

ON LEARNING AND BRANCHING: A

SURVEY

Andrea Lodi

Giulia Zarpellon

April 2017

DS4DM-2017-004

POLYTECHNIQUE MONTRÉAL

DÉPARTEMENT DE MATHÉMATIQUES ET GÉNIE INDUSTRIEL

Pavillon André-Aisenstadt
Succursale Centre-Ville C.P. 6079
Montréal - Québec
H3C 3A7 - Canada
Téléphone: 514-340-5121 # 3314

Noname manuscript No.
(will be inserted by the editor)

On learning and branching: a survey

Andrea Lodi · Giulia Zarpellon

Received: April 6, 2017/ Accepted: date

Abstract This paper surveys learning techniques to deal with the two most crucial
decisions in the branch-and-bound algorithm for Mixed-Integer Linear Programming,
namely variable and node selections. Because of the lack of deep mathematical under-
standing on those decisions, the classical and vast literature in the field is inherently
based on computational studies and heuristic, often problem-specific, strategies. We
will both interpret some of those early contributions in the light of modern (Machine)
Learning techniques, and give the details of the recent algorithms that instead explic-
itly incorporate Machine Learning paradigms.

Keywords Branch and Bound ·Machine Learning

1 Introduction

In the last decade we have experienced the impressive development of powerful ar-
tificial intelligence algorithms able to perform complex task in the form of so-called
“predictions” in contexts as diverse as image recognition, natural language interpre-
tation, word alignment, etc. Those algorithms are not only theoretical but, in addition,
they have been effectively deployed into reliable software packages commonly used
by all sort of intelligent devices, computers, sensors, smart TVs and smart phones.
This revolution, whose potential is not yet fully understood and not yet fully realized,
has been possible because of two main ingredients. On the one side, the impressive
increase of computing power (especially here Graphical Power Units) paired with the

A. Lodi
Canada Excellence Research Chair, École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
Tel.: +1-514-3404711
Fax: +1-514-3404463
E-mail: andrea.lodi@polymtl.ca

G. Zarpellon
E-mail: giulia.zarpellon@polymtl.ca

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

2 Andrea Lodi, Giulia Zarpellon

enormously extended technological (hardware and software) capability of collecting
data, often in the form of examples. On the other side, the shift by (part of) the Artifi-
cial Intelligence community, that of Machine Learning (ML, in short), of the learning
paradigm from “knowledge formalization” to “learning by examples”, which enables
perception and a form of learned intuition.

Of course, that stream of success has attracted the attention not only of the busi-
ness world but also of other scientific communities that became interested in explor-
ing the possibility of using ML techniques within their algorithms and methods, to be
able to tackle structural challenges that have resisted traditional approaches. Clearly,
this applies to the context of using ML algorithms within domain applications as
healthcare, transportation, energy, and virtually anywhere a knowledge acquisition is
required by the decision-making process.

However, for mathematical optimization, the most fascinating question concerns
the use of ML techniques in the algorithmic design, independently of the application
domain in which optimization algorithms are used. This question can be asked in
many contexts and it is certainly related to the fact that breaking ties in optimization
algorithms is far from perfect, see, e.g., Koch et al (2011) and Lodi and Tramontani
(2013). Indeed, learning mechanisms able to discover structural properties of seem-
ingly equivalent components of an algorithm would certainly be very useful. For
example, given the Mixed-Integer Linear Programming problem (MILP)

min{cT x : Ax≥ b,x≥ 0, xi ∈ Z ∀i ∈ I}, (1)

learning a “better” initial basis among the equivalent (optimal) ones of the linear
programming (LP) relaxation

min{cT x : Ax≥ b,x≥ 0}, (2)

could lead to a reduction of the so-called performance variability (see again Lodi and
Tramontani 2013) as well as be beneficial from the performance standpoint (see, e.g.,
Fischetti et al 2016).

In this survey, we concentrate on the questions, within such a flavor that we can
call learning for optimization, that can be asked concerning the crucial decisions of
the most well-known exact method for discrete optimization, i.e., the branch-and-
bound algorithm (Land and Doig 1960).

In its basic version the branch-and-bound algorithm iteratively partitions the so-
lution space into sub-MILPs (the children nodes) which have the same theoretical
complexity of the originating MILP (the father node, or the root node if it is the ini-
tial MILP). Usually, for MILP solvers the branching creates two children by using
the rounding of the solution of the LP relaxation value of a fractional variable, say x`,
constrained to be integral, ` ∈ I,

x` ≤ bx∗`c ∨ x` ≥ dx∗`e, (3)

where x∗ denotes the optimal solution of (2). The two children above are often re-
ferred to as left (or “down”) branch and right (or “up”) branch, respectively. On each
of the sub-MILPs the integrality requirement on the variables xi,∀i ∈ I is relaxed
and the LP relaxation is solved. Despite the theoretical complexity, the sub-MILPs

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 3

become smaller and smaller due to the partition mechanism (basically, some of the
decisions are taken) and eventually the LP relaxation is directly integral for all the
variables in I. In addition, the LP relaxation is solved at every node to decide if the
node itself is worthwhile to be further partitioned: if the LP relaxation value is already
not smaller than the best feasible solution encountered so far, called incumbent, the
node can safely be fathomed because none of its children will yield a better solution
than the incumbent. Finally, a node is also fathomed if its LP relaxation is infeasible.

Paired with the cutting plane algorithm (Gomory 1960) to obtain variations of
the branch-and-cut paradigm (Padberg and Rinaldi 1991), the branch and bound is
the most basic structural component of modern MILP solvers (see, e.g., Lodi 2010;
Linderoth and Lodi 2010). As pointed out by Lodi (2013), the exact computation
performed by MILP solvers relies on a somehow surprising collection of heuristic
decisions, two of the most crucial ones being those associated with the branching
scheme outlined above, namely

– variable selection, which of the variables x`, ` ∈ I among those fractional at any
node, to branch on in (3), and

– node selection, which of the currently open nodes to process next.

In Section 3 the most traditional and effective strategies to deal with the two deci-
sions above are discussed. This survey documents the recent attempts to incorporate
sophisticated learning mechanisms within those strategies. In order to do that, we
present in Section 2 a brief overview of the machine learning concepts that are re-
quired to understand the algorithms surveyed in Sections 4 and 5. Finally, Section 6
discusses a few additional references related to learning within a branching tree and
draws some conclusions outlining some possible research directions.

2 A brief overview of Machine Learning

As already mentioned in Section 1, machine learning is the subfield of artificial intel-
ligence devoted to develop intelligent systems that learn from experience (i.e., from
examples, or observations) how to perform a given task. In ML, the prediction pro-
cess is performed in an operational way, using information coming from data and
following some specified criterion; optimization is undoubtedly one of the cores of
this process.

The aim of this section is to make the reader familiar with the essential concepts
of learning: we will introduce the traditional learning framework and its standard
tasks of supervised and unsupervised learning in Section 2.1. We will then mention
in Section 2.2 some issues and pitfalls of learning that every researcher using ML
should be aware of while developing an application, and we will conclude the section
with a brief introduction to another learning paradigm called reinforcement learning
in Section 2.3.

For more details and material we refer to Bishop (2006), Hastie, Tibshirani, and
Friedman (2009), Goodfellow, Bengio, and Courville (2016) and Sutton and Barto
(1998).

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

4 Andrea Lodi, Giulia Zarpellon

2.1 The standard learning setting and tasks

We can formalize the traditional learning framework starting with a set of n examples
Dn = {z1,z2, . . . ,zn}, where we denote with zi the realization of a random variable
Zi under an unknown process P(Z). Each zi is supposed to be independently drawn
from the distribution specified by P(Z).

One wishes to learn a function f exploiting some characteristics of Dn (and hence
P(Z)), with the aim of employing it to make future predictions on new examples. The
search for f is performed among the members of a certain (parametrized) family of
functions F. Together with F, a loss functional L : (F,Dn)→ R is specified in order
to evaluate the quality of different available f ∈ F.

The ultimate goal would be to find f ∗ as an optimal minimizer of E[L(f ,Z)], the
expected value of L(f ,Z) under P(Z), following the so-called expected risk mini-
mization principle. However, being compelled to work in a restricted space of func-
tions F and not knowing P(Z) a priori, one aims instead at minimizing the empirical
risk, using the examples of the finite set Dn to learn a function

fDn ∈ argmin f∈F
1
n

n

∑
i=1

L(f ,zi), (4)

which will then be employed as a predictor.
The examples z ∈Dn, the loss functional L and the prediction goal of the to-be-

learned function f ∈ F can be various: such differences in forms and intents are what
characterize different ML tasks. Although not in the attempt of being exhaustive, we
will briefly go through two main types of learning: supervised and unsupervised ones.
The intent is to familiarize with the general framework, in order to properly locate
the algorithms that will be considered later on.

Supervised learning. In supervised learning, data in Dn consist of pairs z = (x,y);
we call x ∈ Rd the input or features vector, and y the output or target. Depending on
the output type, two main predictive tasks can be identified:

� Classification: the target is a qualitative label, used to differentiate between m∈N
classes or categories. The scalar label y ∈ {1, . . . ,m} ⊂ Z can be encoded in y ∈
Zm, and we could for example choose to measure the accuracy of a classifier f by
means of the classification error rate: often, the expected 0-1 loss is evaluated by
considering the loss of an example as L(f ,(x,y)) = I{ f (x)6=y}, where I{·} denotes
the indicator function.
� Regression: the target is a quantitative output y ∈ Rm; the prediction f (x) ∈ Rm

of a regressor f estimates the expected value of y given x. An example of loss
functional commonly used in this setting is the quadratic error L(f ,(x,y)) =
‖ f (x)−y‖2.

