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Abstract

Many activities involve object manipulations aiming
to modify object state. Examples of common state
changes include full/empty bottle, open/closed door, and at-
tached/detached car wheel. In this work, we seek to auto-
matically discover the states of objects and the associated
manipulating actions. Given a set of videos for a particular
task, we propose a joint model that learns to identify object
states and to localize state-modifying actions. Our model is
formulated as a discriminative clustering cost. We assume
a consistent temporal order for the changes in object states
and manipulating actions, and learn the model without ad-
ditional supervision. Our method is validated on a new
dataset of videos depicting real-life object manipulations.
We demonstrate the successful discovery of seven manipu-
lating actions and corresponding object states. Moreover,
we emphasize our joint formulation and show the improve-
ment of object state discovery by action recognition and vice
versa.

1. Introduction

Many of our activities involve changes in object states.
We need to open a book to read it, to cut bread before eat-
ing it and to lighten candles before taking out a birthday
cake. Transitions of object states are often coupled with
particular manipulating actions (open, cut, lighten). More-
over, the success of an action is often signified by reaching
the desired state of an object (whipped cream, ironed shirt)
and avoiding other states (burned shirt). Recognizing ob-
ject states and manipulating actions is, hence, expected to
become a key component of future systems such as wear-
able automatic assistants or home robots helping people in
their daily tasks.

Human visual system can easily distinguish different
states of objects, such as open/closed bottle or full/empty
coffee cup [6]. Automatic recognition of object states and
state changes, however, presents challenges as it requires
distinguishing subtle changes in object appearance such as
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Figure 1: We automatically discover object states such as
detached/attached car tire or empty/full coffee cup along
with their corresponding manipulating actions by observing
people interacting with the objects.

the presence of a cap on the bottle or screws on the car tire
Despite much work on object recognition and localization,
recognition of object states has received only limited atten-
tion in computer vision [17].

One solution to recognizing object states would be to
manually annotate states for different objects, and treat the
problem as a supervised fine-grained object classification
task [10, 11]. This approach, however, presents two prob-
lems. First, we would have to decide a priori on the set of
state labels for each object, which can be ambiguous and not
suitable for future tasks. Second, for each label we would
need to collect a large number of examples, which can be
very costly.

In this paper we propose to automatically discover ob-
ject states directly from videos with object manipulations.
As state changes are often caused by specific actions, we
attempt to jointly discover object states and corresponding
manipulations. In our setup we assume that two distinct
object states are temporally separated by a manipulating ac-
tion. For example, the empty and full states of a coffee
cup are separated by the “pouring coffee” action, see Fig-
ure 1. Equipped with this constraint, we develop an unsu-
pervised clustering approach that jointly (i) groups objects
with similar appearance and consistent temporal locations
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with respect to the action and (ii) finds similar manipulating
actions separating different object states in the video. Our
approach exploits the complementarity of both subproblems
and finds a joint solution for states and actions. We formu-
late our problem by adopting the discriminative clustering
loss [2]. To evaluate our method, we collect a new video
dataset depicting real-life object manipulation in realistic
video. Given this dataset for training, our method demon-
strates successful unsupervised discovery of object states
and manipulating actions. We also emphasize our joint for-
mulation and show the improvement of object state discov-
ery by action recognition and vice versa.

2. Related work
Below we review related work on person-object interac-

tions, recognizing object states, action recognition and dis-
criminative clustering that we employ in our model.

Person-object interactions. Many daily activities in-
volve person-object interactions. Modeling co-occurrences
of objects and actions have shown benefits for recognizing
actions in [7, 15, 21, 28, 39]. Recent work has also focused
on building realistic datasets with people manipulating ob-
jects, e.g. in instruction videos [1, 30] or while performing
daily activities [31]. We build on this work but focus on
joint modeling and recognition of actions and object states.

States of objects. Prior work has addressed recognition
of object attributes [11, 26, 27], which can be seen as dif-
ferent object states in some cases. Differently from our
approach, these works typically focus on classifying still
images, do not consider human actions and assume an a
priori known list of possible attributes. Closer to our set-
ting, Isola et al. [17] discover object states and transforma-
tions between them analyzing large collections of still im-
ages downloaded from the Internet. In contrast, our method
does not require annotations of object states. Instead, we
use the dynamics of consistent manipulations to discover
object states in the video in an unsupervised manner.

