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Abstract

An accurate model of patient-specific kidney graft survival distributions can help
to improve shared-decision making in the treatment and care of patients. In this
paper, we propose a deep learning method that directly models the survival function
instead of estimating the hazard function to predict survival times for graft patients
based on the principle of multi-task learning. By learning to jointly predict the
time of the event, and its rank in the cox partial log likelihood framework, our
deep learning approach outperforms, in terms of survival time prediction quality
and concordance index, other common methods for survival analysis, including
the Cox Proportional Hazards model and a network trained on the cox partial
log-likelihood.

1 Introduction

Survival data are characterized by the fact that we do not know many of the outcome values (e.g.
death or disease recurrence in medical studies) because the event might not have occurred within
the fixed period of the study or because subjects could move out of town or decide to drop out at
any time. Instead, the date of the last visit (censoring time) provides a lower bound on the survival
time, defined as the length of time between two events, called intake and endpoint. Such datasets are
considered censored. The Cox proportional hazards model and other parametric survival distributions
such as Weibull, exponential and log-normal, have been widely used for the analysis of the survival
time of a population by researchers and clinicians to test for significant risk factors affecting survival.

These models however suffer from several limitations when the objective is to get a precise estimation
of the survival time of an individual patient. Chun-Nam Yu et al. [16] lists two main issues of such
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models. The distributions chosen to model the data make it hard to provide accurate predictions in
terms of survival time. Cox models use the Proportional Hazard Assumption (PHA) that constrains
the model in a way that the effect of a given feature does not vary over time. This is a restrictive
condition in practice.

Some models, such as the stratified Cox model, attempt to deal with the limitations of the PHA. Chun-
Nam Yu et al. [16] also deals with both problems by introducing the multi-task logistic regressions
(MTLR) model, which introduces multiple logistic regression to model survival after a given time.
In addition, there have been publications in the past comparing machine learning methods such as
neural networks [4, 7] with linear Cox models. Blaz Zupen et al. [17] also proposed a framework that
enables the use of machine learning methods such as Bayes classifiers and decision trees for survival
analysis.

In this paper we introduce a novel deep learning method for survival analysis, based on multi-task
learning. We jointly predict the time of the event, and its rank in the cox partial log-likelihood
framework. This allows better generalization, due in part to the fact that the model is able to account
for the temporal aspect of the predictions. We compute the concordance index metric [3] (C-index in
what follows) in order to compare our results with the widely adopted Cox model. We demonstrate
the performance of our method experimentally on real-life survival datasets where it yields better
results in terms of C-index than the previous state-of-the-art methods.

2 Background: Survival time analysis

2.1 Notations

In contrast to most common regression problems, survival data analysis has three main characteristics:
(1) it examines the relationships of survival distributions to features; (2) it models the time it takes for
events to occur, and (3) the event we want to predict (such as time of death) is not always observed.
Sometimes, a patient will drop out of the study (i.e., voluntarily or because he was still alive at the
end of the study). We call such datasets right-censored.

Let T be a continuous random variable representing survival time. The survival function S(t) is the
probability of a patient surviving longer than t, i.e.,

S(t) = P (T ≥ t).

The hazard function denoted by λ(t) is the instant probability that the event occurs knowing that it
did not occur before t. We can define λ(t) as

λ(t) = lim
dt→0

P (t ≤ T < t+ dt|T ≥ t)
dt

.

The survival function can be expressed as a function of the hazard at all durations up to t

S(t) = exp
(
−
∫ t

0

λ(x) dx
)
.

As medical events are granular by nature, a given unique time (in a given time unit, such as a month
for our dataset) can correspond to multiple events (such as having 10 patients reject their graft on
January). Such events are tied, making comparisons more complex, and requiring a modification to
the loss function.

2.2 Linear models: Cox proportional hazards model

Some common approaches attempt to model the hazard function using the proportional hazards
assumption. Different modelizations of λ have been considered. Among the most well known, the
semi-parametric Cox proportional hazards model [1] defines λ at time t for an individual with features
xi as

λi(t|xi) = λ0(t) exp(θ · xi).

The Cox proportional hazards model can be viewed as consisting of two clearly separate parts: (1)
the underlying baseline hazard function λ0(t), describing how the risk of event per time unit changes
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over time at baseline levels of features, and (2) the effect parameters exp(θ · xi), describing how the
hazard varies in response to explanatory features.

Note that the Cox proportional hazards model is not commonly used in the literature to perform
prediction on new cases, but rather to characterize disease progression on existing cases, by highlight-
ing the importance of the different features [14]. As the baseline hazard function is never directly
estimated, computing survival predictions is not directly possible without additional assumptions.