Unsupervised learning. As the name suggests, in the paradigm of unsupervised learn-
ing the prediction is performed without a “supervisor” knowing the correct answers:
data does not come with a specified target, but only as input of features z = x ∈ Rd .
The aim is to learn a function f describing in some way the unknown process P(Z)
from which the examples were drawn. Some common tasks in this setting are:

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 5

� Density estimation: f is an estimator of the distribution of input data. Since the
concept of error rate is not suited for this unlabeled context, one could aim at
maximizing the (log-)likelihood of the observed data, i.e., their probability with
respect to the underlying distribution P(Z).
� Clustering: the purpose of the learning is to discover similarities within the input

space. Data can be grouped in hard-cut clusters or within a soft partition of the
space; for a new point we predict its memberships to one or several groups.
� Dimensionality reduction: a new representation of the input data is constructed,

usually in a lower dimensional sub-space of the original input space (aiming at
data visualization, for example). The goal is to identify some important charac-
teristics of the input x, e.g., via selection or extraction.

2.2 Few things to keep in mind

Undertaking a project involving ML can be a non-smooth path to pursue, especially
for beginner practitioners with a non ML-related background. The purpose of this
subsection is to warn the reader against some non-trivial issues that could easily be
encountered along the way.

The extensive discussion of those issues and the methods to overcome them is
beyond the scope of this paper. Instead, we point out the importance of performing
learning with awareness, i.e., by following the best practices of the field. An interest-
ing outlook of these and other concerns can be found in Domingos (2012).

Features engineering. A key step in every ML application is the design of what the
input data represent, i.e., what are the shape and the meaning of the examples z that
the learned function fDn should be receiving as argument in order to make a pre-
diction. Often, one would pre-process raw data x into φ(x) by means of a features
extraction procedure, in order to find a better suited representation of the problem,
to be fed to a learning algorithm with. With a minor abuse of notation, we will treat
input and features indifferently, denoting them as x or φ(x) or φ , depending on the
context.

The features vector x encoded in the sample z should represent the problem at
hand accurately: features are domain-specific and require some a priori knowledge
about the nature of the problem, thus they are most often manually designed. Systems
like those used in Deep Learning (Goodfellow et al 2016) are able to learn valuable
features automatically, but the human intervention is still needed in the task of tuning
the resulting complex architecture. In learning, it is possible for a single feature to be
irrelevant if considered alone, and to become very significant when combined with
other traits.

While the intuition suggests that the more features we have, the more information
we will gain and the better the prediction will be, things are not as trivial. The risk
is to incur in the so-called curse of dimensionality (Bellman 1961): having many
features corresponds to working in a high-dimensional space, where a limited dataset
could result in a very sparse sampling, and the locally-based assumption that similar
examples lead to similar predictions might fail.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

6 Andrea Lodi, Giulia Zarpellon

Anyhow, features engineering is an aspect of learning that requires care and an
iterative trial process, during which some features could be added, some discarded,
some others combined, without a precise recipe to follow.

Generalization, overfitting and model selection. The ability to perform generaliza-
tion is the fundamental property to look for in a learned predictor. However, the fact
that we are bind to search within F, and the availability in Dn of only a finite number
of observations, make the learning of an optimal predictor a delicate task. One of the
most frequent trap when dealing with learning is overfitting.

Broadly speaking, the phenomenon of overfitting represents the inability of a
learned function to generalize: this occurs because fDn as in (4) is optimized to fit the
specific dataset Dn, making 1

n ∑
n
i=1L(fDn ,zi) an underestimate of the expected risk

(also called generalization error), which is computed on new never-seen examples.
In particular, the more the learned function fits the data in Dn, the more the general-
ization error will be optimistic. Overfitting is strictly related to the choice of model
complexity and the so-called bias-variance trade-off, and makes it necessary to use
some caution when establishing the “best” learning model among many.

In order to compare the performances of different learning models, a proper
model selection procedure prescribes to divide the dataset into three parts, to be used
in distinct training, validation and test phases. Different hyper-parameters versions
of a chosen model are considered; each version’s parameters are optimized during the
training phase on the first share of the dataset. The learned models are then ranked
with respect to their predicting performance on the validation set, and the hyperpa-
rameters setting resulting in the best performance is selected. Finally, to determine
the generalization performance of the ultimately chosen model, a neutral test set is
employed; examples that were never faced before are used in order to avoid a biased,
optimistic estimation.

For further details on overfitting, standard procedures to avoid it and additional
references, we refer to Hastie, Tibshirani, and Friedman (2009), ch. 7.

2.3 Another paradigm: reinforcement learning

We introduce now a third type of learning scheme, deviating from the traditional
setting we outlined in Section 2.1. Reinforcement learning is concerned with how an
agent learns while interacting with an uncertain environment in order to maximize
its reward. The agent is able to perceive some information about the state of the
system it lives in, and can take state-changing actions that result into a reward signal
(or a punishment one), evaluating its behavior. Each action affects later inputs of the
system, and hence subsequent rewards; the goal is that of finding a policy maximizing
the long-term return.

The setting of a Markov decision process to be optimally controlled provides
a (partial) theoretical framework for reinforcement learning. At discrete time steps
t = 0,1,2, . . . , the agent observes the environment state st ∈ S, and subsequently takes
an action at ∈A(st) with probability π(at |st). The state changes into st+1 with prob-
ability Pat

st ,st+1
, and an immediate reward Rat

st ,st+1
is received. The goal is to learn an

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 7

optimal policy π : S→ A typically maximizing the expected long-term discounted
return

G(s0,π) = E[Ra0
s0,s1

+ γ Ra1
s1,s2

+ · · ·+ γ
t Rat

st ,st+1
+ . . .], (5)

where γ ∈ [0,1) is the discount rate. The concept of discounting is useful in this
framework to model the fact that a future reward is worth less than an immediate
one. In particular, if γ = 0, the impact of future actions is not taken into account,
i.e., the agent is short sighted and maximizes at each step the immediate reward only,
potentially reducing its total gain. Usually, G(s0,π) is referred to as the value of state
s0 following the policy π .

A classical reference for reinforcement learning is Sutton and Barto (1998); addi-
tional material can be found in Bertsekas and Tsitsiklis (1996) and Szepesvari (2010).

Note that this third paradigm is inherently different from the previous two: while
in supervised learning we are provided with examples correctly labeled with their
“optimal” response, in reinforcement learning an agent has to learn from its own ex-
perience what a good behavior is, by a process of trial and error. Moreover, though an
agent indeed discovers some implicit characteristics of its environment, the ultimate
goal of reinforcement learning is that of maximizing a reward, and not that of find-
ing hidden structures within the unlabeled examples, as it is instead for unsupervised
learning.

A peculiar concern of reinforcement learning is the trade-off between exploration
and exploitation. On the one hand, the agent should explore the space by trying new
actions to know if they are valuable, whereas, on the other hand, it should exploit
those actions yielding a high reward that it has already experienced. Any kind of
unbalanced learning will produce poor results.

3 The branch-and-bound framework

As anticipated in Section 1, the variable and node selections are largely seen as the
most crucial decisions in exact methods for MILP. On the one hand, branching on
a variable that does not lead to any serious simplifications on any of the (two) chil-
dren can be seen as doubling the size of the tree with no improvement, thus leading
to extremely large (out of control) search trees. On the other hand, effective MILP
solvers need to provide a good compromise between finding good solutions quickly
and the chance of proving optimality in the short-to-medium term, a trade-off which
is of course related to the way the search tree is explored.

Variable selection problem. This is the task of deciding how to partition the current
node, i.e., on which variable to branch on in order to create the two children. For a
long time, a classical choice has been branching on the most fractional variable, i.e.,
in the 0-1 case the closest to 0.5 (sometimes referred to as most infeasible branching,
MIB in short). That rule has been computationally shown by Achterberg et al (2005)
to be worse than a complete random choice. However, it is of course very easy to
evaluate. In order to devise stronger criteria one has to do much more work. The ex-
treme is the so called strong branching (SB, in short) technique (see, e.g., Applegate

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

8 Andrea Lodi, Giulia Zarpellon

et al 2007; Linderoth and Savelsbergh 1999). In its full version (FSB, in short), at any
node one has to tentatively branch on each candidate fractional variable and select
the one on which the increase in the bound on the left branch times the one on the
right branch is the maximum. Of course, this is generally unpractical but its com-
putational effort can be easily limited in two ways: on the one side, one can define
a much smaller candidate set of variables to branch on and, on the other hand, can
limit to a fixed (small) amount the number of Simplex pivots to be performed in the
variable evaluation. Another sophisticated technique is pseudocost branching (PC, in
short) which goes back to Benichou et al (1971) and keeps a history of the success (in
terms of the change in the LP relaxation value) of the branchings already performed
on each variable as an indication of the quality of the variable itself. Among the
most recent effective and sophisticated methods, reliability branching (RB, in short)
(Achterberg et al 2005) integrates strong and pseudocost branchings. The idea is to
define a reliability threshold, i.e., a level below which the information of the pseu-
docosts is not considered accurate enough and some strong branching is performed.
Such a threshold is mainly associated with the number of previous branching deci-
sions that involved the variable. Finally, hybrid branching (Achterberg and Berthold
2009) computes for each candidate variable five different measures, chosen among
typical branching scores of MILP, constraint satisfaction and satisfiability technolo-
gies. The measures are first normalized and then combined into a single score by
means of a weighted sum.

Node selection problem. This is the most classical task of deciding how to explore
the tree: one extreme is the so called best-first strategy in which one always considers
the most promising node, i.e., the one with the smallest LP value, while the other
extreme is depth-first where one goes deeper and deeper in the tree and starts back-
tracking only once a node is fathomed, i.e., it is either (mixed-)integer feasible, or LP
infeasible or it has a lower bound not better (smaller) than the incumbent. The pros
and cons of each strategy are well known: the former explores less nodes but gener-
ally maintains a larger tree in terms of memory, while the latter can explode in terms
of nodes and it can, in the case some bad decisions are taken at the beginning, explore
useless portions of the tree itself. All other techniques, more or less sophisticated, are
basically hybrids around these two ideas, like interleaving best-first and diving, i.e., a
sequence of branchings without backtracking, in an appropriate way. Some of those
techniques are discussed in Section 5.1.

