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Abstract

We aim to investigate a new class of games, where each player’s set of
strategies is a union of polyhedra. These are called integer programming
games. We prove that it is a Σp

2-complete problem to decide the existence
of Nash equilibria and we provide sufficient conditions for an equilibrium
to exist. Additionally, we describe examples suitable to be modeled by an
integer programming game.

1 Introduction

Game Theory. Game theory is a generalization of decision theory. In a
game, each player is a decision maker that aims to maximize her utility, which
is influenced by other participants’ decisions. See Fudenberg and Tirole [9] and
Owen [20] for an introduction to this field.

We restrict our investigation to non-cooperative games, i.e., players have no
compassion for the opponents. Nash [18] defined the most widely accepted
concept of solution for a game, the Nash equilibrium (NE). A NE associates a
probability distribution to each player set of strategies such that no player has
incentive to unilaterally deviate from that NE if the others play according with
the equilibrium. In other words, in an equilibrium, each player is maximizing
her expected utility given the equilibrium strategies of the other players. In a
pure NE only a single strategy of each player has positive probability assigned
(i.e., probability 1).

The state-of-the-art game theory tools are confine to finite games, where
each player has a finite number of strategies and all players’ strategies combina-
tions are explicitly enumerated with the associated utilities, and “well-behaved”
continuous games, where utility functions and strategy sets meet certain differ-
entiability and concavity conditions.
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Finite Games. These games are represented in normal-form (or strategic-
form), i.e., through a multidimensional matrix, where each entry corresponds
to the players’ utilities for a given combination of their strategies. Nash [18]
proved that any finite game has an NE.

Finite games have received wide attention in game theory. Daskalis et al. [8]
prove that computing an NE is PPAD-complete, which is believed to be a class of
hard problems, since it is unlikely that PPAD is equal to the polynomial time
complexity class P . Nisan et al. [19] describe general algorithms to compute
Nash equilibria, which failed to run in polynomial time. We refer the interested
reader to the surveys and state-of-art algorithms collected in von Stengel [25].
Currently, some of those algorithms are available on GAMBIT [17], the most
up-to-date software for the computation of NE for normal-form games.

Continuous games. The class of continuous games considers broader strat-
egy sets with respect to finite games, allowing the sets of strategies to be infinite;
see Figure 1. Apart from finite games, the literature focuses in continuous games
for which the strategies sets are convex and utilities are concave. Examples of
such games are the well-studied economic models of Cournot [7] and Bertrand [2]
competitions. In these games, the players’ are firms producing a homogeneous
good. In the Cournot competition, the firms compete on the quantities to be
placed in the market while in the Bertrand model, the firms compete on prices.
The firms’ decisions will influence the overall demand. In the classical versions
of these models, the players’ maximization problems are concave which enables
the application of the famous theorem by Debreu, Glicksberg and Fan (see [9]
Chapter 1) stating the existence of pure NE. Moreover, the computation of a
pure NE can be reduced to a constrained problem by the application of the
Karush-Kuhn-Tucker [12, 15] (KKT) conditions to each player’s optimization
problem.

Separable games [24] are continuous games in which each player’s utility
function has a particular form that, in particular, allows to formulate finite
games; see Figure 1.

Integer programming games. Let M = {1, 2 . . . ,m} be a set of players.
Based on the definition presented by Köppe et al. [13], we define an inte-
ger programming game (IPG) as a non-cooperative game, where each player
p’s goal is to select her best reaction xp against the opponents’ strategies,
x−p = (x1, . . . , xp−1, xp+1, . . . , xm), by solving the following mathematical pro-
gramming problem:

maximize
xp≥0

Πp(xp, x−p) (1a)

subject to Apxp ≤ bp (1b)

xpi ∈ N for i = 1, . . . , Bp, (1c)

where Ap is a kp × np matrix (with np ≥ Bp), bp a column vector of dimension
kp and Πp(xp, x−p) is player p’s utility function.

Note that IPGs contain mathematical programming problems in the special
case of a single player. Moreover, any finite game can be modeled through an
IPG: associate a binary variable for each player pure strategy (which would
model the strategy selected), add a constraint summing the decision variables

2
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Figure 1: Games classes.

up to one (this ensures that exactly one strategy is selected) and formulate the
players’ utilities according to the utility values for combinations of the binary
variables; see Figure 1. On the other hand, enumerating all players’ feasible
strategies (as in finite games) for an IPG can be impractical, or the players’
strategies in an IPG might lead to non well-behaved games, for example where
the player’s maximization problems are non-concave. This shows that the exis-
tent tools and standard approaches for finite games and convex games are not
directly applicable to IPGs.