2.3 Non-linear models

Other approaches have been applied to survival data. Random Survival Forests [6] are based on
an ensemble of trees to estimate the cumulative hazard function. This extends Breiman’s Random
Forests method to take right-censored survival data into account.

Deep survival [9] is an extension of the Cox model that uses a deep neural network to parametrize
the hazard function. The part of our model that is trained on a Cox partial likelihood loss differs from
their approach in the following regards:

• We perform the optimization per-batch instead of on the full dataset.
• We adapt the loss function to account for ties, using Efron’s approximation.
• We did not limit ourselves to modeling the logarithm of the hazard function, and tried other

forms. Modeling the hazard function directly yielded an improvement.

Ranganath et al. [13] uses deep exponential families (i.e., a class of latent variable models inspired
by the hidden structures used in deep neural networks) to model event time.

2.4 Standard evaluation: the concordance index

To compare our models we use the C-index [3]. The C-index is a standard measure in survival
analysis that estimates how good the model is at ranking survival times by calculating the probability
of correctly ranking the event time of cases taken two at a time. It can be seen as a generalization
of the Area Under the Receiver Operating Characteristic Curve (AUROC) to regression problems
and thus can handle right-censored data [15]. Let Ti denote the survival time for individual i and
Ei be the associated event, censored or uncensored. The (Ti, Ei), ..., (Tn, EN ) are all the events
in the dataset. Considering all possible pairs (Ti, Ei), (Tj , Ej) for i ≤ j, the C-index is calculated
by considering the number of pairs correctly ordered by the model divided by the total number of
admissible pairs. For our particular case of right censoring, a pair is considered admissible if it can
be ordered in a meaningful way. A pair cannot be ordered if the events are both right-censored or
if the earliest time in the pair is censored. A tied pair is counted as half correct in accordance with
standard implementations of the C-index. Finally, a C-index equal to 1 indicates perfect prediction
whereas a C-index equal to 0.5 indicates a random prediction. Survival models typically yield a
C-index between 0.6 and 0.7.

3 A deep learning survival model

In this section we describe our main contribution. As opposed to most previous methods that attempt
to estimate the survival or hazard function, we construct a deep neural network model to directly
compute the time of the event (here, graft failure). Our model attempts to predict the probability of
being alive at time t, for t ∈ [0, T ]. The chosen modeling task is related to the problem of ordinal
regression, with the exception that we have to take into account censored events.

3.1 Model

The proposed model takes as input the different continuous and discrete features characterizing a
patient and, in the case of the main dataset of our paper, a donor-recipient couple. The second-to-last
layer consists of a single unit with linear activation. The value outputted, denoted s(1) in what follows
is used to estimate the hazard function and can be considered a score indicative of the time of graft
failure, and thus compare two patients. This allows us to compute the first loss, the Cox partial
log-likelihood. The final layer has T units, where T is the number of time units (in our case, years
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Output:		
	

Pa#ent	1	(uncensored):	tobs	=	1.7	

tpred	
p1=.98	 p2=.64	 p3=.48	 p4=.34	 p5=.12	

t5=0	t4=0	t3=0	t2=1	t1=1	Target:		
	

p1=.98	 p2=.84	 p3=.76	 p4=.64	 p5=.49	

Pa#ent	2	(censored):	tobs	=	1.7	

tpred	
Output:		

	

t2=1	t1=1	Target:		
	

Input	 Input	

L1(�) 

L2(�) 

Figure 1: Our deep learning model. (Left) The case of an uncensored patient. (Right) The case of
a censored patient. The greyed out output units in the censored case correspond to censored units
for which no loss is computed and no error back-propagation is done. Two losses are computed: a
ranking loss on the bottleneck scalar unit and a cumulative time prediction on the top output units.

or months) considered in the study. The output is denoted s(2) in what follows. We use sigmoid
activations for the units of the final layer. The output value at index t corresponds to the probability
of not experiencing graft failure at time t (in our case at the t-th year). The second loss penalizes
wrongly predicted times in a manner consistent with losses used in isotonic regression. The model is
shown in a simplified form (removing some layers for clarity) in Figure 1. The two cases (censored
and non-censored) are shown in the figure, which illustrates that when some right part of the history
is missing, no loss and no gradient is computed for those output units.

3.2 Handling ties and censored data

The cost function we used is specifically adapted to the presence of ties and the censored nature of the
dataset. It combines two losses. The first one is Cox’s partial likelihood using Efron’s approximation
to handle ties [2]. Let Yi be the observed time (either censoring or event time) of subject i. Ci is 1 if
ti corresponds to an actual (non-censored) event, and 0 if the event is censored. The loss is defined as
follows:

`1(s
(1)) =

∑
j

∑
i∈Hj

log s
(1)
i −

m−1∑
`=0

log

 ∑
i:Yi≥tj

s
(1)
i −

l

m

∑
i∈Hj

s
(1)
i

 (1)

where tj denote the unique times, Hj the set of indices i such that Yi = tj and Ci = 1 and nj = |Hj |.
Note that in the case of the Cox model, s(1) = eθ·X .