Besides the fact that the above decisions are highly crucial for the effectiveness
of the branch-and-bound (B&B, in short) framework and, in general, for the MILP
technology, the urge of trying to use sophisticated learning mechanisms to guide them
is motivated by their poor understanding from the mathematical standpoint. In other
words, there is no deep understanding of the theory underneath branching, if any
exists, so the application of (modern) statistical methods seems quite appealing. The
next two sections defines the core of the present survey by systematically introducing
ML approaches to variable selection, Section 4, and node selection, Section 5.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 9

4 Variable branching heuristic

In general terms, all branching rules aim at guiding the search of the B&B tree in
an efficient way, by appropriately choosing at each node the fractional variable one
ought to branch on. At every step of the search, plenty of heterogeneous information
can be gained, and a meaningful branching strategy should integrate and exploit this
by updating knowledge in its decision-making rule.

The common denominator of the papers discussed in this section is their attempt
of defining of a branching strategy extracting novel kinds of information and combin-
ing them in original ways. In the most recent works, the aggregation of the collected
information is performed by means of ML algorithms. Nonetheless, we present as
well some early works not mentioning the ML framework, which we could consider
precursors in conveying the idea of gathering more and diverse data (in a ML frame-
work, one would call them features) to capture the state of the B&B system and
improve its decision-making process.

As observed by Marcos Alvarez (2016), this idea of extracting some characteris-
tics to derive a branching rule is indeed what traditional heuristic schemes for branch-
ing already perform: fractionalities are employed in most-fractional branching; LP
gains, measuring the impact that a candidate variable could have on the objective
function value, are computed in SB and estimated with pseudocosts, i.e., taking into
account historical data of the search.

In the recent works we will discuss, the novel trait is that of exploiting (possibly
a large quantity of) collected data, and employing the learning framework to come
up with more informed and complex decision functions, estimating a good branching
strategy.

With the underlying belief that a more sophisticated and high-performing branch-
ing rule could be detected, the following works explore different pertaining questions:
Which information should be used? How could it be efficiently extracted and appro-
priately learned? Which criteria should guide the search?

The section opening is devoted to the discussion of some “forerunner” works
(see Section 4.1). We will see how they already implied shared views on the role of
learning for branching, on which recent ML-based attempts (treated in Section 4.2)
are currently building up.

4.1 Precursors of “learning-to-branch”

The possibility of improving the general B&B performance by means of collecting
and exploiting more information than customary is already questioned in Glankwamdee
and Linderoth (2011). The authors investigate whether typical B&B information
extracted two levels deeper than a given node would influence the decision of the
branching variable. The devised lookahead branching rule aims at maximizing both
bound improvement and node pruning, and the gathered additional information proves
to be useful not only for the purpose of defining a new branching rule, but also for
auxiliary tasks such as bound fixing and simple implications deduction.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

10 Andrea Lodi, Giulia Zarpellon

Clearly, the computational effort of performing such a forward scouting is signifi-
cant. Hence, an abbreviated (and cheaper) version of the scheme is also defined. Even
though the total number of explored nodes is reduced in certain instances if compared
with a classical one-step lookahead SB implementation, the authors themselves point
out that lookahead branching is too costly to be likely employed as a default branch-
ing scheme for MILP. However, it might be that for some classes of problems one
might be willing to afford some supplementary computational cost, if the effort could
somehow pay off.

As many other traditional heuristics, lookahead branching relies on LP gains to mea-
sure the impact of a candidate variable with respect to the collected additional infor-
mation. A different point of view is developed in Karzan, Nemhauser, and Savels-
bergh (2009), where the measure of impact is based instead on fathoming decisions.
This choice is motivated by two broadly acknowledged assumptions:

(i) the final goal in branching is minimizing the total number of explored nodes; in
this sense, a node-efficient method is sought;

(ii) branching decisions are more crucial at the top of the tree.

The paper investigates the idea of a three-phase method for binary MILP prob-
lems. Specifically, a clause is defined as a partial assignment of the binary variables
that cannot lead to possible improvements of the objective function. The authors ex-
ploit the fact that in any binary B&B tree a fathomed node gives a clause, and that
this kind of information can be further strengthened to yield more fathoming. First,
a given instance is partially solved: within an upfront collection phase, clauses as-
sociated with fathomed nodes of the incomplete B&B tree are gathered, until their
number reaches a threshold (fixed at 200). In the subsequent improvement phase the
basic information is refined by solving an auxiliary MILP problem, in order to be fi-
nally employed in the restart phase, when the instance is fully solved with the gained
information.

Some fathoming-based branching rules are defined, taking into account various
possibilities for assigning weights to the collected clauses and estimating the effect
of fixing and branching on a candidate variable, in a fashion that reminds combi-
nation rules for pseudocosts (see, e.g., Linderoth and Savelsbergh 1999). Moreover,
the improved information is exploited for two additional tasks. The combination of
fathomed-based branching with cuts generation and a sort of propagation yield im-
proved performance with respect to CPLEX (2017) (version 11.1) with and without
dynamic search.

However, there is no clear winner among the tested strategies, and it is not obvious
to identify the benefits of using such improved information for branching. Indeed,
more information associated with clauses could potentially result in longer computing
times. Having in mind a ML framework, we could think of the proposed collection
phase as a kind of training phase personalized (and repeated) for each instance, where
the clause information themselves (we could call them features) are instance-specific.

Partially following the work of Karzan et al (2009) is the backdoor branching ap-
proach of Fischetti and Monaci (2012a). In this work, the collected data include some

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 11

fractional solutions that are characterized as hurdles for the LP gap reduction. The
learning phase is in fact a sampling phase, consisting of a multiple restart scheme.
Iteratively, a given problem is partly solved until a certain number Kmax(= 10) of frac-
tional solutions are encountered. The collected fractionalities become the input of a
set covering model, computing a minimum cardinality backdoor, i.e., a minimum set
S of branching variables whose integrality is enough to ensure that a certified op-
timal solution value is reached. Variables in S are assigned a priority to be chosen
for branching, and a new updated incomplete run is performed. After R(= 10) itera-
tions, or when a backdoor S with |S|> Γ (= 5) is found, a final long run is executed,
employing a MILP solver as a black-box to which only the ultimate priorities are
specified.

The method is compared with two settings of CPLEX (version 12.2): the de-
fault solver (with no cutoff provided), and a variant sharing the same setting as the
tested algorithm, in which the optimal solution is provided, and cuts, heuristics and
variable aggregation in preprocessing are deactivated. Backdoor branching compares
well with the competitor method sharing its similar setting, and turns out to be very
helpful in expanding the top levels of the tree effectively.

Note that the purpose of the designed backdoor branching procedure is not that
of selecting a single variable by means of a score. Instead, the goal consists of identi-
fying a subset of variables that are in some sense top-ranked with respect to a certain
branching priority measure; a similar idea will be encountered later on. The authors
briefly mention the trade-off between collecting (more) reliable information and the
cost coming with it. Two nice-to-have properties of prospective features can clearly
be outlined.

� Features should be relevant, i.e., they ought to precisely and (as far as possible)
completely describe those aspects of the B&B system playing a key role in the
optimization and its efficiency.
� Features should be low-cost to compute, i.e., they should not constitute a compu-

tational burden.

The latter property could actually be drawn from a more general assumption,
legitimate in the definition of an effective branching:

(iii) while being node-efficient, a good branching scheme is time-efficient as well.

Note that in backdoor branching, as in Karzan et al (2009), the learning phase is
actually a sampling phase that needs to be repeated for each instance, thus not quali-
fying as a learning-to-generalize mechanism. For each problem, shallow explorations
of the search tree are performed, in order to figure out a likely good path in the fi-
nal run. Finally, observe that in both Karzan et al (2009) and Fischetti and Monaci
(2012a) the collected information is manipulated by (optimally) solving MILP or LP
problems, somehow learning by relying only on MILP technology.

A completely different paradigm is explored in Gilpin and Sandholm (2011), where a
typical AI tool such as Information Theory (Shannon 1948) is used to derive branch-
ing rules. The approach is motivated by the interpretation of the B&B tree evolution

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

12 Andrea Lodi, Giulia Zarpellon

as a search process, carrying certain and uncertain information. The essential obser-
vation is that nodes at the beginning of the search hold a high amount of uncertainty
about the values of the variables, while at the end of the tree there is no uncertainty
of this kind left. The idea is hence to guide the search in order to remove uncertainty,
or, in other words, to propagate as much as possible the sure information carried by
variables. In practice, the fractional values of integer-constrained variables, i.e., the
basic feature of the most-fractional branching rule, are treated as probabilities, indi-
cating the confidence in expecting the variable to be greater than or equal to its current
value in the optimal solution. To measure the amount of uncertainty / information of
a variable, the notion of entropy (Shannon 1948) is employed.

Four diverse families of entropy branching (EB, in short) heuristics are designed.
The first family performs branching with one-step lookahead as in SB but choosing
the variable yielding children with smallest uncertainty. Note that EB alone does not
employ the objective function in taking a branching decision. The second family ex-
plores hybrid approaches: SB and EB scores are combined in terms of pure ranking
positions or by means of a weighted sum. Additionally, EB is tested as tie-breaker
for the classical SB rule. A third family includes methods that do not perform looka-
head, but use instead the LP values of a current solution; two rules are defined in the
special contexts of combinatorial procurement auctions and facility location prob-
lems (see again Gilpin and Sandholm 2011). The last proposed family deals with
multi-variables branches, considering branching on the sum (of values) of a subset of
variables. The purpose is that of selecting the set of variable to be branched on as that
resulting in the smallest entropy in a one-step lookahead.