The literature in IPGs is scarce and often focus in the particular structure of
specific games. Kostreva [14] and Gabriel et al. [10] propose methods to compute
NE for IPGs, however it lacks a computational time complexity guarantee and
a practical validation through computational results. Köppe et al. [13] present
a polynomial time algorithm to compute pure NE (under restrictive conditions,
like number of players fixed and sum of the number of player’s decision variables
fixed, to name few).

There are important real-world IPGs, in the context of e.g., electricity mar-
kets [22], production planning [16], heath-care [5]); this highlights the impor-
tance of exploring such game models.

Our contributions and paper organization. We highlight three contri-
butions concerning IPGs: the computational complexity study of the problem
of deciding the existence of a pure NE and of a NE, and the determination of
sufficient conditions to guarantee the existence of NE.

Our paper is structured as follows. Section 2 fixes notation and covers the
game theory background. Section 3 classifies the computational complexity of
the problems related with the existence of NE to IPGs and states sufficient
conditions for NE to exist. Section 4 presents examples of integer programming
games. Finally, we conclude and discuss further research directions in Section 5.

2 Notation and background

Notation. The feasible set of strategies Xp is

Xp = {xp : Apxp ≤ bp, xpi ∈ N for i = 1, . . . , Bp}.

Let the operator (·)−p denote (·) for all players except player p. We denote

3
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the set of all players’ strategies combinations by X, i.e., X =
∏
p∈M

Xp. We

call each xp ∈ Xp and x ∈ X a player p pure strategy and a pure profile of
strategies, respectively.

We assume that there is complete information, i.e., players have full infor-
mation about each other utilities and strategies, players select their strategies
simultaneously and each player utility is a continuous function of x ∈ X and
can be evaluated in polynomial time. We assume that all players are rational,
and thus, each player p goal is to select her best reaction to x−p by solving
problem (1).

Game theory background. A pure profile of strategies x ∈ X that solves
the optimization problem (1) for all players is called pure equilibrium. A game
may fail to have pure equilibria and, therefore, a broader solution concept for
a game must be introduced. To that end, we introduce some basic concepts of
measure theory. Let ∆p denote the space of Borel probability measures over

Xp and ∆ =
∏
p∈M

∆p. Each player p expected utility for a profile of strategies

σ ∈ ∆ is

Πp(σ) =

∫
Xp

Πp(xp, x−p)dσ. (2)

A Nash equilibrium (NE) is a profile of strategies σ ∈ ∆ such that

Πp(σ) ≥ Πp(xp, σ−p), ∀p ∈M ∀xp ∈ Xp. (3)

In an NE each player p’s expected profit from σ cannot be improved by unilat-
erally deviating to a different strategy1.

The support of a strategy σp ∈ ∆p, denoted as supp(σp), is the set of player
p’s strategies played with positive probability, i.e.,

supp(σp) = {xp ∈ Xp : σp(xp) > 0}.

Given σ ∈ ∆, if each player support size is 1, then it is a pure profile of
strategies, otherwise, we call it (strictly) mixed. For the sake of simplicity,
whenever the context makes it clear, we use the term (strategy) profile to refer
to a pure one.

A game is called continuous if each player p strategy set is a nonempty
compact metric space and the utility is continuous.

A separable game is a continuous game with utility functions taking the form

Πp(xp, x−p) =

k1∑
j1=1

. . .

km∑
jm=1

apj1...jmf
1
j1(x1) . . . fmjm(xm). (4)

where apj1...jm ∈ R and the fpj are real-valued continuous functions.

1The equilibrium conditions (3) only reflect a player p deviation to strategy in Xp and not
in ∆p, because a strategy in ∆p is a convex combination of strategies in Xp, and thus cannot
lead to a better utility than one in Xp.
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3 Existence of Nash equilibria

It can be argued that players’ computational power is bounded and thus, since
the space of pure strategies is simpler and contained in the space of mixed
strategies – i.e., the space of Borel probability measures – pure equilibria are
more plausible outcomes for games with large sets of pure strategies. In this way,
it is important to understand the complexity of determining a pure equilibrium
to an IPG.