Action recognition. Most of the prior work on ac-
tion recognition has focused on designing features to de-
scribe time intervals of a video using motion and appear-
ance [25, 32, 35, 36]. This is effective for actions such
as dancing or jumping, however, many of our daily activ-
ities are best distinguishable by their effect on the environ-
ment. For example, opening door and closing door can look
very similar using only motion and appearance descriptors
but their outcome is completely different. This observa-
tion has been used to design action models in [12, 13, 37].
In [37], for example, the authors propose to learn an em-
bedding in which a given action acts as a transformation
of features of the video. In our work we localize objects
and recognize changes of their states using manipulating
actions as a supervisory signal. Related to ours is also the
work of Fathi et al. [12] who represent actions in egocen-

tric videos by changes of appearance of objects (also called
object states), however, their method requires manually an-
notated temporal localization of actions in training videos.
In contrast, we focus on (non-egocentric) Internet videos
depicting real-life object manipulations where actions are
performed by different people in a variety of challenging
indoor/outdoor environments. In addition, our model does
not require supervision in terms of known temporal local-
ization of actions at training time and learns both actions
and object states jointly in an unsupervised manner.

Discriminative clustering. Our model builds on unsu-
pervised discriminative clustering methods [2, 34, 38] that
group data samples according to a simultaneously learned
classifier. Such methods can incorporate (weak) supervi-
sion that helps to steer the clustering towards a preferred
solution [3, 9, 19]. In particular, we build on the discrim-
inative clustering approach of [2] that has been shown to
perform well in a variety of computer vision problems [3].
It leads to a quadratic optimization problem where differ-
ent forms of supervision can be incorporated in the form of
(typically) linear constraints. Building on this formalism,
we develop a model that jointly finds object states and tem-
poral locations of actions in the video. Part of our object
state model is related to [20], while our action model is re-
lated to [5], but we consider novel constraints that posed
optimization challenges, and our joint model is novel.

Contributions. The contributions of this work are three-
fold. First, we develop a discriminative clustering model
that jointly discovers states of objects and temporally local-
izes associated manipulating actions in the video. Second,
we build a new challenging dataset depicting manipulating
actions changing object states in unconstrained indoor and
outdoor settings. Finally, we experimentally demonstrate
that our model discovers key object states and manipulating
actions from input videos in an unsupervised manner.

3. New dataset of manipulated objects
Due to the lack of open domain annotated datasets for

the problem of discovering object states and manipulating
actions we have built a new dataset that we detail below.
Our dataset is composed of 630 video clips with average
length of 30 seconds depicting seven different actions1 ma-
nipulating five distinct objects2. The clips were obtained
from different sources: the instruction video dataset intro-
duced in [1], the Charades dataset from [31], and some
additional videos downloaded from YouTube. The actions
were chosen to cause visible state changes of objects. We
focus on “third person” videos (rather than ego-centric) as
such videos depict a variety of people in different settings

1put the wheel on the car, withdraw the wheel from the car, place a
plant inside a pot, open an oyster, open a refrigerator, close a refrigerator
and pour coffee.

2car wheel, flower pot, oyster, refrigerator and coffee cup.



and can be obtained at large-scale from YouTube. Detailed
statistics of the dataset are given in Table 1.

Objects Actions (#clips) States #Tracklets

wheel {remove (47), put (46)} {attached, detached} 5447
coffee cup {fill (57)} {full, empty} 1819
flower pot {put plant (27)} {full, empty} 2463
fridge {open (234), close (191)} {open, closed} 7968
oyster {open (28)} {open, closed} 1802

Table 1: Statistics of our new dataset of manipulated objects

Annotation. The goal of our dataset is to provide a
benchmark for analyzing actions together with their asso-
ciated changes in object states. The annotation described
below is used to evaluate our method only, i.e. we do not use
it at training time. We annotated the precise temporal extent
of each action. We also defined a list of two states each
object was going through during the action. Finally, we
run automatic object detectors (pre-trained on ImageNet)
for each involved object and track the detected object oc-
currences throughout the video. This use of an automatic
object detector is motivated by two reasons: (i) annotating
tracks is much faster than drawing object bounding boxes in
each frame, and (ii) using real (and noisy) object detections
provides a more realistic evaluation set-up. We have used
a relatively low detector threshold to obtain a large number
of detections with a good recall for each object state. This
is to avoid situations where, for example, detecting full cup
would be harder than empty cup that could bias the statis-
tics of our data. Finally, every track is labeled with four
possible states: state 1, state 2, ambiguous state or false
positive detection. The ambiguous state covers the (not so
common) in-between cases, such as cup half-full. In total,
we have 19,499 fully annotated short object tracks, called
tracklets, out of which: 35% cover state 1 or state 2, 25%
are ambiguous, and 40% are false positives.