Computational experiments performed on MIPLIB 3.0 (Bixby et al 1996) show
no clear winner between SB and EB for the defined rules, while EB outperforms
SB on some hard real-world procurement instances. Apart from the computational
results, the authors’ high-level discussion on branching approaches promotes further
thinking about the various kinds of information that should be employed in a good
branching strategy. In their point of view, different strategies refer to the different
ways one could try to reach the goal of node-efficiency in B&B. Since a path in the
tree can end in three possible ways, see Section 1, the authors try to interpret the
existing branching methods with respect to the concurrent goals of driving the search
towards early fathoming, early feasibility and early integrality.

We conclude the overview of forerunner works with Liberto, Kadioglu, Leo, and
Malitsky (2016), where a more framed use of ML techniques for variable branching
heuristics is implemented. Slightly detaching itself from the others, this work does
not aim at finding a new branching rule, but instead at best combining some existing
ones along the tree. The motivating background is that of portfolio algorithms, where
given a set of different methods one wants to predict and use the best available method
with respect to the instance to be solved. Such techniques are based on the observation
that it is unlikely that it does exist a single method dominating all others for every
instance, and hence one looks for a dynamic method able to behave with flexibility,
in an instance-specific way.

The idea of Liberto et al (2016) is to devise an algorithm dynamically switch-
ing between different branching heuristics along the branching tree, choosing among

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 13

them with respect to the different encountered subproblems. The goal of DASH (Dy-
namic Approach for Switching Heuristics) is precisely that of guiding the search by
means of selecting the best branching rule, following the changing state of the B&B
system. A similar dynamic scheme was introduced in Kadioglu et al (2012) for the
special case of set partitioning problems.

In Liberto et al (2016), the authors define a features space comprising 40 traits
that capture aspects of the subproblem regarding its MILP formulation as well as its
position in the B&B tree. As sought, features computation does not constitute an ex-
pensive overhead. A portfolio of six traditional branching heuristics is implemented:
most(less) fractional rounding, most(less) fractional and highest objective rounding,
pseudocosts branching with weighted score and product score. Finally, a dataset of
341 instances coming from heterogeneous benchmark sets is considered, and split
into a training and a test set. The first learning step is a clustering of problems moti-
vated by the assumption according to which problems with similar features will yield
to the same chosen heuristic, . The grouping of instances is carried out by the g-means
algorithm of Hamerly and Elkan (2003), a method similar to the classical k-means of
MacQueen (1967), which additionally determines in an automatic way the optimal
number of clusters, assuming an underlying Gaussian density distribution. In partic-
ular, an extended training set is provided for clustering, in which some computed
subproblems of the original training instances are added, with the intent of making
the dataset more representative of the subproblems in the tree. Once the clusters are
identified, a “best” heuristic is assigned to each of them. Clearly, this assignment is
delicate and a key component of the entire procedure: given the continuous changes
of the subproblems types along the branching tree (partly due to the chosen branching
heuristic itself!), the assignment need to be performed simultaneously for all clusters.
The step is undertaken by the parameter tuner GGA (Ansótegui et al 2009), and only
the original (i.e., not extended) training set is employed.

Once the training setup is completed, at a given node of the tree, DASH computes
the features of the subproblem and its nearer cluster (the Euclidean distance with
respect to the clusters’ centers is measured), and subsequently employs the assigned
“best” branching heuristic for the selected cluster. In practice, switches do not happen
at every node. This enforced limitation is motivated by the wish of further reducing
the computational cost of features extraction, and by the fact that features change
progressively along the tree, as it is shown by a 2-dimensional Principal Component
Analysis (PCA) (Abdi and Williams 2010). As a consequence, the switch is activated
only up to the 10th depth-level of the tree and just at some prefixed points in time
(every 3rd node); in all other cases, the parent node’s heuristic is maintained as the
default choice.

Experimentally, DASH compares well against static and randomly switching heuris-
tics counterparts. The authors present a pair of variants (DASH+ and DASH+filt), al-
lowing the choice of not switching heuristic inside a defined cluster, and performing
a feature selection operation as well. The higher the degree of flexibility and infor-
mation selection of the algorithm, the better the numerical results seem to be.

Some supplementary remarks. In Liberto et al (2016) as in Gilpin and Sandholm
(2011), another characteristic of an ideal branching heuristic emerges. Namely,

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

14 Andrea Lodi, Giulia Zarpellon

(iv) given the highly dynamic and sequential nature of B&B, a branching scheme
should be adaptive, not only with respect to different instances, but with respect
to the whole tree evolution as well.

We observe that Liberto et al (2016) constitutes an initial attempt of using the
idea of exploiting a larger and more complete set of problems information by typi-
cal ML tasks such as clustering and dimensionality reduction. However, the method
faces some limitations. First, the offline and rigid clustering upfront seems to clash
with the dynamic and ever changing nature of B&B subproblems. Note that the iden-
tified need of considering the evolution of the tree, as expressed in (iv), needs to be
balanced with (iii) time-efficiency, resulting in the depth and intervals prescriptions.
Finally, the role played by different portions of the dataset within the various learn-
ing steps is not clear. A precise procedure of model selection should be performed, in
order to avoid hidden overfitting and other pathological behaviors.

Before we move on to the next section, we summarize the recognized properties
a learned branching rule ought to incorporate:

(i) node-efficiency,
(ii) focus on top-levels of the tree,
(iii) time-efficiency,
(iv) adaptiveness within the tree evolution.

We are going to see how similar considerations are addressed in the following
few works, exploiting more closely the ML framework.

4.2 Novel ML-based branching heuristics

With the exception of DASH (Liberto et al 2016), all other works that were discussed
up to now aim at defining a new branching strategy by means of using various types
of information and originally assemble branching decision rules. We will present in
this section some attempts in taking further the “precursors” underlying ideas, having
as goal that of building learned branching schemes. The novelty of these approaches
resides in their more methodological use of the ML framework, as we presented it in
Section 2.

Reliability branching and information-based branching (Karzan et al 2009) inspired
the work of Marcos Alvarez, Louveaux, and Wehenkel (2017). Given the fact that
SB-like decisions are considered good decisions for branching, in that they mini-
mize the number of explored nodes, but coming with a very high computational cost,
the idea of approximating and speeding up SB has been already explored by meth-
ods such as RB and the non-chimerical branching (NCB, in short) of Fischetti and
Monaci (2012b). In Marcos Alvarez et al (2017), the aim is that of learning one effi-
cient approximation of SB by means of supervised learning techniques. The proposed
method consists of two main phases. First, features are extracted to depict the state
of a candidate branching variable within a specific node of the tree. The full SB deci-
sions are recorded by solving to optimality a set of training instances, and a regressor

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 15

is learned to predict estimated SB scores. After that, the learned heuristic is employed
as branching heuristic for future B&B runs.

Before going further into details, it is worth to remark few things. Note that in
the first part of the approach SB is still (heavily) employed, before the switch to
the learned heuristic takes place. This reminds of procedures such as hybrid strong /
pseudo- cost branching (SB+PC, in short) where SB is employed only until a certain
depth, and then switched for PC (Achterberg et al 2005), and reliability branching.1

Indeed, the use of supervised learning calls for labels, meaning that we still need
good SB scores as examples from which to learn. Moreover, B&B trees are now
fully explored in the training phase: the exploration is deeper than those proposed in
Fischetti and Monaci (2012a) and Karzan et al (2009), which focus instead on the top
levels only. However, with respect to these two works, the expensive training phase
is now performed once and for all. The offline upfront aims in fact at generalizing a
prediction across all possible future instances, and hence does not need to be repeated
for each of them.

Within the features design process of Marcos Alvarez et al (2017), the trade-off
between relevance and expense is treated with care. Moreover, the authors identify
other three desirable properties that a set of features for branching should include:

� size-independence, if one aims at learning a function able to generalize across
instances of various size;
� invariance with respect to irrelevant changes within the instance, e.g., row or

column permutations;
� scale-independence, meaning that features should not change if parameters c,A

and b (as in (1)) are multiplied by some factor.

The defined features are divided into three main groups.

� Static problem features describe the role of candidate variable xi with respect to
the problem’s parameters c,A and b, and are computed only once.

� Dynamic problem features outline the state of variable xi with respect to the cur-
rent node LP solution.
� Dynamic optimization features represent the overall statistical effect of variable

xi with respect to the optimization process.

At a given node of the B&B tree, the features vector φi represents the state of the
candidate variable xi. The SB score yi, explicitly computed for the set of training in-
stances, completes the pair (features, label). The learning task is a regression one, and
it is performed with Extremely Randomized Trees (Geurts et al 2006), also known as
ExtraTrees. ExtraTrees is an averaging ensemble method, based on Decision Trees,
which can be employed for classification as well as regression. The purpose of aver-
aging is that of reducing the variance of a prediction by combining many predictors.
In particular, ExtraTrees randomly perturbs the construction of the regression trees,
selecting a random subset of features and drawing a random pool of thresholds to
determine best splits.

1 Note that SB+PC and RB differ on the switch from SB to PC: at a certain fixed depth of the tree for
the former method, whereas depending on each variable’s reliability (i.e., past usage) for the latter.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

16 Andrea Lodi, Giulia Zarpellon

A set of random, small-size problems is used for collecting SB-like examples,
and the final training dataset includes 105 observations, i.e., pairs of features of a
candidate variable at a given node and its SB score. A subset of instances coming
from MIPLIB (Bixby et al 1996; Achterberg et al 2006) is employed for assessing the
learned heuristic by comparing it with five concurrent ones: random branching, most-
infeasible branching, non-chimerical branching, full strong branching and reliability
branching. Experiments are performed with and without time and nodes limits.

