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Stochastic Ordering in Data Envelopment Analysis

Mostafa Davtalab-Olyaie∗, Masoud Asgharian†, and Vahid Partovi Nia‡

Abstract

Since its inception, stochastic Data Envelopment Analysis (SDEA) has found ap-

plications in vast and diverse areas of management science. Performance evaluation

of DMUs is at the heart of DEA, both stochastic and deterministic. We present

ranking methods for performance evaluation in SDEA using the notion of stochastic

ordering that takes random fluctuations of the efficiency score into account. We

apply the empirical Bayes approach for estimating the DEA efficiency score distri-

bution and use stochastic ordering to rank the DEA efficiency score distributions.

The stochastic ordering provides a notion for stochastic dominance using which one

can define admissibility as a minimal performance requirement. We demonstrate

how the proposed ranking method can be implemented and illustrate the method

using a real data set.

Keywords: Data Envelopment Analysis; Stochastic Ordering; Admissibility; Effi-

ciency Score Distribution; Empirical Bayes Approach.

1 Introduction

Efficiency evaluation of units is often a question of prime interest in many areas of

application ranging from banking, business and economy to health care. Efficiency
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analysis concerns with the performance of each unit in transforming their inputs

into quantities of outputs. The relative comparison in efficiency analysis is exam-

ined against the efficient production frontier. In fact, the efficiency is measured

based on the deviation of the position of a specific DMU from the efficient frontier.

In many real applications, the observed data are subject to uncertainty or might

have been collected over several time periods such as monthly returns of hedge

funds. Stochastic models where the inputs or outputs are considered to be random

variables, seem to be the reasonable approach to account for such uncertainties or

fluctuations when analyzing such data.

In their work, Aigner et al. (1977) and Meeusen and van den Broeck (1977)

suggested a parametric approach known as stochastic frontier approach for efficiency

analysis of DMUs. In this approach, a known functional form is postulated for the

production function beforehand. By taking the statistical noise into account, the

stochastic frontier approach allows the separation of deviation into inefficiency and

noise terms. The reader can consulate Kumbhakar and Lovell (2000) for a review on

theoretical and practical aspects of efficiency analysis using the stochastic frontier

approach.

The nonparametric approach, known as the Data Envelopment Analysis (DEA),

introduced by Charnes et al. (1978, 1979), and extended by Banker et al. (1984),

offers a method widely used for estimating the efficiency of a set of multi-input

multi-output DMUs. Following the criticisms of DEA raised by Schmidt (1985), and

recently echoed further by Greene (1993), for the lack of solid statistical foundation,

two different approaches were introduced in the literature to fill the gap:

–Replacing production technology by a random production technology.

A common approach to handle the uncertainty is via chance constrained models

where the random Production Possibility Set (PPS) is replaced by an average PPS

where the average is in the sense of Vorob’ev (1984). There has been a surge of

articles on chance constrained models over the past two decades. Some of the early

work on this subject were carried out by Land et al. (1993), Olesen and Petersen
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(1995), and Cooper et al. (1998), among others. A recent review of this subject

can be found in Cooper et al. (2011). The efficiency measured with respect to the

average PPS is a fixed value. As discussed by Kao and Liu (2009) the inherent

random fluctuation of the efficiency score, caused by the random nature of the input

and output variables, cannot be captured using the chance constrained models.

–Specifying a statistical model and a sampling process.

The methodology developed using this approach can be divided into two categories:

1. Considering measurement error and noise, 2. Ignoring both measurement error

and noise. The former assumes that all observations in the sampling process belong

to PPS, and so there is no noise in the data generating process (DGP). Therefore the

distance from the frontier just indicates the inefficiency term. In his work, Banker

(1993) established the first building block of a solid statistical foundation for DEA by

showing that the DEA estimators are essentially the maximum likelihood estimators

under certain conditions. Gijbels et al. (1999) provide the asymptotic distribution

of DEA estimator in the case of the single input and output. Kneip et al. (1998)

generalize this result to the multiple inputs and outputs case. Simar and Wilson

(1998) and Simar and Wilson (2000) suggest bootstrap techniques for evaluating

the sampling variability of the efficiency estimator. Kneip et al. (2008) provide a

full theory on the asymptotic properties of DEA estimator and a double-smooth

bootstrap technique. Kneip et al. (2011) presents a simplified and consistent version

of the double-smooth bootstrap method developed by Kneip et al. (2008).

In the latter category, it is assumed that there is noise in the DGP, and hence

some observations may lie outside of PPS. In this case, the distance from the fron-

tier has two components, noise and inefficiency. Hall and Simar (2002) show a fully

nonparametric model with noise and inefficiency is not identifiable. They provide a

method that allows for introduction of noise into the model. Simar (2007) extends

these ideas to multivariate setting. A recent review of the subject can be found in

Simar and Wilson (2015).

In the first category, Kao and Liu (2009) discuss how to obtain the DEA effi-
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ciency distributions of each DMU via a simulation technique, and used the mean of

these distributions to rank the DMUs. Lamb and Tee (2012) have derived confidence

intervals for the DEA efficiency distributions and developed a nonparametric boot-

strap technique to rank DMUs. These ranking methods are all based on a summary

of the DEA efficiency distributions.

In this manuscript we propose a partial ranking method using the notion of

stochastic ordering that encompasses all the information of the efficiency distribu-

tions (with respect to the production frontier). This approach leads to the intro-

duction of a minimal requirement that we call admissibility, see Definition 2. Using

the notion of admissibility one can categorize DMUs into two categories, namely

admissible and inadmissible DMUs.