The second loss is adapted from the proposal of Menon et al. [12] of combining a ranking loss with
an isotonic regression. It is modified to take into account censored data. It is defined as

`2(w) =
∑

Acc(i,j)

`
(
ŝ(2) (xj ;w)− ŝ(2) (xi;w) , 1

)
yi(1− yj) (2)

where Acc(i, j) selects acceptable pairs, that is: i not censored, and at time of i’s event, j is not
censored; `(·, ·) is some convex loss function, here the `2 distance and ŝ is the nonlinear scoring
function of the deep learning model.

3.3 Evaluation procedure

We first split the dataset into training (80%) and test (20%) sets in which the percentage of uncensored
patients, and the proportion of events occurring per time-step is preserved. We performed hyper-
parameter selection and early stopping on a subset of the training set (validation set corresponding to
20% of the total dataset and having the same proportion of uncensored patients and events occurring
per time-step).
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As performance scores we used two measures: the C-index and the AUROC. Moreover, the C-index
metric is the most common evaluation metric in the literature and as we said is a generalization of
the AUROC to regression problems in the case of right-censored data. This has the advantage of
allowing us to compare our method with other commonly used algorithms that do not necessarily
output a meaningful predicted survival time, as is the case for the Cox proportional hazards model.
Indeed, these two metrics can be seen as an evaluation of the pairwise ranking performance being the
probability that a randomly drown superior/positive time example has a higher score than a randomly
drawn inferior/negative example.

For the AUROC curve we slightly modify the original version in order to take into account the fact
that the data are right-censored, namely

A (ŝ (·)) = PrAcc[(xi,yi)(xj ,yj)]

[
ŝ(1) (xi) ≥ ŝ(1) (xj) |yi = 1, yj = 0

]
where Acc [(xi, yi) (xj , yj)] is an acceptable pair, that is: i is not censored, and at time event i occurs,
j is not censored.

4 Experiments

4.1 Dataset

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR
data system includes data on all donor, wait-listed candidates, and transplant recipients in the US,
submitted by the members of the Organ Procurement and Transplantation Network (OPTN). The
Health Resources and Services Administration (HRSA), U.S. Department of Health and Human
Services provides oversight to the activities of the OPTN and SRTR contractors. The dataset we
used includes 131,709 deceased donor transplants between January 1, 2000 and December 31, 2014.
Recipients aged less than 18 years old and simultaneous multi-organ transplant recipients were
excluded. The outcome of interest was graft failure, defined as return to dialysis, re-transplant, or
death. 86104 patients (around 65%) were censored. We used all available clinical and biological
features characterizing the donor-recipient couple and transplant factors features potentially associated
with graft failure rates, removing those that had more than 20 percent of missing values,

4.2 Preprocessing

We completed missing values by replacing values for each feature by the median value for continuous
features, and by the most common occurrence for categorical features. We chose to use this method
because the number of missing values was very low (around 5 percent on average and up to 20
percent). We used a one-hot encoding for categorical features, and unit scaling for continuous
features. This resulted in a total of 436 features, all between 0 and 1.

4.3 Hyper-parameters and training

We used the Adam optimizer [10] with a learning rate of 10−5, and a batch size of 32. We used
dropout, batch-normalization, L1 and L2 regularization and gradient clipping during training. The
dropout rate for the different layers was optimized along with the other hyper-parameters.

Hyper-parameters were chosen through random search. The batch size had a large impact on the
partial log-likelihood part of the loss, which is to be expected as it is a function of all pairwise
combinations of elements in the batch, and therefore gains a lot of information from additional
examples in the batch.

4.4 Survival rate prediction

We first aimed at evaluating the ranking of the patients in general using the C-index. We obtained a
C-index of 0.655 which is higher than the C-index state of the art we obtained with the traditional
Cox model using Efron’s method for the loss on this dataset 0.65. Table 1 summarizes the results.

An important point is that our algorithm allows us to use the features without applying any prepro-
cessing [11]. Indeed, deep learning models are usually able to detect highly nonlinear effects of
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Table 1: C-index obtained for the different models tested.
Datasets Cox Efron’s MLP Efron’s MLP rank MLP Efron’s + rank
SRTR 0. 6504 0.6535 0.6302 0.6550

Figure 2: (Left) Kaplan Meier curve (Middle) Median survival curve (dotted: averaged over the
population, full: single individual) (Right) AUROC (auc) and truncated AUROC (auc_cens) at the
different time thresholds predicted by our model

features which is not the case with the cox model. For example, in the paper used as reference for
the SRTR dataset, researchers required extensive effort and domain expertise to design features that
are suitable for the Cox model [14]. Moreover, the results we obtain show that learning on multiple
objectives improves generalization on our specific task.