In general, results are inferior to the state-of-the-art RB, but still showing that
the learned branching efficiently imitates FSB. As the authors point out, the reduced
time spent at each node allows the learned scheme to explore more nodes, which is
obviously a key of success. Slightly better results can be obtained when tuning the
learning to specific classes of problems, suggesting one of many possible research
directions. Further details about the ML-based approximation of SB can be found in
Marcos Alvarez (2016).

Two are the main differences between Marcos Alvarez et al (2017) and Marcos Al-
varez, Wehenkel, and Louveaux (2016), the authors’ other attempt in developing a
learned branching strategy. The explored paradigm is that of online learning. In con-
trast with the offline upfront previously discussed, data is now generated and learned
on-the-fly, within the B&B process itself. This implies that no preliminary and sepa-
rated training phase is needed anymore. Still aiming at learning a fast approximation
of SB, and keeping the same features of Marcos Alvarez et al (2017), the other nov-
elty consists in the introduction of a reliability mechanism, very similar to the one
in Achterberg et al (2005). More specifically, depending on the number of times a
real SB score was already computed for a certain variable (the RB threshold η = 8 is
used), one could deem the candidate reliable, and hence trust an approximate version
of its SB score. Otherwise, if the variable is deemed unreliable (i.e., the information
exploited about it is not enough to portray it correctly) a real SB score is computed.
At a given node of the B&B tree, every time a variable is not deemed reliable, the
features vector is computed together with the SB score, and a new example (features,
label) can be added to the training set. The learning is performed with a simple linear
regression, guided by a line search gradient descent algorithm (see, e.g., Nocedal and
Wright 2006).

The defined online learning branching (olb) strategy exhibits at least one limi-
tation, i.e., that of not adapting over time, with respect to possible changes of the
variables dynamics along the B&B tree, as suggested by (iv). Indeed, at some point
in the tree all variables would be deemed reliable, and the learning would stop updat-
ing. To fix the issue, the authors propose a perpetual version of olb (oplb). In short,
the improved method allows the addition of new examples also when a variable is
deemed reliable. Although the SB scores are not computed in the first place, features
are stored for a reliable candidate at a given node; eventually, when both child nodes
are explored, the SB information becomes readily available and a new pair (features,
label) can be added to the dataset.

Both olb and oplb are compared on MIPLIB (Bixby et al 1996; Achterberg et al
2006) against three other heuristics: full strong branching, reliability branching and
the learned branching of Marcos Alvarez et al (2017) (actually, the one of Marcos Al-

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 17

varez et al (2014), the preliminary version of the same paper). Results are interesting,
in that both olb and oplb are competitive with RB in terms of nodes and time perfor-
mance profiles. Again, method and results are further discussed in Marcos Alvarez
(2016).

Khalil, Le Bodic, Song, Nemhauser, and Dilkina (2016) pursue the same goal of
learning an effective approximation of SB. The authors aim at defining a method
imitating SB in its node-efficiency, while being low-cost in terms of computational
time and adaptive with respect to different instances to be solved. The scheme con-
sists of three phases. First of all, during a data collection phase, SB is employed as
variable branching rule up to a limited number of nodes θ(= 500) of the B&B tree.
The performed SB decisions are observed and registered as (features, label) pairs in
the training dataset. Second, a supervised ranking task is executed, and a ranking
function learned. Finally, the ML-based B&B takes over: the optimization continues
employing the learned ranking function as branching heuristic, while SB is turned
off.

The introduced ranking framework seems a natural approach for variable selec-
tion: predicting a ranking rather than a scalar score (as it is done by means of re-
gression in Marcos Alvarez et al (2017) and Marcos Alvarez et al (2016)) is what a
branching heuristic is ultimately pursuing. Note that the strategy resembles SB+PC
and RB, in that SB is used only up to a certain point, i.e., while candidate variables
are uninitialized or deemed unreliable. The outlined technique acts on-the-fly, with-
out any expensive upfront, but does not adapt overtime, in contrast with the online
perpetual approach (oplb) proposed in Marcos Alvarez et al (2016). In this sense,
all procedures (learned of Marcos Alvarez et al (2017), olb of Marcos Alvarez et al
(2016) and SB+ML of Khalil et al (2016)) seem to suffer the same limitation to adapt
with respect to the tree evolution. The perpetual version oplb of Marcos Alvarez et al
(2016) is the only method taking explicitly care of the adaptive issue. However, a
little bit unexpectedly, it does not lead to significant improvements when compared
to its halting counterpart.

Going back to Khalil et al (2016), features are divided into two categories:

� Atomic features describe the role of a candidate branching variable within a par-
ticular node of the tree. In particular, 72 atomic measures are designed (in a fash-
ion similar to Marcos Alvarez et al (2017)), and are further split into static and
dynamic. The former set includes those characteristics of the problem shared by
the whole tree (they are computed at the root node), the latter encompasses the
traits associated with a particular LP node.
� Interaction features consist of products of two static features. The whole features

vector can be interpreted as a degree-2 polynomial kernel K(u,v) = (uT v+1)2,
acting in the 72-dimensional space of atomic features. More details on kernel
mappings can be found in Bishop (2006).

Given the goal of learning a ranking function, instead of a regression one, while
SB scores are computed for the training set of examples, they are not directly em-
ployed as labels. The proposed scheme is a binary labeling: labels are either 1 or 0,
depending on their being or not in a fraction of top scoring variables at a given node.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

18 Andrea Lodi, Giulia Zarpellon

More specifically, denoting by C j the set of candidate variables at node N j, the best
SB score is SB j

∗ = maxi∈C j{SB j
i }; a label for variable xi at node N j is computed as

y j
i =

{
1, if SB j

i ≥ (1−α) ·SB j
∗

0, otherwise,
(6)

where α ∈ [0,1] decides the portion of variables that are considered good, i.e., suf-
ficiently close to the maximum score. This relaxed definition of “best” branching
variables allows to take into account many good candidates in the learning. More-
over, as the authors point out, this scheme should prevent the execution of irrelevant
learning, such as the correct relative ranking of variables with low SB scores.

The ranking formulation follows a pairwise approach: pairs of candidates are
considered, and the objective is to rank them as SB does. Formally, a set of pairs
P j = {(xi,xk) : i,k ∈ C j and y j

i > y j
k} is considered for every node N j, and the learned

ranking seeks to violate as few as possible pairwise ordering constraints of type

∀ j ∈ {1, . . . ,θ},∀(xi,xk) ∈ P j : y j
i > y j

k. (7)

The Support Vector Machine (SVM) classification approach of Joachims (2006),
SVMrank, optimizes an upper bound on the number of violated constraints in (7),
and it is used to approximate the ranking problem. The learned ranking function is
then directly plugged in the branching system.

The ranking heuristic SB+ML is compared against other four strategies: CPLEX
default of version 12.6.1 (in the spirit of hybrid branching, Achterberg and Berthold
2009), SB, PC and SB+PC. The comparison shows that SB+ML solves more in-
stances than both PC and SB+PC, requiring fewer nodes. These savings counterbal-
ance the more time spent per node of SB+ML, which could be imputable to features
computation.

A step further is taken by Khalil (2016), who briefly explores the possibility of em-
ploying online and reinforcement learning in order to build a branching heuristic.
The motivation of such an approach comes from the nature of B&B itself, which
makes it possible to model the branching decision as a multi-armed bandit (MAB)
problem (Robbins 1952). In a MAB problem, at each round an agent selects one of
many available actions (arms) and registers the reward associated with the performed
choice. The intuitive goal is to identify and follow a sequence of actions maximizing
the long-term reward (or minimizing the regret). Note that the B&B system can easily
be interpreted in MAB terms: every node corresponds to a round, and every candidate
variable to an available arm. A (not fully discussed) performance measure can then
be used as reward function to guide the agent in its selections.

A preliminary setup mentioned in Khalil (2016) outperforms on average PC. Al-
though at its start, this seems a promising path to be explored.

Exploiting the framework of reinforcement learning (cf. Section 2.3) for variable
branching, and more generally within the B&B technology appears suitable, given
the inherent sequential nature of B&B. In particular, the idea that at a given node
one should take into account future steps is already expressed in Glankwamdee and

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 19

Linderoth (2011). In that work, SB is interpreted as a greedy heuristic, optimizing
the dual-bound improvement (a reward) as much as possible at the current node only.
Though the two-steps lookahead strategy devised is costly, we should maybe take
into consideration the sequentiality of the whole tree-process in future research.

We summarize the three main ML-based contributions discussed in this section in
Table 1. For each work we report the chosen learning setting, details on the employed
test setting (dataset, solver’s specifications, compared algorithms and measures) and
a brief descriptive summary of the results.2

Table 1 Synoptic comparison of the three discussed ML-based branching heuristics. For each work we
report: learning setting, test set composition and specifications, employed solver and tested settings, list of
compared algorithms (novel methods are in bold), measures of comparison, and a descriptive summary of
the results.

M.Alvarez et al (2017) M.Alvarez et al (2016) Khalil et al (2016)

Learning
setting

ExtraTrees for regression
(offline, supervised learn-
ing)

Linear regression (online
and adaptive supervised
learning)

SVMrank (learning-
to-rank with pairwise
approach, on-the-fly
supervised learning)

Test instances
� 150 random � 44 MIPLIB 3.0+2003 � 84 MIPLIB 2010
� 44 MIPLIB 3.0+2003 10 seeds 10 seeds
small to medium size small to medium size

Solver CPLEX 12.2 CPLEX 12.6 CPLEX 12.6.1

Setting(s)
w/ and w/o: heuristics,
cuts, presolve, timelimit
10min, nodelimit 105

disabled presolve, time-
limit 2h

cutoff provided, timelimit
5h, disabled heuristics,
cuts at root only

Algorithms

� random branching � FSB � CPLEX default
� MIB � RB � SB
� NCB � learned � PC
� FSB � olb � SB+PC
� RB � oplb � SB+ML
� learned

Measures

� closed gap (within limits) � performance profiles � # unsolved
� solved (within limits) (nodes and time) � # nodes
� # nodes � time
� time

Results
summary

learned well imitates
FSB. LP gap is improved
w.r.t. FSB in the setup w/
limits, but RB dominates.
Good also w/ cuts and
heuristics in the setup w/o
limits.

olb and oplb are com-
petitive with RB in both
performance profiles. The
adaptive oplb does not
significantly improve olb.