Kneip et al. (1998) have shown that the DEA estimator converges to the efficiency

score for each DMU at a rate that depends on the smoothness of the production

frontier and on the number of inputs and outputs. One can therefore use the DEA

efficiency to implement our ranking method. In other words, one can apply our

stochastic ranking method on the DEA efficiency distributions of DMUs. For such

implementation one needs to study structure of the distribution of the DEA efficiency

estimator. As mentioned by Simar and Wilson (2000), Simar and Wilson (2007) and

Kao and Liu (2009) the DEA efficiency estimator has a mixture structure with a

point mass at 1, i.e., the density function can be returns as pδ1 + (1 − p)g where

δ1 is Dirc delta function at point 1, g is a continous density on (0, 1) and 0 <

p < 1. We formalize this result in Theorem 2, showing that the DEA efficiency

distribution does not have a continuous distribution even if both the random input

and output variables are continuous. Using the point mass decomposition of the

DEA efficiency distribution (Theorem 2), we then provide some conditions to check

stochastic ranking and a sufficient condition for admissibility.

Implementation of our method requires estimation of the DEA efficiency distribu-

tions of DMUs. We simulate the input and output data for each DMU and measure

the efficiency score of each DMU using the CCR model for each set of simulated

data. This approach produces a sample from the DEA efficiency distribution and
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then, using standard statistical methods, we estimate the DEA efficiency distribu-

tions of DMUs. To this end, we use the Bayesian approach (the Markov chain Monte

Carlo (MCMC) method (Robert and Casella, 2004)). The Bayesian approach has

also attracted the attention of some authors (Tsionas and Papadakis, 2010). Tsionas

and Papadakis (2010) have proposed a subjective Bayesian paradigm where a known

prior distribution is imposed on the parameters of data distribution. We take a less

subjective view in our Bayesian approach by using the empirical Bayes, choosing a

data driven prior from a class of priors. This way we maintain both prior robustness

and objectivity in our data analysis. As is well known in statistical literature, the

empirical Bayes approach produces a statistically more efficient analysis (Carlin and

Louis, 2008).

The rest of this manuscript is organized as follows. The notion of stochastic

ordering and admissibility are presented in Section 2 where we show that stochastic

ordering implies mean and median ordering, among several others. Implementation

of stochastic ranking is discussed in Section 3. We start by exploring the structure

of the DEA efficiency distribution, showing that it has a mixture structure with a

point mass at 1. Using this mixture structure we establish some further results on

stochastic ordering using the DEA efficiency distribution and a simple sufficient con-

dition for admissibility in terms of the point-mass magnitude. The Empirical Bayes

approach for estimating the DEA efficiency distribution is discussed in Section 3.2.

We illustrate our methods using a set of real data in Section 4 where we use the

Hasse diagram and graphical tools to visualize the result of our stochastic ranking.

The last section, Section 5, includes some closing remarks. Proofs of the theorems

are in Appendix I while the details of model calculation for our data analysis are

collected in Appendix II.

2 Ranking Using Stochastic ordering

We first recall some basic concepts in efficiency analysis of DMUs. Consider a set

of n DMUs, each using m inputs, x ∈ Rm
+ , to produce s outputs, y ∈ Rs

+. The
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Production Possibility Set (PPS), denoted by Ψ, is the set of all feasible activities,

Ψ = {z = (x, y) | the output y can be produced with the input x}.

The frontier of Ψ, denoted by ∂Ψ, is called the production function. The set Ψ can

be described by its x or y sections as follows,

X(y) = {x ∈ Rm
+ | (x, y) ∈ Ψ} Y (x) = {y ∈ Rs

+ | (x, y) ∈ Ψ}. (1)

The Farrell efficiency boundaries are

∂X(y) = {x | x ∈ X(y), θx /∈ X(y) ∀0 < θ < 1} (2)

∂Y (x) = {y | y ∈ Y (x), φy /∈ Y (x) ∀φ > 1}, (3)

using which Farrell input and output efficiency measures can be defined. For DMUj,

j = 1, . . . , n,

θj = inf{θ | θxj ∈ X(yj)} (4)

φj = sup{φ | φyj ∈ Y (xj)}. (5)

When inputs or outputs of DMUs are random variables, the θj = θ(xj, yj) will

also be a random variable. To distinguish between random variables and their

observed values, we use capital letters for random variables, while retaining small

letters for the observed values.

Suppose Θj = Θ(xj, yj) is the efficiency of DMUj. Let FΘj(·) be the cumula-

tive distribution function (cdf) of Θj. One may use different measures of central

tendency, such as mean, median or quantiles of FΘj(·), for j = 1, . . . , n to rank

DMUs. These ranking methods may be called, mean, median and quantile ranking.

While the ranking methods are all based on a summary of FΘj(·), borrowing ideas

from reliability theory and decision theory, one can consider the so-called stochastic

ordering using the whole distribution of Θj, i.e., FΘj(·), which encompasses all the
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information about Θj.

Consider two variables Θj and Θj′ as the efficiency variables of two stochastic

DMUs, namely DMUj and DMUj′ . It is reasonable to prefer DMUj over DMUj′ if

Θj > Θj′ is more likely to happen than Θj′ > Θj. Suppose that SΘj(·) = 1− FΘj(·)

and SΘj′
(·) = 1− FΘj′

(·) are survival functions of Θj and Θj′ . We have

∫ ∞
−∞
{SΘj(θ)− SΘj′

(θ)}dFΘj(θ) =

∫ ∞
−∞

SΘj(θ)fΘj(θ)dθ −
∫ ∞
−∞

SΘj′
(θ)fΘj(θ)dθ

= 1/2S2
Θj

(θ) |+∞−∞ −
∫ ∞
−∞

P (Θj′ > Θj | Θj = θ)fΘj(θ)dθ

= 1/2− P (Θj′ > Θj),

which implies

P (Θj > Θj′) = 1/2 +

∫ ∞
−∞
{SΘj(θ)− SΘj′

(θ)}dFΘj(θ). (6)

For practical purposes one needs to estimate P (Θj′ > Θj). Using (6), we can readily

estimate p(Θj′ > Θj) if we have an estimate of the survival functions of Θj and Θj′ .