We also aimed to evaluate the predicted survival probabilities at different time thresholds. We focused
on AUROC at each time threshold.
The models we trained had a certain trade-off between optimizing the two losses. As a result,
achieving state of the art C-index came at the cost of slightly reduced ability to predict survival
distributions per year. We focused on a choice of hyperparameters that slightly favored the latter in
the plots that follow.
AUROC allows us to measure the quality of the prediction at each time step. Figure 2 (Right)
shows the AUROC on the predicted probabilities for each observed year in the dataset. Our model
performs worse predictions on the years close to the graft than on those that are distant. This can be
explained by the fact that few patients die shortly after the transplant. It may be worthwhile to do
data augmentation to increase the number of events close to the graft. However, this is difficult due to
the high sparsity of the input matrix.

4.5 Visualization

4.6 Survival rate prediction

The Kaplan-Meier (KM) survival curve, shown in Figure 2 (Left) is a plot of the estimated survival
probability against time [8]. In the KM curve the survival probability S(t) is estimated as a step
function where the value at time ti is calculated as follows: S(ti) = S(ti−1)(1− di/ni) with di, the
number of events at ti and ni the number of patients alive just before ti.

4.7 Determining the influence of features

As information on the role and importance of features is both important to clinicians, and hard to
determine from a trained neural network, we performed a separate analysis on those points. One way
to do so is to plot different survival curves for different strata of a given feature. Figure 3 shows the
mean survival curve obtained for different slices of donor age. According to the plot, we can deduce
that the age of the donor seems to influence nonlinearly the graft survival prediction. In particular,
donors aged less than 21 will lead to a significantly higher survival rate.

4.8 Variable importance (VIMP)

As has been done previously for random forests [5], we defined the VIMP for a given feature F as
the difference between the prediction error for the original input matrix and the prediction error for
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Figure 3: Mean survival rate for different slice of donor age.

the input matrix obtained by introducing noise to assignments of F . The continuous features were
modified by adding noise drawn from N (0, σε), where σ is the standard deviation of F and ε is a
small constant, taken to be 0.1 in our case.
For discrete features we flipped the features using the transformation: x→ x ∗ (1− s) + (1− x) ∗ s
where s is drawn from a Bernoulli distribution. A high VIMP indicates a feature that has a strong
effect on the survival.

4.9 Evaluation on other datasets

Finally, we assess all the comparative experiments on six other real-life datasets. As we can see in
Table 2, these datasets have different characteristics in terms of censored percentage, tied percentage,
dimension (i.e., number of instances and number of features) and presence of missing values. These
datasets are available on the Rdatasets github repository2 accompanied with a complete description.
Our method outperforms other models on most, but not all datasets. The results are summarized in
Table 3. For each dataset, the best C-index value is in bold.

Table 2: Characteristics of the real-life datasets.
Datasets Nb. (%) cens. Nb. unique t (%) Nb. inst. Nb. feat. Missing val.
aids2 1082 (38.1) 1013 (35.6) 2843 12 no
colon death 477 (51.3) 780 (84.0) 929 37 yes
colon recurrence 461 (49.6) 749 (80.6) 929 37 yes
flchain 5705 (72.5) 2977 (37.8) 7874 23 yes
mgus 2 tgt2 421 (30.4) 272 (19.7) 1384 5 yes
nwtco 3457 (85.8) 2767 (68.7) 4028 9 no

5 Discussion and conclusion

In conclusion, our method outperforms previous state-of-the-art methods in terms of the commonly
used C-index metric. Moreover, it gives important clues about the survival prediction for different
time thresholds. This shows the advantages of directly modeling the survival function.

2https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Table 3: C-index obtained for the different models tested on the other real-life datasets.
Datasets Cox Efron’s MLP Efron’s MLP Efron’s + rank
aids2 0.5458 0.5495 0.5525
colon death 0.5024 0.5041 0.5603
colon recurrence 0.5456 0.6168 0.6170
flchain 0.7949 0.7974 0.8009
mgus2 tgt2 0.6824 0.6884 0.6943
nwtco 0.7208 0.7092 0.7136

6 Note

"The data reported here have been supplied by the Minneapolis Medical Research Foundation
(MMRF) as the contractor for the Scientific Registry of Transplant Recipients (SRTR). The interpre-
tation and reporting of these data are the responsibility of the author(s) and in no way should be seen
as an official policy of or interpretation by the SRTR or the U.S. Government."
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