SB+ML solves more
instances than PC and
SB+PC. On average,
it requires fewer nodes
than PC and SB+PC,
and slightly more than
CPLEX default.

2 Note that Marcos Alvarez et al (2016) follows Marcos Alvarez et al (2017), where 2017 is the year of
journal publication of Marcos Alvarez et al (2014).

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

20 Andrea Lodi, Giulia Zarpellon

5 Searching the branching tree

As discussed, the search process of B&B highly relies on how the exploration of the
decision tree is performed. The mechanism of implicit enumeration has two general
goals:

(I) find quickly a good (possibly optimal) integer feasible solution;
(II) provide a certificate of optimality for the current incumbent, i.e., prove that no

better solution exists.

Indeed, a solution of good quality helps the implicit enumeration as it allows to dis-
card provably useless branches, limiting the number of explored nodes and focusing
only on worthy subproblems. Thus, it appears clear that the order in which the nodes
of the branching tree are selected for exploration has a significant impact on the effi-
ciency of the B&B method.

Many heuristic rules for searching the B&B tree have been proposed in the years,
with the aim of attaining one goal or another, or trying to balance both objective in
some way. We will briefly discuss some of them in what follows. What is certain is
that no single heuristic dominates the others, their performance very likely depending
on the class of considered MILP problems.

Far from being confined to MILP research, the exploration of a decision tree is
actually a very interdisciplinary theme, common in the AI community as well. As a
consequence, we should not be too surprised to find out that the recent works applying
ML techniques to the B&B tree search come from AI researchers. Similarly to how
we discussed branching in Section 4, we will start in Section 5.1 by retrieving early
optimization works somehow anticipating the development of adaptive and informed
search heuristics. We will then present in Section 5.2 two recent attempts in this
direction, employing different learning frameworks.

5.1 Preliminary considerations on search

We begin our agenda with the work of Linderoth and Savelsbergh (1999), which
stands as a survey of B&B search heuristics as well as a baseline ground for a general
discussion on the topic. In particular, the authors compare 13 different node selection
methods, identifying three leading evaluation measures to rank them, in line with
goals (I) and (II) above. The ranking is performed with respect to (in order of im-
portance):

� value of the best solution obtained,
� provable optimality gap, and
� computating time.

The various heuristics are categorized into four different classes. Among static meth-
ods, depth-first and best-first searching paradigms are interpreted as extreme points
of view on the node selection task: the former is associated with goal (I), the latter is
linked to (II). This understanding naturally motivates two-phase methods, alternating
depth-first and best-first in order to balance the search objectives. Further, the idea of

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 21

making more intelligent selections in order to find new improved incumbent solu-
tions is at the root of estimate-based methods. Criteria such as best-projection and
best-estimate exploit the notion of estimating the value of the best feasible solution
with respect to a certain subtree. Finally, Backtracking methods also use estimates
to guide the search, with the aim of avoiding superfluous nodes. As expected, such
estimation rules become more realistic as they get more complex, involving many
different characteristics (or features) such as pseudocosts, fractionalities and proba-
bilities of successful rounding.

As the authors point out, given that the effectiveness of the above methods de-
pends on the problem type, one would seek a search strategy that could adapt to
different instances. In particular, some grade of adaptiveness could be pursued in the
combination of best-first and depth-first strategies, which, borrowing a reinforcement
learning vocabulary (see Section 2.3), corresponds to balancing exploration and ex-
ploitation in the B&B environment. Overall, it seems that the systematic analysis
performed (for the first, and still most complete, time) in Linderoth and Savelsbergh
(1999) can now be revisited in the light of modern ML techniques.

A different observation on the nature of the B&B tree underpins the work of Fischetti
and Monaci (2014). The authors support the claim that high-sensitivity and erraticism
are inherent properties of tree search, due to the very same exponential nature of the
enumeration tree, which ought to be exploited in a beneficial way. Their bet-and-
run approach first triggers randomization, producing few short runs. Among those
different runs, a bet is made on the most favorable one, which is then alone brought
to completion.

In more details, the algorithm makes use of a restart policy reminiscent of Karzan
et al (2009) and Fischetti and Monaci (2012a). Within a sampling phase, C = 5 ran-
dom clones of the problem are created and solved up to N = 5 nodes only. The best
clone with respect to some aggregated indicator is selected and fully solved in the
long run. Two are the key aspects of the method.

1. First, one needs to generate meaningful diversity while randomizing, without de-
grading the average performance. Moreover, the randomization should happen
after the preprocessing and the solution of the root node, in order to limit the
computational overhead. The implemented strategy consists of temporary replac-
ing the objective function of a clone with a random one, having fixed all nonbasic
variable with nonzero reduced cost. Reoptimizing will lead to a different basis on
the optimal face of the LP relaxation of the initial MILP, from which to start the
search. A cap on the number of performed simplex pivots is enforced in order to
maintain a short computing time.

2. Second, a selection rule for the “best” clone run must be defined, and hence one
needs to identify some measures evaluating the performed (short) searches. As the
authors recognize, erraticism itself precludes the definition of a perfect criterion.
Hence, the aim is that of establishing a positive correlation between the clone to
be selected and the a posteriori better run. Note that this notion naturally calls
for a supervised learning framework, the a posteriori best run consisting in an
example’s label.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

22 Andrea Lodi, Giulia Zarpellon

The authors identify 8 indicators of performance, with priority order, extracting
information about: open nodes, lower bound improvements, infeasibilities and
number of simplex iterations. The proposed evaluation scheme discards the in-
dicators that do not provide discriminant information, and breaks ties to favor
the first (default and unperturbed) clone. Note that the defined criterion bases its
decision-making on the very beginning of the search, only.

The bet-and-run algorithm is compared with the default CPLEX setting (no dynamic
search) and two a posteriori oracle algorithms, on 344 instances from MIPLIB 2010
(Koch et al 2011) and COR@L (2017). The algorithm produces savings in terms of
time and nodes for medium to hard instances, but the computational overhead does
not payoff for easy instances. A modified version, denoted as hybrid, is tested, which
prescribes to run CPLEX default for NR nodes, to understand whether the instance
at hand is “easy”. If yes, the problem is solved by CPLEX with no modifications.
Otherwise, perform the sampling phase of bet-and-run: if the selected clone is the
unperturbed one, continue with default; else, continue with bet-and-run selection for
the long run. The hybrid variation is beneficial on average, although it does not seem
to fully solve the overhead issue.

Interestingly, throughout the paper, the authors themselves point out some possi-
bilities for improvement that could involve the use of ML tools.

– Learning algorithms could provide a more sophisticated decision rule for the best
clone selection criterion. A classification mechanism could improve the selection.

– While NR = 500,1000 are tested, the computation of the parameter could be
adaptive and performed on-the-fly, i.e., estimating the hardness of the remaining
tree or, equivalently, the hardness of instance.

– The restart strategy could be refined by leveraging information of past runs.

We are now going to see how the main axes of these analyses on B&B search will
be reinterpreted in a learning framework.

5.2 Learning approaches to B&B search

Keeping in mind the recognized needs and goals of a search strategy for B&B, we
will present in this section two new approaches for the topic. The tools employed
in those attempts may appear uncommon to a MILP practitioner, and we will try to
outline their potentials as well as their limitations.

In Sabharwal, Samulowitz, and Reddy (2012) the exploited framework is that of rein-
forcement learning (see Section 2.3). A multi-armed bandit (see Section 2.3) structure
is proposed for MILP search, in the form of a modified version of the Upper Con-
fidence bounds for Trees (UCT) (Kocsis and Szepesvári 2006) technique. Namely,
UCT is a method for Monte Carlo Tree Search balancing exploration and exploita-
tion, and it is based on the selection strategy of Upper Confidence Bounds (UCB1),
which was introduced in Auer et al (2002). In a nutshell, UCT works on an underly-
ing tree T and consists of two alternating phases. Within the node selection phase, T
is traversed from its root to a leaf node: at each node N the rule is to move to the child

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 23

N′ with higher UCT score; ties are arbitrarily broken. Once a leaf L is reached, a tree
update phase is performed: an updated score is computed for L and it is propagated
upwards to the root, following the outbound path in reverse order and adjusting the
estimates for the encountered nodes.

The authors employ a simplified version of the UCT score of a node N (the
ε−greedy version in Auer et al 2002), consisting of a balanced sum of two terms:

score(N) = estimate(N)+Γ · visits(P)/100
visits(N)

, (8)

where estimate(N) is some measure of quality of node N, P is the parent node of N
and visits(·) counts the number of times a node has been already visited by the search
algorithm. The parameter Γ controls the balance between exploration (second term)
and exploitation (first term): nodes with high estimate are pursued, but other nodes
get priority if they have been visited only a fraction of the times compared to their
siblings. In the original context of UCT (adversary game tree search), the estimate(·)
values are initialized by random playouts: the game is played many times until its
very end by selecting casual moves, each play yielding a certain result that is used as
measure of quality for the traveled path. Moreover, the tree update phase is carried
out by a so-called backup operator, which usually assigns to a node N in the path
from leaf to root the average of the values seen in the subtree rooted at N.

Given the differences between the original context of UCT and that of MILP, the
algorithm must be appropriately modified. The goal of such adjusted UCT is that of
guiding B&B search by expanding open nodes as UCT would expand them.