Definition 1. We say DMUj is stochastically more efficient than DMUj′ on ∆, denoted

by Θj �∆ Θj′, if

Sθj(θ) ≥ Sθj′(θ), for all θ ∈ ∆.

In particular, if ∆ = [0, 1], we write Θj � Θj′, and say DMUj′ is inadmissible.

We note that using equation (6), P (Θj > Θj′) > 1/2 if Θj � Θj′ .

Figure 1 illustrates the notion of stochastic ordering. It depicts the probability

density functions (pdf), f(θ), and the survival functions, S(θ), of the efficiency of

two DMUs. We notice that while the pdfs are overlapping (left panel), the survival

function of DMU1, the solid curve, is always below the survival function of DMU2,

the dashed curve. The survival function of DMU1 is dominated by the survival

function of DMU2. In other words, for any given efficiency level ξ, the efficiency of

DMU2 has a greater chance to be above ξ than the efficiency of DMU1. That is, the
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Figure 1: Stochastic ordering of efficiency distributions of DMU1 (solid curve) versus DMU2

(dashed curve). Comparison densities, left panel, and survival function, right panel (see
Definition 1).

performance of DMU2 is always superior to that of DMU1 if superiority is measured

by likeliness of being above an efficiency threshold.

Let the mean of the random variable Θj be denoted by E(Θj) and its β-quantile

by Ẽβ(Θj), where 0 < β < 1. Each of these quantities can be used for a total

(linear) ordering of DMUs. For instance, mean ranking can be performed based on

E(Θj) and β-quantile ranking based on Ẽβ(Θj). As a special case using Ẽβ=0.5(Θj),

one can order DMUs based on the median of their efficiency distributions. The

following result, whose proof follows from Definition 1, shows that ranking using

stochastic ordering implies mean, median, quantile, and p-ranking. The converse is

not necessarily true.

Theorem 1. If Θj � Θj′ then E(Θj) > E(Θj′), and Ẽβ(Θj) > Ẽβ(Θj′) for any 0 < β < 1.

Remark 1. A simple partial reverse connection between ranking based on quantiles and

stochastic ordering immediately follows. If for all 0 < β < 1, Ẽβ(Θj) > Ẽβ(Θ′j), then

Θj � Θj′. This observation can be useful when a sample from both Θj and Θj
′ is available.

The notion of inadmissibility was introduced in Definition 1. To further inves-

tigate and distinguish inadmissible DMUs from the admissible ones in Ψ, we need

the following definition. Let Γ = {ΘZ | Z ∈ Ψ} where ΘZ is the efficiency variable

of Z and F = {SΘ | Θ ∈ Γ}.
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Definition 2. An S ∈ F is called admissible with respect to G ⊆ F , if there is no S∗ ∈ G

such that S∗(θ) ≥ S(θ) for all θ ∈ [0, 1], and the inequality is strict at least for one value

of θ.

3 Implementing ranking methods

3.1 DEA Efficiency Distribution

To implement the ideas developed in the previous section, one can measure efficiency

using DEA.

Under the standard assumption of inclusion of observations and return to scale,

n observations construct the unique non-empty PPS as follows:

ΨDEA =

(x, y) | xi ≥
n∑
j=1

λjxij , ∀i; yr ≤
n∑
j=1

λjyrj ,∀r;L ≤
n∑
j=1

λj ≤ U ;λj ≥ 0, j = 1, . . . , n

 ,

(7)

where L(0 ≤ L ≤ 1) and U(U ≥ 0) are lower and upper bounds for the sum of

λj . Setting L = 0 and U = ∞, constant return to scale assumption, gives ΨCCR

(Charnes et al., 1978); while setting L = U = 1, variable return to scale assumption,

gives ΨBCC (Banker et al., 1984). The frontier of ΨDEA, ∂ΨDEA, provides an estimate

of ∂Ψ, the production function. Should we take ΨCCR, for instance, we can evaluate

the relative efficiency by solving the CCR model

θ̃o = min θ (8)

s.t.
n∑
j=1

λjxij ≤ θxio, i = 1, . . . ,m

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

If θ̃o = 1, then DMUo is CCR-efficient. We confine our attention to the CCR model

to simplify our discussion in the sequel, though our approach is equally applicable

to other conventional DEA models.
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Note that the DEA efficiency θ̃ is an estimate of the true efficiency θ. When

the inputs or outputs are random variables, then θ̃ is going to be a random variable

itself too. It is clear that θ̃ depends on n, the number of DMUs. We therefore

use Θ̃n
j to denote the random variable obtained using DEA which is an estimate of

Θj. To have an idea about the relationship between Θj and Θ̃n
j , consider the case

where there is only one output. In this case, Θ̃n
j = εnj Θj where 0 ≤ εnj ≤ 1. Having

assumed some regularity conditions, Kneip et al (1998) have shown that εnj → 1 in

probability as n→∞ at a rate that depends on the number of inputs and outputs,

and the smoothness of the production function. For the ease of presentation we drop

the superscript n and use Θ̃j in the sequel whenever there is no danger of confusion.