According with Nash famous theorem [18] any finite game has a Nash equi-
librium. Since a purely integer bounded IPGs is a finite game, it has an NE.
However, Nash theorem does not guarantee that the equilibrium is pure, which
is illustrated in the following example.

Example 3.1 (No pure Nash equilibrium.) Consider the duopoly game such
that player A solves

maximize
xA

18xAxB − 9xA

subject to xA ∈ {0, 1}

and player B:

maximize
xB

− 18xAxB + 9xB

subject to xB ∈ {0, 1}.

Under the outcome (xA, xB) = (0, 0) player B has incentive to change to xB = 1;
for the outcome (xA, xB) = (1, 0) player A has incentive to change to xA = 0;
for the outcome (xA, xB) = (0, 1) player A has incentive to change to xA = 1;
for the outcome (xA, xB) = (1, 1) player B has incentive to change to xB = 0.
Thus there is no pure NE.

In Section 3.1, we classify both the computational complexity of deciding
if there is a pure and a mixed NE for an IPG. It will be shown that even
with linear utilities and two players, the problem is Σp

2-complete. Then, in
Section 3.2, we state sufficient conditions for the game to have finitely supported
Nash equilibria.

3.1 Complexity of the existence of NE

The complexity class Σp
2 contains all decision problems that can be written in

the form ∃x∀yP (x, y), that is, as a logical formula starting with an existential
quantifier followed by a universal quantifier followed by a Boolean predicate
P (x, y) that can be evaluated in polynomial time; see Chapter 17 in Papadim-
itriou’s book [21].

Theorem 3.2 The problem of deciding if an IPG has a pure NE is Σp
2-complete.

Proof. The decision problem is in Σp
2, since we are questing if there is a

solution in the space of pure strategies such that for any unilateral deviation
of a player, her utility is not improved (and evaluating the utility value for a
profile of strategies can be done in polynomial time).
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It remains to prove Σp
2-hardness. We will reduce the following Σp

2-complete
to it (see Caprara et al. [3]):

DeNegre bilevel Knapsack Problem - DN

INSTANCE Non-negative integers n, A, B, and n-dimensional non-
negative integer vectors a and b.

QUESTION Is there a binary vector x such that
∑n

i=1 aixi ≤ A and
for all binary vectors y with

∑n
i=1 biyi ≤ B, the following inequality is

satisfied
n∑

i=1

biyi(1− xi) ≤ B − 1?

Our reduction starts from an instance of DN . We construct the following in-
stance of IPG.

• The game has two players, M = {Z,W}.

• Player Z controls a binary decision vector z of dimension 2n+ 1; her set
of feasible strategies is

n∑
i=1

aizi ≤ A

zi + zi+n ≤ 1 i = 1, . . . , n

z2n+1 + zi+n ≤ 1 i = 1, . . . , n.

• Player W controls a binary decision vector w of dimension n+ 1; her set
of feasible strategies is

Bwn+1 +

n∑
i=1

biwi ≤ B. (8)

• Player Z’s utility is (B − 1)wn+1z2n+1 +
∑n

i=1 biwizi+n.

• PlayerW ’s utility is (B−1)wn+1+
∑n

i=1 biwi−
∑n

i=1 biwizi−
∑n

i=1 biwizi+n.

We claim that in the constructed instance of IPG there is an equilibrium if
and only if the DN instance has answer YES.

(Proof of if). Assume that the DN instance has answer YES. Then, there
is x satisfying

∑n
i=1 aixi ≤ A such that

∑n
i=1 biyi(1 − xi) ≤ B − 1. Choose

as strategy for player Z, ẑ = (x,

n︷ ︸︸ ︷
0, . . . , 0, 1) and for player W ŵ = (

n︷ ︸︸ ︷
0, . . . , 0, 1).

We will prove that (ẑ, ŵ) is an equilibrium. First, note that these strategies are
guaranteed to be feasible for both players. Second, note that none of the players
has incentive to deviate from (ẑ, ŵ):

• Player Z’s utility is B − 1, and B − 1 ≥
∑n

i=1 biwi holds for all the
remaining feasible strategies w of player W .
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• Player W ’s has utility B − 1 which is the maximum possible given ẑ.