For a start, B&B tree search is a single-agent process, and it is clear that the
MILP framework cannot afford random playout samplings for initialization purposes.
Instead, the fact that branching provides guaranteed LP bounds (a strong heuristic)
is exploited, so that the quality estimates consist of normalized LP objective values.
Having guaranteed bounds requires changes be made for the backup operator as well:
instead of an averaging one, a max-style updating rule seems more suited. In short,
each node’s estimate is updated with the maximum between the estimates of its chil-
dren nodes, so that at any N, estimate(N) equals the best objective value seen in the
subtree rooted at N. Note that when a node is closed by B&B (i.e., fathomed), the
search will not have any reason to visit it again. In this sense, exploitation is not
always meaningful in this setting, and subtrees with no open nodes left should be
disregarded by future UCT searches.

The UCT-based search strategy is compared with three others, namely, best-first,
(graph-theory) breadth-first and CPLEX default heuristic. A general MILP solver per-
forms B&B by internally maintaining the list of open nodes, but in order to apply the
UCT-based method one needs to maintain an underlying entire tree structure to guide
the search, i.e., nodes already explored are not removed. This additional architecture
introduces significant overhead. To limit it, and supporting the notion that decisions
are more crucial at the top levels of the tree, each tested strategy is performed on
the first 128 nodes only, then switching to the CPLEX default one. A total of 170
instances from MIPLIB Koch et al (2011) are used, with 600 seconds time limit, and
the balancing parameter is tuned to Γ = 0.7. The geometric means of runtime, num-

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

24 Andrea Lodi, Giulia Zarpellon

ber of searched nodes and of simplex iterations are all improved by the UCT-based
technique.

Some remarks before moving on. Note that the essential part of the reward mea-
sure consists of LP objective values, which is combined with the visits counter. Con-
sidering this, it seems that UCT improvements are gained thanks to a balanced us-
age of best-first and breadth-search-like schemes, without the exploitation of other
state information. Moreover, the original UCT algorithm as in Kocsis and Szepesvári
(2006) treats every internal node as a different MAB problem, a property which the
authors do not consider sustainable in the MILP context. However, detaching for a
moment from architectural issues, we could easily imagine bandit problems at every
node of the B&B tree, eventually dealing with branching decisions, as proposed in
Khalil (2016). An interesting question is whether the two processes of variable and
node selection could be unified under the MAB scheme, or, more generally, within a
(reinforcement?) learning framework.

Learn an adaptive and problem-specific search strategy is the goal of He, Daume III,
and Eisner (2014). This work makes use of imitation learning (or behavioral cloning,
see Sammut 2011), a paradigm very common in robotics. In general, imitative meth-
ods involve an expert performing some task, and having its actions recorder together
with a description of the current situation. A dataset of (situation, action) pairs is
given as input to a learning program, which then produces as output a set of rules
(i.e., policies) reproducing the expert behavior with respect to the performed task.

In the context of B&B, the expert part is played by a MILP solver and of a sim-
ple defined oracle. While it would be ideal to have an oracle expanding an optimal
sequence of nodes and fulfilling (I) and (II) (and hence also (i), i.e., minimizing the
number of explored nodes), the designed oracle only cares of (I). Namely, the ex-
plicitly declared goal is that of finding good (possibly optimal) solutions quickly, but
without providing a certificate of optimality. This modeling choice is motivated by
the wish of allowing a more aggressive pruning of the tree branches, and motivated
by the idea that it may be possible in the future to reach a “user-specified trade-off
between solution quality and searching time”. Indeed, it is worth observing that the
proposed framework does not guarantee an optimality certificate because it prunes
subtrees potentially containing the optimal solution (besides the training phase in
which the optimal solution is known).

More in details, the assumption is that optimal solutions of training problems are
given. The oracle node selection rule π∗S will always pursue the branches containing
the optimal solution. Nodes expanded in this process are called optimal nodes; the
non-optimal nodes are pruned from the tree by the oracle pruning rule π∗P. The B&B
is framed as a sequential process within the state space S consisting of the visited
nodes and their LP bounds. Two policies that should guide the search are learned as
rules. Namely,

� The (learned) node selection policy πS prescribes which node should be expanded
next. Namely, πS provides a priority order for the queue of open nodes, deciding
which one should be popped. The action space of πS is {select node Ni : Ni ∈
queue of open nodes}.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 25

� The (learned) node pruning policy πP determines whether a popped node is worth
to be expanded. Note that in this context the terms “pruning” and “fathoming”
are not interchangeable: a node that is not fathomed by infeasibility, bound or
integrality could still be pruned because of its non-optimality. The action space
of πP is {prune, expand}, so that πP actually behaves like a binary classifier.

In fact, not only πP, but the whole imitation problem can be reduced to supervised
learning, as shown in Syed and Schapire (2010). The oracle actions a∗t can be inter-
preted as predictions with respect to a features vector description of state st . Instead
of forecasting a regression score, πS itself can be framed as a classifier of pairs, for
the problem where one aims at learning a ranking of the open nodes in queue. The
procedure is in the spirit of that employed by Khalil et al (2016) for variable selection
purposes.

Features are divided into three categories.

� Node features include bounds and objective function estimation at a given node,
together with indications about the current depth and the (parental) relationship
with respect to the last processed node.
� Branching features describe the variable whose branching led to a given node, in

terms of pseudocosts, variable’s value modifications and bound improvement.
� Tree features consider measures such as the number of solutions found, global

bounds and gap, with respect to the computed B&B tree as a whole.

Two different feature maps are defined for the policies: while πS bases its predic-
tions mainly on node and branching features, πP employs mostly branching and tree
features. All features are combined with the depth of the measured node by means
of partitioning the tree in 10 uniform levels, and are appropriately normalized with
respect to the root node’s values. The designed characteristics do not constitute a
computational burden, being easily obtainable from a MILP solver.

In the experiments, instances are borrowed from four diverse libraries. The MILP
solver SCIP (2017) is run to optimality and the delivered optimal solution is used
within the oracle to initialize the training phase. The training of the policies is per-
formed iteratively on problem classes. Every iteration provides updated information
and collects new examples during the B&B runs, taking care of correctly ranking
a node when it enters the open nodes queue and pruning it if non-optimal, after it
is extracted from the queue. As already said, the learning of πS and πP is in fact a
classification task, and attention is paid to properly tune parameters.

At test phase, the resulting algorithm, called DAgger, is compared with SCIP
and Gurobi (2017), taking into account the trade-off between runtime and solution
quality in the comparison. The adaptive solver performs well on different classes of
problems, and it seems to fulfill the three-level adaptiveness sought by the authors,
with respect to: (1) problem type, (2) specific instance and (3) different stages of the
B&B optimization.

Further analysis shows the pruning policy having more impact, possibly due to
the fact that other heuristic components interfere with node selection. Not so surpris-
ing are the findings of the features analysis. In general terms, πS imitates depth-first
search at the top of the tree, but also considers historical estimates in lower levels. The

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

26 Andrea Lodi, Giulia Zarpellon

branching variable’s measures seem to affect πP, which keeps the pruning cautious
when only few solutions are known.

Note that the branching decision is explicitly taken into account in the design of
the search strategy by the second group of features, reflecting the idea that these two
heuristic processes should be intertwined within the learning as they indeed are in
the optimization. Moreover, the authors claim that the design of DAgger takes into
account the complex sequential nature of B&B by modeling the influence of actions
over future states, a task that could not be performed by standard supervised learning.
However, the work is based on the assumption that current solvers’ strategies are the
“experts” to be imitated, and drops the seek of certified optimality for speed.

We summarize the two main ML-based contributions discussed in this section
in Table 5.2. Again, for each work we report the chosen learning setting, details on
the employed test setting (dataset, solver’s specifications, compared algorithms and
measures) and a brief descriptive summary of the results.

Table 2 Synoptic comparison of the two discussed learning approaches to B&B search. For each work we
report: learning setting, test set composition and specifications, employed solver and tested settings, list of
compared algorithms (novel methods are in bold), measures of comparison, and a descriptive summary of
the results.

Sabharwal et al (2012) He et al (2014)

Learning
setting

UCT (reinforcement learning) Imitation learning

Test instances

� 179 various benchmarks � 36 MIK
� 120 Regions
� 40 Hybrid
� 300 CORL@T

Solver(s) CPLEX 12.3 � SCIP 3.1.0 (CPLEX 12.6 for LP)
� Gurobi 5.6.2

Setting(s)
node and branch callbacks on,
600s timelimit

average runtime and # of nodes of the pro-
posed B&B are used as timelimit for SCIP
and nodelimit for Gurobi, respectively

Algorithms

� UCT � πS +πP (selection + pruning)
� CPLEX default � πP (pruning policy only)
� best-first � SCIP (time)
� breadth-first � Gurobi (node)

Measures
� runtime � speedup w.r.t. SCIP default
� # nodes � optimality gap
� # simplex iterations � integrality gap

Results
summary

UCT-based technique improves the
geometric means of all considered
measures.

Good adaptive performance on all classes
of problems: πP seems to have more im-
pact, πS likely interferes with solver’s
other components.

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 27

6 Overview and conclusions

In this paper, we have surveyed learning techniques to deal with the two most crucial
decisions in the branch-and-bound algorithm for MILP, namely variable and node se-
lections. Because of the lack of deep mathematical understanding on those decisions,
the classical and vast literature in the field is inherently based on computational stud-
ies and heuristic, often problem-specific, strategies. Although our survey is mostly
concerned with the recent methods that explicitly consider (machine) learning tech-
niques, we have taken the perspective of interpreting some of the previous funda-
mental contributions in the light of those techniques, so as to give a more complete
overview and to possibly outline new points of view.