The following result shows that there is at least one DMU whose Θ̃ has a mixture

structure with a point mass at 1 irrespective of the input and output variables being

discrete or continuous. This point has also been implicitly mentioned by Simar and

Wilson (2007) and Kao and Liu (2009). This structure of DEA efficiency distribution

can be used to introduce a further simple ranking method using the point mass at

1. DMUs can be ranked according to the point mass of their DEA efficiencies at

1, the greater the point mass of a DMU at 1, the higher the ranking of the DMU.

We call this ranking method p-ranking. Theorem 2 can also be used to establish a

simple sufficient condition for admissibility. The proof of the theorem can be found

in Appendix I.

Theorem 2. Let Θ̃j be the efficiency score of Zj = (Xj, Yj), for j = 1, . . . , n. Then there

is at least one Θ̃j with a positive mass at 1.

Let FΘ̃j
be the cumulative distribution function of Θ̃j, which is an estimate of

FΘj . Using Theorem 2 we have the following decomposition,

SΘ̃j
(θ) = pj + (1− pj)S<Θ̃j(θ), (9)

where pj = P (Θ̃j = 1), and SΘ̃j
(θ) = 1 − FΘ̃j

(θ). Similarly we define S<
Θ̃j

(θ) =

1−F<
Θ̃j

(θ), where F<
Θ̃j

is the cdf of the inefficiency component of the DEA efficiency

score distribution. In the other words, F<
Θ̃j

is the cdf of Θ̃j when Θ̃j < 1.

10

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-002



The p-ranking method is perhaps the simplest method of ranking among the

methods suggested above. Theorem 1 shows that ranking DMUs using stochastic

ordering implies p-ranking. The following result establishes a partial reverse.

Theorem 3. Let Υ = [υ, 1], υ ∈ [0, 1) and pj ≥ pj′. Then Θ̃j �Υ Θ̃j′, if any of the

following three conditions holds

1. infθ∈Υ

{
S<

Θ̃j
(θ)− S<

Θ̃j′
(θ)
}
> 0,

2. infθ∈{θ|S<
Θ̃j′

(θ)<1}∩Υ

{
S<

Θ̃j
(θ)−S<

Θ̃j′
(θ)

1−S<
Θ̃j′

(θ)

}
>

pj′−pj
1−pj ,

3. infθ∈{θ|S<
Θ̃j

(θ)<1}∩Υ

{
S<

Θ̃j
(θ)−S<

Θ̃j′
(θ)

1−S<
Θ̃j

(θ)

}
>

pj′−pj
1−pj′

.

See Appendix I for the proof.

The following corollary follows immediately.

Corollary 1. If S<
Θ̃j

(θ) = S<
Θ̃j′

(θ) for all θ ∈ Υ, then Θ̃j �Υ Θ̃j′ if and only if pj > pj′.

Direct verification of admissibility using Definition 2 is cumbersome. Using the

mass point decomposition of the efficiency distribution, equation (9), we can present

a simple sufficient condition for admissibility.

Theorem 4. If po > 3−
√

6, then DMUo is admissible.

See Appendix I for the proof.

3.2 Estimating DEA Efficiency Distribution

Implementing the above ranking methods requires estimation of the DEA efficiency

score distribution. Suppose Zj ∼ fZj(. | νj) 1 where the pdf fZj is known up to

1The common underlying assumption of Kneip et al. (1998) and Banker (1993) is that Zjs are inde-
pendent and identically distributed. While independence assumption can be retained for the purpose of
estimating the efficiency distribution, should we assume common distribution for Zjs, distributions of Θ̃j

and Θj will be independent of j, i.e. all DMUs have the same distribution. We therefore assume that
Zj ∼ fj are independent, but not identically distributed. Relaxing the assumption of common underlying

distribution does not come without a price if we want to retain consistency of Θ̃ for estimating Θ. All
fj = fZj

should fulfill Assumption 4 of Kneip et al. (1998). One needs further assume that the number
of DMUs, say n, as well as the size of the samples taken from each DMU, say T , grow to infinity to
consistently estimate the production function (Lamb and Tee (2012)). In the setting of panel data, this
amounts to assuming the data matrix grows in both dimensions.
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finitely many unknown parameters νj, j = 1, . . . , n. To generate a sample from the

DEA efficiency score distribution of DMUj, one needs a sample from each DMUj,

i.e. a sample from ΨDEA. To this end we take an empirical Bayes approach.

Motivated by our example in Section 4, we consider a DEA analysis in situations

where observations on DMUj, for j = 1, . . . , n can be made at several discrete points

in time, say t = 1, . . . , T . Denote DMUj at time t by Zjt = (Xjt, Yjt)
′ for j = 1, ..., n,

where Xjt = (X1jt, . . . , Xmjt)
′ and Yjt = (Y1jt, . . . , Ysjt)

′ are respectively the input

and output of DMUj where we use X
′

for the transpose of X. We therefore have

a PPS, ΨDEA
t at each time t. We further denote the whole data vector by z with

entries zijt, where

z = [zijt], i = 1, . . . ,m+ s,

j = 1, . . . , n,

t = 1, . . . , T,

zjt = [zijt], i = 1, . . . ,m+ s, is the observed value of the random vector Zjt, and the

data vector of variable i of DMUj over time t is denoted by zij = [zijt], t = 1, . . . , T.

3.2.1 Estimation Using Empirical Bayes

Bayesian data analysis involves the assignment of two distributions, the likelihood

function being the multivariate distribution of observations given a parameter vector

ϑo, say f(zo1, . . . , zoT | ϑo) for DMUo and the prior distribution of ϑo which itself

is parameterized by hyper-parameter ϕ, say f(ϑo | ϕ). We consider a class of

prior distributions such that
∫∞
−∞ f(ϑo | ϕ)dϑo = 1. We take an empirical Bayes

approach, and devise a numerical approximation using sampling from the posterior

predictive distribution of data. Having estimated the hyper-parameters from the

marginal likelihood (prior predictive distribution), a set of DMUs similar to the

one observed is simulated and the efficiency is obtained on the simulated data to

produce observations from the efficiency. These observations from the efficiency are

used to estimate the efficiency distribution. Next we explain how this approach can
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be implemented.