(Proof of only if). Now assume that the IPG instance has answer YES. Then,
there is a pure equilibrium (ẑ, ŵ).

If ŵn+1 = 1, then, by (8), ŵ = (

n︷ ︸︸ ︷
0, . . . , 0, 1). In this way, since player

Z maximizes her utility in an equilibrium, ẑ2n+1 = 1, forcing ẑi+n = 0 for
i = 1, . . . , n. The equilibrium inequalities (3), applied to player W , imply that,
for any of her feasible strategies w with wn+1 = 0,

B − 1 ≥
n∑

i=1

biwi(1− ẑi)

holds, which shows that DN is a YES instance with the leader selecting xi = ẑi
for i = 1, . . . , n.

If ŵn+1 = 0, under the equilibrium strategies, player Z’s utility term (B −
1)ŵn+1z2n+1 is zero. Thus, since in an equilibrium player Z maximizes her
utility, it holds that ẑi+n = 1 for all i = 1, . . . , n with ŵi = 1. However, this
implies that player W ’s utility is non-positive given the profile (ẑ, ŵ). In this
way, player W would strictly improve her utility by unilaterally deviating to

w = (
︷ ︸︸ ︷
0, . . . , 0, 1). In conclusion, wn+1 is never zero in a pure equilibrium of the

constructed game instance. �
Extending the existence property to mixed equilibria would increase the

chance of an IPG to have an NE, and thus, a solution. The next theorem shows
that the problem remains Σp

2-complete.

Theorem 3.3 The problem of deciding if an IPG has an NE is Σp
2-complete.

Proof. Analogously to the previous proof, the problem belongs to Σp
2.

It remains to show that it is Σp
2-hard. We will reduce the following Σp

2-
complete to it (see [3]):

Dempe Ritcht Problem - DR

INSTANCE Non-negative integers n, A, C and C ′, and n-dimensional
non-negative integer vectors a and b.

QUESTION Is there a value for x such that C ≤ x ≤ C ′ and for all
binary vectors satisfying

∑n
i=1 biyi ≤ x, the following inequality holds

Ax+
n∑

i=1

aiyi ≥ 1?

Our reduction starts from an instance of DR. We construct the following in-
stance of IPG.

• The game has two players, M = {Z,W}.
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• Player Z controls a non-negative variable z and a binary decision vector
(z1, . . . , zn+1); her set of feasible strategies is

n∑
i=1

bizi ≤ z

zi + zn+1 ≤ 1, i = 1, . . . , n

z ≤C ′(1− zn+1)

z ≥ C(1− zn+1).

• Player W controls a non-negative variable w and binary decision vector
(w1, . . . , wn).

• Player Z’s utility is Az +
∑n

i=1 aiziwi + zn+1.

• Player W ’s utility is zn+1w +
∑n

i=1 biwizi.

We claim that in the constructed instance of IPG there is an equilibrium if
and only if the DR instance has answer YES.

(Proof of if). Assume that the DR instance has answer YES. Then, there is
x such that C ≤ x ≤ C ′ and Ax+

∑n
i=1 aiyi ≥ 1 for a y satisfying

∑n
i=1 biyi ≤ x.

As strategy for player Z choose ẑ = C ′ and (ẑ1, . . . , ẑn, ẑn+1) = (y1, . . . , yn, 0);
for player W choose ŵ = 0 and (ŵ1, . . . , ŵn) = (y1, . . . , yn). We prove that
(ẑ, ŵ) is an equilibrium. First, note that these strategies are guaranteed to be
feasible for both players. Second, note that none of the players has incentive to
deviate from (ẑ, ŵ):

• Player Z’s utility cannot be increased, since it is equal or greater than 1
and for i = 1, . . . , n such that ẑi = 0 the utility coefficients are zero.

• Analogously, player W ’s utility cannot be increased, since for i = 1, . . . , n
such that ŵi = 0 the utility coefficients are zero and the utility coefficient
of ẑn+1ŵ is also zero.

