have that
U i
Y∑m

j=1 xjVij+U
i
Y

is convex, meaning that −
∑m

j=1 xjVij∑m
j=1 xjVij+U

i
Y

is

also convex, so the Q(x). In a similar way we can also prove that QT (x) defined in (P2) is also

a convex function.

B Proof of Proposition 2

We first prove the inequality for Q(x) by showing that∑m
j=1 xjVij∑m

j=1 xjVij + U iY
≤

∑m
j=1 Vij∑m

j=1 Vij + U iY
, i ∈ I, ∀x ∈ {0, 1}m (10)

Indeed, (10) is equivalent to m∑
j=1

xjVij

 m∑
j=1

Vij + U iY

 ≤
 m∑
j=1

xjVij + U iY

 m∑
j=1

Vij



⇔ U iY

 m∑
j=1

xjVij

 ≤ U iY
 m∑
j=1

Vij


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⇔

 m∑
j=1

xjVij

 ≤
 m∑
j=1

Vij

 ,

which is indeed valid because x ∈ {0, 1}m. So the have

Q(x) = −
∑
i∈I

qi

( ∑m
j=1 xjVij∑m

j=1 xjVij + U iY

)
≥ −

∑
i∈I

qi

( ∑m
j=1 Vij∑m

j=1 Vij + U iY

)
, ∀x ∈ {0, 1}m.

The inequality for QT (x) can be proved in a similar way.
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