Applying the empirical Bayes method, we estimate ϕ from data by maximizing

the prior predictive

f(z | ϕ) =
n∏
j=1

∫ ∞
−∞

. . .

∫ ∞
−∞

f(zj1, . . . , zjt, . . . , zjT | ϑj)f(ϑj | ϕ)dϑj. (10)

The empirical Bayes estimate of ϕ is

ϕmax = argmaxϕ log f(z | ϕ). (11)

We can generate a sample from the distribution of zo, say z∗o by sampling from the

posterior predictive distribution

f(z∗o | zo1, . . . zoT , ϕmax) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(z∗o | ϑo)f(ϑo | zo1, . . . , zoT , ϕmax)dϑo, (12)

where

f(ϑo | zo1, . . . , zoT , ϕmax) =
f(zo1, . . . , zoT | ϑo)f(ϑo | ϕmax)

f(zo1, . . . , zoT | ϕmax)

is the posterior distribution of ϑo.

If direct sampling from the posterior predictive distribution is complicated, one

may use an indirect sampling through posterior samples. In other words, sample

first from the posterior distribution f(ϑo | zo1, . . . , zoT , ϕmax), say ϑpost
o and then

generate a sample from z∗o by sampling from f(zo | ϑpost
o ).

To generate a sample from the efficiency of DMUo, say θ∗o, one needs to have

a sample from the PPS, say ΨCCR∗, which itself requires a predictive sample of all

DMUs. Having produced ΨCCR∗, a sample from the efficiency distribution of each

DMU (including DMUo) can be obtained by solving the CCR model on ΨCCR∗. We

repeat this procedure B times, for B large enough2, to find B samples from the

efficiency distribution of each DMU.

The estimate of po, say p̂o, and the non-parametric maximum likelihood estimate

2Similar to what is discussed in Kao and Liu (2009), one can investigate how many replications are
proper to produce reliable results for his real data set. B = 10000 is typical.
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of S<
Θ̃o

(t) based on a sample of size B, θ∗o1, . . . , θ
∗
oB, for any 0 < t < 1, is given by

p̂o =
1

B

B∑
i=1

ε{i|θoi=1}(i), Ŝ
<
Θ̃oB

(t) =
1

B

B∑
i=1

ε{i|θoi>t}(i),

where εA(x) = 1 if x ∈ A, and equal to zero otherwise. 3

4 Data example

We illustrate the methodologies developed in the previous sections using the airline

data of Greene (2011)4. There are 6 airlines, each with three inputs (x1 = total cost,

x2 = fuel price, and x3 = load factor) and one output (y = revenue passenger miles).

These information were collected on yearly basis for each airline over a period of 15

years. The left panel of Figure 2 depicts the trend of the output y (revenue passenger

miles) over 15 years for each airline. The right panel of Figure 2 shows the output

y versus x3 (the load factor, the average capacity utilization of the fleet). Using

Figure 2 one may speculate that Airline 1 and 2 have better performance than the

other four airlines. This speculation is not, however, based on all the inputs and

as such cannot be conclusive. We use the proposed ranking methods to analyse the

performance of these six airlines in this section.

To simplify the computational aspects of our illustration, we first rescale the

data so that each variable (input or output) has unit variance and we use the CCR

model. Note that the CCR model is scale invariant. Furthermore, in the sequel we

assume that the data are independent through time. Let

zjt | µj,Σj
iid∼ N(m+s)(µj,Σj),

3One can show that

||Ŝ<
Θ̃oB
− S<

Θ̃o
||∞ = sup

x∈[0,1]

|Ŝ<
Θ̃oB

(x)− S<
Θ̃o

(x)| = O

(√
log log(B)

B

)
, almost surely.

When the input and output variables are continuous, the density of the DEA efficiency score can be
estimated using the kernel, or other, density estimation method if visualization of the density is required.

4The data is available online through
http://people.stern.nyu.edu/wgreene/Text/tables/TableF7-1.txt.
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Figure 2: Depiction of the trend of output over 15 years for each DMUs of DMU1, left
panel, and output versus the third input, right panel.

and consider the conjugate prior family,

µj | τ, κ,Σj
iid∼ N(m+s)(ν, κΣj),

Σj
iid∼ W−1(a,Ψ), (13)

whereNk(µ,Σ) denotes the k-variate normal distribution with mean µ and variance-

covariance matrix Σ, W−1(a,Ψ) denotes the inverse Wishart distribution with a

degrees of freedom and scaling matrix Ψ. The scalar κ is an over-dispersion param-

eter. This model produces the following marginal distribution for a diagonal matrix

Σj, ν = τ1, where 1 is a vector whose components are all equal 1, and Ψ = b
2
I,

f(z | ϕ) =
n∏
j=1

m+s∏
i=1

b
a
2 Γ
(
a+T

2

)
π
T
2 |V| 12 Γ

(
a
2

)
{b+ (zij − τ1)′V−1(zij − τ1)}

a+T
2

, (14)

where each univariate random variable zijt is marginally Student-t distributed; see

Appendix II for details.

As discussed above, we take an empirical Bayes approach, that is we estimate the

hyper-parameters by maximizing the marginal distribution of observations given the

hyper-parameters.The estimated hyper-parameters and their asymptotic standard

errors are as follows: τ = 0.755(0.381), κ = 34.510(131.869), a = 1.056(0.074),

b = 0.100(0.002) (see Appendix II for details). We simulated B = 10000 data sets

with each data point drawn from the predictive density and computed the efficiency
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for each data set. This gives 10000 efficiency values for each DMU. The inefficiency

component in (9), S̃<(θ), has a pdf g(θ).