(Proof of only if). Assume that DR is a NO instance. Then, for any x in
[C,C ′] the leader is not able to guarantee a utility of 1. This means that in the
associated IPG, player Z has incentive to choose z = 0 and (z1, . . . , zn, zn+1) =
(0, . . . , 0, 1). However, this player Z’s strategy leads to a player W ’s unbounded
utility. In conclusion, there is no equilibrium. �

In the proof of Theorem 3.3, it is not used the existence of a mixed equi-
librium to the constructed IPG instance. Therefore, it implies Theorem 3.2.
The reason for presenting these two theorems is because in Theorem 3.2, the
reduction is a game where the players have finite sets of strategies, while in
Theorem 3.3, in the reduction, a player has an unbounded set of strategies.

3.2 Conditions for the existence of NE

Glicksberg [11] and Stein et al. [24] provide results on the existence and charac-
terization of equilibria for continuous and separable games (recall the definitions
in Section 2), which we will apply to IPGs. In an IPG, each player p’s strategy
set Xp is a nonempty compact metric space if Xp is bounded and nonempty.
This together with the fact that in Section 2 we assumed that each player utility
is continuous, allow us to conclude the following (explaining Figure 1):
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Lemma 3.4 Every IPG such that Xp is nonempty and bounded is a continuous
game.

Glicksberg [11] proved that every continuous game has a NE. Thus,

Theorem 3.5 Every IPG such that Xp is nonempty and bounded has a Nash
equilibrium.

Applying Stein et al. [24] results, we obtain the following:

Theorem 3.6 For any Nash equilibrium σ of a separable IPG, there is a Nash
equilibrium τ such that each player p mixes among at most kp+1 pure strategies
and Πp(σ) = Πp(τ).

Proof. Apply Theorem 2.8 of [24] to a separable IPG. �

If in an IPG each player set of strategies Xp is bounded and the utility takes
the form (4), IPG is separable. Assuming that these two conditions are satisfied
(so that Theorem 3.5 and Theorem 3.6 hold) is not too strong when modeling
real-world applications. In other words, the players’ strategies are likely to be
bounded due to limitations in the players’ resources, which guarantees that an
IPG has an equilibrium (Theorem 3.5). Moreover, interesting IPGs, as the
models that we present later in Section ??, possess quadratic utility functions
that can be written in the form (4).

Corollary 3.7 Let IPG be such that Xp is nonempty and bounded, and

Πp(xp, x−p) = cpxp +
∑
k∈M

(xk)ᵀQp
kx

p, (10)

where cp ∈ Rnp and Qp
k is an nk-by-np real matrix. Then, for any Nash equi-

librium σ there is a Nash equilibrium τ such that each player p mixes among at

most 1 + np +
np(np−1)

2 pure strategies and Πp(σ) = Πp(τ).

Proof. In order to write player p’s utility in the form (4), there must be a
function fpjp(xp) for 1, xp1, . . ., xpnp

, xp1x
p
1, xp1x

p
2, . . ., xp1x

p
np

, xp2x
p
2, . . ., xpnp

xpnp
;

thus, kp = 1 + np +
np(np−1)

2 in Theorem 3.6.

The thesis [4] presents an algorithmic approach that uses the fact that we
can restrict our investigations to finitely supported NE.

4 Examples

Next, we describe three games: the knapsack game which is the simplest purely
integer programming game that one could devise, the competitive lot-sizing game
and the kidney exchange game which have practical applicability in production
planning and health-care, respectively.

9
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4.1 Knapsack game.

One of the most simple and natural IPGs would be one with each player’s utility
function linear. Under this setting, each player p aims to solve

max
xp∈{0,1}n

n∑
i=1

vpi x
p
i +

m∑
k=1,k 6=p

n∑
i=1

cpk,ix
p
i x

k
i (11a)

s. t.
n∑

i=1

wp
i x

p
i ≤W

p. (11b)

The parameters of this game are integer (but are not required to be non-
negative). This model can describe situations where m entities aim to decide in
which of n projects to invest such that each entity budget constraint (11b) is
satisfied and the associated utilities are maximized (11a).

In the knapsack game, each player p’s set of strategies Xp is bounded, since
she has at most 2n feasible strategies. Therefore, by Corollary 3.6, it suffices to
study finitely supported equilibria. Since utilities are linear, through the proof
of Corollary 3.6, we deduce that the bound on the equilibria supports for each
player is n+ 1.

In Carvalho [4] mathematical programming tools are used to compute some
refined equilibria of this game.