It is worth observing that we have not touched in our discussion a nowadays fun-
damental component of branch-and-bound algorithms and codes for MILP, namely
parallelization. Modern MILP solvers are developed, tested and used within multi-
thread computing environments and more and more research is devoted to improve in
the use of multi-threading. Although the papers we surveyed almost never discuss the
issue, it is not difficult to imagine the use of the learning algorithms for both variable
and node selections in a parallel environment. However, evil is in the details and the
discussed paradigms have to be treated / extended with care.

Of course, variable and node selections are not the only important decisions in
enumerative algorithms in general. One of the areas in which modern learning tech-
niques could result crucial is that of predicting the difficulty of an instance, for ex-
ample by taking into account the size and the shape of the enumeration tree. The
problem of hardness prediction is not new. Since the first estimation of efficiency for
backtracking methods of Knuth (1975), the question has been a common interest of
the optimization and the ML communities, which developed their own algorithms
in the past decades. Indeed, the practical impact of such a prediction is wide and
important, especially given the time and resources limits that one has to confront
when dealing with hard problems. Discussing this topic in details is outside of the
scope of the present paper. However, again following the pattern of interpreting some
old(er) contributions in the light of modern learning algorithms and then consider-
ing the most recent works, we refer the interested reader to Cornuéjols, Karamanov,
and Li (2006) for the former and to Hutter, Xu, Hoos, and Leyton-Brown (2014) and
Marcos Alvarez, Wehenkel, and Louveaux (2015) for the latter.

Acknowledgments

We like to thank Yoshua Bengio for his support in our learning curve. Additional
thanks go to Laurent Charlin, Mathieu Tanneau, Claudio Sole and François Laviolette
for interesting discussions on the topic.

References

Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

28 Andrea Lodi, Giulia Zarpellon

Achterberg T, Berthold T (2009) Hybrid Branching. In: Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Springer, Berlin, Heidelberg, pp 309–311

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Operations Research Letters 33:42–54
Achterberg T, Koch T, Martin A (2006) MIPLIB 2003. Operations Research Letters 34(4):361–372
Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic

configuration of algorithms. In: CP, Springer, Berlin, Heidelberg, pp 142–157, DOI 10.1007/
978-3-642-04244-7 14

Applegate D, Bixby R, Chvátal V, Cook W (2007) The Traveling Salesman Problem. A Computational
Study. Princeton University Press

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256, DOI 10.1023/A:1013689704352

Bellman R (1961) Adaptive Control Processes. Princeton University Press
Benichou M, Gauthier J, Girodet P, Hentges G (1971) Experiments in mixed-integer programming. Math-

ematical Programming 1:76–94
Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming, 1st edn. Athena Scientific
Bishop CM (2006) Pattern Recognition and Machine Learning. Information Science and Statistics,

Springer-Verlag New York, Inc.
Bixby R, Ceria S, McZeal C, Savelsbergh M (1996) An updated mixed integer programming library:

Miplib 3.0
COR@L (2017) Computational Optimization Research at Lehigh. URL https://coral.ise.lehigh.

edu

Cornuéjols G, Karamanov M, Li Y (2006) Early estimates of the size of branch-and-bound trees. IN-
FORMS Journal on Computing 18(1):86–96, DOI 10.1287/ijoc.1040.0107

CPLEX (2017) URL http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/index.html

Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87,
DOI 10.1145/2347736.2347755

Fischetti M, Monaci M (2012a) Backdoor branching. INFORMS Journal on Computing 25(4):693–700,
DOI 10.1287/ijoc.1120.0531

Fischetti M, Monaci M (2012b) Branching on nonchimerical fractionalities. Operations Research Letters
40(3):159–164

Fischetti M, Monaci M (2014) Exploiting erraticism in search. Oper Res 62(1):114–122
Fischetti M, Lodi A, Monaci M, Salvagnin D, Tramontani A (2016) Improving branch-and-cut perfor-

mance by random sampling. Mathematical Programming Computation 8(1):113–132
Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42, DOI 10.1007/

s10994-006-6226-1
Gilpin A, Sandholm T (2011) Information-theoretic approaches to branching in search. Discrete Optimiza-

tion 8(2):147–159, DOI 10.1016/j.disopt.2010.07.001
Glankwamdee W, Linderoth J (2011) Lookahead branching for mixed integer programming. In: Twelfth

INFORMS Computing Society Meeting, INFORMS, pp 130–150
Gomory R (1960) An algorithm for the mixed integer problem. Tech. Rep. RM-2597, The Rand Corpora-

tion
Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, URL http://www.

deeplearningbook.org

Gurobi (2017) URL http://www.gurobi.com

Hamerly G, Elkan C (2003) Learning the k in k-means. In: NIPS, vol 3, pp 281–288
Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference

and Prediction, 2nd edn. Springer series in statistics, Springer
He H, Daume III H, Eisner JM (2014) Learning to search in branch and bound algorithms. In: Ghahra-

mani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in Neural Information
Processing Systems 27, Curran Associates, Inc., pp 3293–3301

Hutter F, Xu L, Hoos HH, Leyton-Brown K (2014) Algorithm runtime prediction: Methods & evaluation.
Artificial Intelligence 206:79–111, DOI 10.1016/j.artint.2013.10.003

Joachims T (2006) Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ACM, pp 217–226

Kadioglu S, Malitsky Y, Sellmann M (2012) Non-model-based search guidance for set partitioning prob-
lems. In: AAAI

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

On learning and branching: a survey 29

Karzan FK, Nemhauser GL, Savelsbergh MWP (2009) Information-based branching schemes for binary
linear mixed integer problems. Math Prog Comp 1(4):249–293, DOI 10.1007/s12532-009-0009-1

Khalil E (2016) Machine learning for integer programming. In: Proceedings of the Doctoral Consortium
at the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI)

Khalil E, Le Bodic P, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer pro-
gramming. In: AAAI

Knuth DE (1975) Estimating the efficiency of backtrack programs. Math Comput 29(129):122–136
Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby R, Danna E, Gamrath G, Gleixner A,

Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy D, Wolter K (2011) MIPLIB 2010.
Mathematical Programming Computation pp 103–163

Kocsis L, Szepesvári C (2006) Bandit based monte-carlo planning. In: Machine Learning: ECML 2006,
Springer, Berlin, Heidelberg, pp 282–293, DOI 10.1007/11871842 29

Land A, Doig A (1960) An automatic method of solving discrete programming problems. Econometrica
28:497–520

Liberto GD, Kadioglu S, Leo K, Malitsky Y (2016) DASH: Dynamic approach for switching heuristics.
European Journal of Operational Research 248(3):943–953, DOI 10.1016/j.ejor.2015.08.018

Linderoth JT, Lodi A (2010) Milp software. Wiley encyclopedia of operations research and management
science

Linderoth JT, Savelsbergh MWP (1999) A computational study of search strategies for mixed integer
programming. INFORMS Journal on Computing 11(2):173–187, DOI 10.1287/ijoc.11.2.173

Lodi A (2010) Mixed integer programming computation. In: 50 Years of Integer Programming 1958-2008,
Springer Berlin Heidelberg, pp 619–645

Lodi A (2013) The heuristic (dark) side of MIP solvers. In: Talbi EG (ed) Hybrid Metaheuristics, no. 434
in Studies in Computational Intelligence, Springer Berlin Heidelberg, pp 273–284

Lodi A, Tramontani A (2013) Performance variability in mixed-integer programming. In: Topaloglu H
(ed) Tutorials in Operations Research, INFORMS, pp 1–12

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Pro-
ceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of
California Press, vol 1, pp 281–297

Marcos Alvarez A (2016) Computational and theoretical synergies between linear optimization and super-
vised machine learning. PhD thesis, Université de Liège, Liège, Belgique

Marcos Alvarez A, Louveaux Q, Wehenkel L (2014) A supervised machine learning approach to variable
branching in branch-and-bound. Tech. rep., Université de Liège, URL http://hdl.handle.net/

2268/167559

Marcos Alvarez A, Wehenkel L, Louveaux Q (2015) Machine learning to balance the load in parallel
branch-and-bound. Tech. rep., Université de Liège, URL http://hdl.handle.net/2268/181086

Marcos Alvarez A, Wehenkel L, Louveaux Q (2016) Online learning for strong branching approximation in
branch-and-bound. Tech. rep., Université de Liège, URL http://hdl.handle.net/2268/192361

Marcos Alvarez A, Louveaux Q, Wehenkel L (2017) A machine learning-based approximation of strong
branching. Inf J Comput DOI 10.1287/ijoc.2016.0723

Nocedal J, Wright S (2006) Numerical Optimization, 2nd edn. Springer, New York
Padberg M, Rinaldi G (1991) A branch and cut algorithm for the resolution of large-scale symmetric

traveling salesmen problems. SIAM Review 33:60–100
Robbins H (1952) Some aspects of the sequential design of experiments. Bull Amer Math Soc 58(5):527–

535
Sabharwal A, Samulowitz H, Reddy C (2012) Guiding combinatorial optimization with UCT. In:

Beldiceanu N, Jussien N, Pinson É (eds) Integration of AI and OR Techniques in Contraint Pro-
gramming for Combinatorial Optimzation Problems, Springer Berlin Heidelberg, Lecture Notes in
Computer Science, pp 356–361, DOI 10.1007/978-3-642-29828-8 23

Sammut C (2011) Behavioral cloning. In: Sammut C, Webb GI (eds) Encyclopedia of Machine Learning,
Springer US, pp 93–97, DOI 10.1007/978-0-387-30164-8 69

SCIP (2017) URL http://scip.zib.de/

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656
Sutton RS, Barto AG (1998) Reinforcement learning: An introduction. MIT press
Syed U, Schapire RE (2010) A reduction from apprenticeship learning to classification. In: Lafferty JD,

Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A (eds) Advances in Neural Information Process-
ing Systems 23, Curran Associates, Inc., pp 2253–2261

Szepesvari C (2010) Algorithms for Reinforcement Learning. Morgan and Claypool

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-004