The generated efficiency samples can then be used to estimate the parameters pj and

the density gj(.) for each DMUj, j = 1, . . . , 6. The codes are implemented in the statistical

software R (R Development Core Team, 2005) using the package Benchmarking (Bogetoft

and Otto, 2010). Ranking DMUs with different methods and the estimation of pj are

reported in Table 1. The estimate of gj(.) for each DMUj, j = 1, . . . , 6 is depicted in

Figure 4. In the upper panel of Figure 4 the continuous parts are almost uniform. In the

lower panel they are concentrated around 0.20. Therefore DMUs of the upper panel are

efficient with probability po and their efficiency score is anywhere in (0, 1) with probability

1 − po, while in the lower panel a DMU is efficient with probability po and has efficiency

score close to 0.2 with probability 1− po.

Our finding in Table 1 indicates that DMU1 has the best performance according to all

the ranking methods introduced in the previous sections. Ranking DMUs using stochastic

ordering is feasible first by p-ranking and then by checking the conditions of Theorem 3.

The results of the analysis is summarized in Table 1. DMU1 and DMU2 are stochastically

unordered, but both are superior to DMU3, DMU4, DMU5 and DMU6. DMU3 performs

better than DMU4, DMU5 and DMU6. DMU4 is better than DMU5, while DMU4 with

DMU6, and DMU5 with DMU6 are stochastically unordered. We can depict this partial

ranking of DMUs using a Hasse diagram. A Hasse diagram shows an arrow from k to j

if Θ̃k � Θ̃j, and there is no i such that Θ̃k � Θ̃i and Θ̃i � Θ̃j , see Rutherford (1965).

Given that ranking using stochastic ordering provides the most comprehensive ranking

method, the arrows in the Hasse diagram in Figure 3 show which dominance in DMUs

cannot be changed through different specifications of ranking using different measures of

central tendencies. It is, for instance, evident that using any measure of central tendency,

DMU1 is superior to DMU3, but applying different central tendency statistics may reverse

the ranking of DMU1 with DMU2.

The results reported in Table 1 indicate that DMU3, DMU4, DMU5 and DMU6 are

inadmissible, while using Theorem 4, DMU1 and DMU2 are admissible in ΨDEA.
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Figure 3: Hasse diagram of DMU domination, visualizing the result of ranking using
stochastic ordering in Table 1.
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Figure 4: Estimation of gj(.), the probability density function of S<
Θ̃j

, for each DMUj, j =

1, . . . , 6 using kernel density estimation.
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DMU
1 2 3 4 5 6

mean 0.88 0.81 0.68 0.51 0.48 0.45
median 1.00 1.00 0.81 0.44 0.37 0.34
p̂j 0.74 0.63 0.44 0.25 0.23 0.20

stochastically {3, 4, 5, 6} {3, 4, 5, 6} {4, 5, 6} {5} {} {}
ordered units

Table 1: Ranking DMUs using different distribution summaries, mean-ranking, median-
ranking, p-ranking, ranking using stochastic ordering, and ranking using interactive order-
ing.

5 Closing Remarks

1. We took an empirical Bayes approach to estimate the DEA efficiency score distri-

bution. One could also take a frequentist approach by estimating the parameters

using maximum likelihood, or other, approach and then use a parametric bootstrap

to generate data and produce samples from the DEA efficiency score distribution.

2. A more robust approach is possible when T is large. If information is gathered on

each DMU over a long period, i.e. T is large, one can use a nonparametric approach

to estimate the DEA efficiency score distribution for each DMU using the empirical

cumulative distribution function.

3. We assumed that information collected on each DMU through time (t = 1, 2, . . . , T )

are independent. This assumption can be relaxed. One can, for instance, replace

this independence assumption by a Markov model. Such modelling, however, lead to

more computational cost.

4. To facilitate calculation of our example in section 4 , we considered a conjugate prior

family. Our approach can, however, be easily implemented for any prior using MCMC

methods implemented in statistical packages such as R. One can therefore easily do

a sensitivity analysis with respect to changes in the prior.

5. An R package that implements different ranking methods is under preparation, and

will be published on R CRAN in the near future.
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Appendix I

Proof of theorems

Proof of Theorem 2: We first note that Θ̃ is a random variable defined on the probability

space (Ω,=, P ), where = is a σ-algebra of the subsets of Ω and P is the probability measure

on =. We further note that for any ω ∈ Ω we have a ΨCCR. Let Ai = {ω ∈ Ω : Θ̃i(ω) = 1}

for i = 1, . . . , n. Since in any ΨCCR there is at least one efficient DMU, we have Ω =
n⋃
i=1

Ai.

Now suppose that there is no mass point at 1 for any DMU, i.e., pi = P (ω : Θ̃i(ω) = 1) =

P (Ai) = 0 for i = 1, . . . , n. Then using Boole’s inequality, P (
n⋃
i=1

Ai) ≤
n∑
i=1

P (Ai) = 0. On

the other hand, P (
n⋃
i=1

Ai) = P (Ω) = 1. This is a contradiction. �

Proof of Theorem 3: Suppose pj > pj′ and Condition 1 is satisfied; i.e., S<
Θ̃j

(θ) > S<
Θ̃j′

(θ),

∀θ ∈ Υ. Then

(1− pj′)
(

1− S<
Θ̃j′

(θ)
)
− (1− pj)

(
1− S<

Θ̃j
(θ)
)
> 0,

and hence

pj + (1− pj)S<Θ̃j(θ) > pj′ + (1− pj′)S<Θ̃j′ (θ).