4.2 Competitive lot-sizing game.

The competitive lot-sizing game is a Cournot competition played through T
periods by a set of firms (players) that produce the same good; see [4] for
details. Each player has to plan her production as in the lot-sizing problems
(see [23]) but, instead of satisfying a known demand in each period of the time
horizon, the demand depends on the total quantity of the produced good that
exists in the market. Each player p has to decide how much will be produced
in each time period t (production variable xpt ) and how much will be placed
in the market (variable qpt ). There are setup and variable (linear) production
costs, upper limit on production quantities, and a producer can build inventory
(variable hpt ) by producing in advance. In this way, we obtain the following
model for each player (producer) p:

max
yp∈{0,1}T ,xp,qp,hp

T∑
t=1

Pt(qt)q
p
t −

T∑
t=1

F p
t y

p
t −

T∑
t=1

Cp
t x

p
t −

T∑
t=1

Hp
t h

p
t (12a)

s. t. xpt + hpt−1 = hpt + qpt for t = 1, . . . , T (12b)

0 ≤ xpt ≤M
p
t y

p
t for t = 1, . . . , T (12c)

where F p
t is the setup cost, Cp

t is the variable cost, Hp
t is the inventory cost and

Mp
t is the production capacity for period t; Pt(qt) = at − bt

∑m
j=1 q

j
t is the unit

market price. The utility function (12a) is player p’s total profit; constraints
(12b) model product conservation between periods; constraints (12c) ensure
that the quantities produced are non-negative and whenever there is production
(xpt > 0), the binary variable ypt is set to 1 implying the payment of the setup
cost F p

t .
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4.3 Kidney exchange game

In order to increase the possibilities of a kidney patient being transplanted, kid-
ney exchange programs are currently legal in many countries. These programs
consist of a pool of incompatible patient-donor pairs and a set of compatible
exchange between these pairs. The problem of maximizing the number of trans-
plants in a kidney exchange program can be modeled as an integer programming
problem (e.g., see Abraham et al. [1]).

If the size of a pool of incompatible patient-donor pairs increases, it is ex-
pected that more transplantations can take place. Thus, it is relevant to study
exchange programs involving several hospitals and countries. Note, however,
that each hospital/country is a self-interested entity that aims to maximize her
number of patients receiving a kidney. Thus, these situations can be studied
from the game theory point of view. In [4, 5] an IPG modeling a kidney exchange
game is studied.

5 Conclusions and further directions

Literature in non-cooperative game theory lacks the study of games with di-
verse sets of strategies with practical interest. This paper is a first attempt
to address the computational complexity and existence of equilibria to integer
programming games.

We classified the game’s complexity in terms of existence of pure and mixed
equilibria. For both cases, it was proved that the problems are Σp

2-complete.
However, if the players’ set of strategies is bounded, the game is guaranteed to
have an equilibrium. Chen et al. [6] proved that computing an NE for a finite
game is PPAD-complete even with only two players. Thus, recalling Figure 1,
computing an NE to a separable IPG is PPAD-hard. Even when there are
equilibria, the computation of one is a PPAD-hard problem, which is likely to
be a class of hard problems. Furthermore, the PPAD class does not seem to
provide a tight classification of the computational complexity of computing an
equilibrium in IPGs. In fact, the PPAD class has its root in finite games that are
an easier class of games, in comparison with general IPGs. Note that for IPGs,
verifying if a profile of strategies is an equilibrium implies solving each player’s
best response optimization, which can be an NP-complete problem, while for
finite games this computation can be done efficiently. In this context, it would
be interesting to explore the definition of a “second level PPAD” class, that is,
a class of problems for which a solution could be verified in polynomial time if
there was access to an NP oracle.

In this paper, we also determined sufficient conditions for the existence of
equilibria on IPGs. Moreover, these theoretical results enabled us to conclude
that the support of an NE is finite. This is a key result in the correctness
of the algorithm that computes an equilibrium for an IPG presented in [4].
Future work in this context should address the question of determining all equi-
libria, computing an equilibrium satisfying a specific property (e.g., computing
the equilibrium that maximizes the social welfare, computing a non-dominated
equilibrium) and equilibria refinements or new solution concepts under a games
with multiple equilibria. From a mathematical point of view, the first two ques-
tions embody a big challenge, since there seems to be hard to extract problem
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structure to the general IPG class of games. The last question raises another
one, which is the possibility of considering different solution concepts to IPGs.
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