Therefore SΘ̃j
(θ) > SΘ̃j′

(θ), for all θ ∈ Υ; which implies Θ̃j �Υ Θ̃j′ .

Suppose Condition 2 holds, that is, ∀θ ∈ {θ | S<
Θ̃j′

(θ) < 1} ∩Υ, and

inf
θ∈Υ

{
S<

Θ̃j
(θ)− S<

Θ̃j′
(θ)

1− S<
Θ̃j′

(θ)

}
>
pj′ − pj
1− pj

.

This is equivalent to
S<

Θ̃j
(θ)− S<

Θ̃j′
(θ)

1− S<
Θ̃j′

(θ)
>
pj′ − pj
1− pj

,∀θ ∈ Υ,

hence

{
1− S<

Θ̃j′
(θ)
}
−
{

1− S<
Θ̃j

(θ)
}
−

{
1− S<

Θ̃j′
(θ)
}

1− pj
{(1− pj)− (1− pj′)} > 0,
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which, in turn, implies

(1− pj′)
{

1− S<
Θ̃j′

(θ)
}
− (1− pj)

{
1− S<

Θ̃j
(θ)
}
> 0.

Thus pj + (1 − pj)S<Θ̃j(θ) > pj′ + (1 − pj′)S<Θ̃j′ (θ), and therefore SΘ̃j
(θ) > SΘ̃j′

(θ),∀θ ∈ Υ;

yielding Θ̃j �Υ Θ̃j′ .

The proof for Condition 3 is similar. �

To prove Theorem 4, we need to establish the following lemma first.

Lemma 1. If DMUo is inadmissible, then there exists λ̃ =
(
λ̃1, ..., λ̃n

)
≥ 0 such that

P (Θ̃λ̃ ≥ Θ̃o) ≥ 2po − p2
o+1
2

, where Θ̃λ̃ indicates the efficiency of the virtual stochastic DMU

(
∑n

j=1 λ̃jXj,
∑n

j=1 λ̃jYj).

Proof. Since DMUo is inadmissible, then there exists λ̃ =
(
λ̃1, ..., λ̃n

)
≥ 0 such that

SΘ̃λ̃
(θ) ≥ SΘ̃o

(θ), for all θ ∈ [0, 1], (15)

where SΘ̃λ̃
(·) is the survival function of the efficiency of the virtual stochastic DMU that

use the input
∑n

j=1 λ̃jXj to produce the output
∑n

j=1 λ̃jYj. For any λ ≥ 0 define Ωλ ={
ω ∈ Ω | Θ̃λ(ω) > Θ̃o(ω)

}
. We have

P (Ωλ̃) = P (Θ̃λ̃ ≥ Θ̃o)

= P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = 1)P (Θ̃o = 1) + P (Θ̃λ̃ ≥ Θ̃o | Θ̃o < 1)P (Θ̃o < 1)

= P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = 1)po + P (Θ̃λ̃ ≥ Θ̃o | Θ̃o < 1)(1− po),

where

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o < 1) =

∫ 1

0

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = θ, Θ̃o < 1)dF (θ | Θ̃o < 1)

=

∫ 1

0

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = θ, Θ̃o < 1)
(1− po)
P (Θ̃o < 1)

dF<
Θ̃o

(θ)

=

∫ 1

0

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = θ, Θ̃o < 1)dF<
Θ̃o

(θ).
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We note that DMUo is not on the frontier for any ω ∈
⋃
λ

Ωλ. Thus given ω ∈
⋃
λ

Ωλ, the

efficiency of DMUo cannot affect the efficiency of other DMUs. Thus Θ̃λ̃ is independent of

Θ̃o given ω ∈
⋃
λ Ωλ. We therefore have

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o < 1) =
∫ 1

0
P (Θ̃λ̃ ≥ θ)dF<

Θ̃o
(θ) =

∫ 1

0
SΘ̃λ̃

(θ)dF<
Θ̃o

(θ).

Using (15),

P (Θ̃λ̃ ≥ Θ̃o | Θ̃o < 1) ≥
∫ 1

0
SΘ̃o

(θ)dF<
Θ̃o

(θ).

On the other hand, we know

SΘ̃o
(θ) = po + (1− po)S<Θ̃0

(θ), ∀θ ∈ [0, 1]; and hence∫ 1

0
SΘ̃o

(θ)dF<
Θ̃o

(θ) = po + (1− po)
∫ 1

0
S<

Θ̃o
(θ)dF<

Θ̃o
(θ) = po + (1−po)

2
= 1+po

2
. Then

P (Ωλ̃) ≥ P (Θ̃λ̃ ≥ Θ̃o | Θ̃o = 1)P (Θ̃o = 1) +
(1− p2

o)

2

≥ P (Θ̃λ̃ = 1, Θ̃o = 1) +
(1− p2

o)

2

= pλ̃ + po − P (Θ̃λ̃ = 1 or Θ̃o = 1) +
(1− p2

o)

2

≥ 2po − P (Θ̃λ̃ = 1 or Θ̃o = 1) +
(1− p2

o)

2

≥ 2po −
p2
o + 1

2
.�

Proof of Theorem 4: Suppose DMUo is inadmissible, then using Lemma 1, there exists

λ̃ =
(
λ̃1, ..., λ̃n

)
such that P (Ωλ̃) = P (Θ̃λ̃ ≥ Θ̃o) ≥ 2po − p2

o+1
2
.

On the other hand, {ω ∈ Ω | Θ̃o(ω) = 1} = Ω−
⋃
λ Ωλ. Thus

po = P (Θ̃o = 1) = 1− P (
⋃
λ

Ωλ)

≤ 1− P (Ωλ̃)

≤ 1−
(

2po −
p2
o + 1

2

)
= −2po +

p2
o + 3

2
.

Hence, if DMUo is inadmissible, then −3po + p2
o+3
2
≥ 0. This inequality is fulfilled if
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po ∈ [0, 3−
√

6]. This is a contradiction. �

Appendix II

Model calculations

posterior predictive

Considering a diagonal variance-covariance matrix Σj and Ψ = b
2
I, the hierarchical model

(13) simplifies to

zijt | µij, σ2
ij

iid∼ N (µij, σ
2
ij),

µij | τ, κ
iid∼ N (τ, κσ2

ij),

σ2
ij

iid∼ Γ−1(
a

2
,
b

2
), (16)

where N (µ, σ2) denotes the univariate normal distribution with mean µ and variance σ2,

and Γ−1(a, b) denotes the inverse gamma distribution with the shape and scale parameters

a and b.

Given the independence between the DMUs and within the components of each DMU,

we have

f(z | ϕ) =
n∏
j=1

m+s∏
i=1

f(zij | ϕ),

where each zij is a vector of length T and

f(zij | ϕ) =

∫ ∞
0

f(zij | σ2
ij)f(σ2

ij)dσ
2
ij.
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We first calculate

f(zij | σ2
ij) =

∫ ∞
−∞

f(zij | µij, σ2
ij)dµij

=

∫ ∞
−∞

T∏
t=1

f(zijt | µij, σ2
ij)f(µij | σ2

ij)dµij

= (2πσ2
ij)
−T

2 (2πσ2
ij)
− 1

2∫ ∞
−∞

exp

{
− 1

2σ2
ij

T∑
t=1

(zijt − µij)2 − 1

2κσ2
ij

(µij − τ)2

}
dµij.

After some simple algebra

f(zij | σ2
ij) = (2π)−

T
2 |σ2

ijV|−
1
2 exp

{
−1

2
(zij − τ1)′(σ2

ijV)−1(zij − τ1)

}
, (17)

where 1 is a vector of length T whose components are all equal 1, V is a T × T sym-

metric matrix with diagonal elements 1 + κ and equal off-diagonals κ, and |V| denotes

the determinant of V. Next, we integrate (17) with respect to the inverse gamma density

f(σ2
ij),

f(zij | ϕ) = (2π)−
T
2 |V|−

1
2 b

a
2 2−

a
2 Γ(

a

2
)−1 ×∫ ∞

0

(σ2
ij)

1−T
2
−a

2 exp

{
−(zij − τ1)′V−1(zij − τ1)

2σ2
ij

− b

2σ2
ij

}
dσ2

ij.

After changing the variable of integration using the substitution γ = σ−2
ij

f(zij | ϕ) = (2π)−
T
2 |V|−

1
2 b

a
2 2−

a
2 Γ(

a

2
)−1 ×∫ ∞

0

γ
a+T−2

2 exp

{
−b+ (zij − τ1)′V−1(zij − τ1)

2
γ

}
dγ.
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The last integral is the gamma integral and therefore,

f(zij | ϕ) =
b
a
2 Γ
(
a+T

2

)
π
T
2 |V| 12 Γ

(
a
2

)
{b+ (zij − τ1)′V−1(zij − τ1)}

a+T
2

. (18)

Posterior density

Given the independence assumption, the full posterior is the product of individual posteriors

f(µij, σ
2
ij | zij) ∝ f(zij | µij, σ2

ij)f(µij, σ
2
ij),

where f(zij | µij, σij) is a normal distribution and f(µij, σ
2
ij) = f(µij | σ2

ij)f(σ2
ij) are normal-

inverse-gamma distributions where the normal-inverse-gamma with parameters τ, κ, a, b is

f(µ, σ2) =
ba(σ2)−a−

3
2

Γ(a)(2πκ)
1
2

exp

{
− 1

2κσ2
(µ− τ)2 − b

σ2

}
µ, τ ∈ R, σ2, a, b, κ > 0.

Therefore, the normal-inverse-gamma has the kernel

f(µ, σ2) ∝ (σ2)−(a+ 3
2

) exp

{
− 1

2κσ2
(µ− τ)2 − b

σ2

}
. (19)

As normal and normal-inverse-gamma are conjugate forms, the posterior is also normal-

inverse-gamma. More precisely,

f(µij, σ
2
ij | zij) ∝

{
T∏
t=1

f(zijt | µij, σ2
ij)

}
f(µij, σ

2
ij)

∝ 1

(2πσ2
ij)

T
2

exp

{
− 1

2σ2
ij

T∑
t=1

(zijt − µij)2

}
×

b
a
2 (σ2

ij)
−a+3

2

2
a
2 Γ(a

2
)(2πκ)

1
2

exp

{
− 1

2κσ2
ij

(µij − τ)2 − b

2σ2
ij

}
.
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After some algebraic simplifications

f(µij, σ
2
ij | zij) ∝ (σ2

ij)
−(a+T

2
+ 3

2
) ×

exp

−1 + κT

2κσ2
ij

(
µ− τ + κ

∑T
t=1 zijt

1 + κT

)2

− 1

2κσ2
ij

(τ 2 + κb+ κ
T∑
t=1

z2
ijt)

 .

(20)

Comparing (20) with (19) we see that the posterior is in the normal-inverse-gamma form

with parameters

τ ∗ =
τ + κ

∑T
t=1 zijt

1 + κT
, κ∗ =

κ

1 + κT
,

a∗ =
a+ T

2
, b∗ =

1

2κ

(
τ 2 + κb+ κ

T∑
t=1

z2
ijt

)
.
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