4. Modeling manipulated objects
We are given a set of N clips that contain a common

manipulation of the same object (such as “open an oys-
ter”). Note that manipulations in our dataset only occupy a
small time interval within each clip. We also assume that we
are given an a priori model of the corresponding object in
the form of a pre-trained object detector [14]. Given these
inputs, our goal is twofold: (i) precisely localize in time
the extent of the action and (ii) spatially/temporally localize
the manipulated object while identifying its states. This is
achieved by jointly clustering the appearances of an object
(such as a “oyster”) appearing in all clips into two classes,
corresponding to the two different states (such as “closed”
and “open”), while at the same time temporally localizing
a consistent “opening” action that separates the two states
consistently in all clips. More formally, we formulate the
problem as a minimization of a joint cost function that ties

together the action prediction in time, encoded in the assign-
ment variableZ, with the object state discovery in space and
time, defined by the assignment variable Y :

minimize
Y ∈{0,1}M×2

Z∈{0,1}T

f(Z) + g(Y ) + d(Z, Y ) (1)

s.t. Z ∈ Z︸ ︷︷ ︸
saliency of action

Action localization

and Y ∈ Y︸ ︷︷ ︸
ordering + non overlap

Object state labeling

where f(Z) is a discriminative clustering cost to tempo-
rally localize the action in each clip, g(Y ) is a discrimi-
native clustering cost to identify and localize the different
object states and d(Z, Y ) is a joint cost that relates object
states and actions together. T denotes the total length of
all video clips and M denotes the total number of tracked
object candidate boxes (tracklets). In addition, we impose
constraints Y and Z that encode additional structure of the
problem: we localize the action with its most salient time
interval per clip (“saliency”); we assume that the ordering
of object states is consistent in all clips (“ordering”) and that
only one object is manipulated at a time (“non overlap”). In
the following, we proceed with describing different parts of
the model (1). We define and explain the cost function and
model assumption first for the discovery of object states in
Sec. 4.1, and then action localization in Sec. 4.2. We then
describe and motivate the joint cost function d in Sec. 4.3.
Finally, we describe the optimization procedure in Sec. 4.4.

4.1. Discovering object states

The goal here is to both (i) spatially localize the manipu-
lated object and (ii) temporally identify its individual states.
To address the first goal, we employ pre-trained object de-
tectors. To address the second goal, we formulate the dis-
covery of object states as a discriminative clustering task
with constraints. We give details next. We obtain candidate
object detections using standard object detectors pre-trained
on large scale existing datasets such as ImageNet [8]. We
assume that each clip n is accompanied with a set of Mn

tracklets3 of the object of interest.
We formalize the task of localizing the states of ob-

jects as a discriminative clustering problem where the goal
is to find an assignment matrix Yn ∈ {0, 1}Mn×2, where
(Yn)mk = 1 indicates that the m-th tracklet represents the
object in state k. We also allow a complete row of Yn to
be zero to encode that no state was assigned to the corre-
sponding tracklet. This is to model the possibility of false
positive detections of an object, or that another object of the
same class appears in the video, but is not manipulated and

3In this work, we use short tracks of objects (less than one second)
that we call tracklet. We want to avoid to have long tracks that continue
across a state change of objects. By using the finer granularity of tracklets,
our model has the ability to correct for detection mistakes within a track as
well as identify more precisely the state change.



Figure 2: Given a set of clips that depict a given object being manipulated, we wish to automatically discover the main states
that the object can take along with localizing the associated action. In this example, we show one video of someone filling up
a coffee cup. The video starts with an empty cup (state 1), which is filled with coffee (action) to become full (state 2). Given
imperfect object detectors, we wish to assign to the valid object candidates either the initial state or the final state (encoded
in Y ). Additionally, we want to localize the manipulating action (encoded in Z). Finally, we wish to enforce a consistency
between states and actions through a distortion measure d(Z, Y ).

thus is not undergoing any state change. In more details,
our approach here is to minimize the following discrimina-
tive clustering cost [2]:4

g(Y ) = min
Ws∈Rds×2

1

2M
‖Y −XsWs‖2F︸ ︷︷ ︸

Discriminative loss on data

+
µ

2
‖Ws‖2F︸ ︷︷ ︸

Regularizer

(2)

where Ws is the object state classifier that we seek to learn,
µ is a regularization parameter and Xs is aM×ds matrix of
features, where each row is a ds-dimensional (state) feature
vector storing features for one particular tracklet. The min-
imization in Ws actually leads to a convex quadratic cost
function in Y (see [2]). The first term in (2) is the discrim-
inative loss on the data that measures how easy the input
dataXs is separable by the linear classifierWs when the ob-
ject state assignment is given by matrix Y . In other words,
we wish to find a labeling Y for given object tracklets into
two states (or no state) so that their appearance features X
are easily separated by a linear classifier. To steer the cost
towards the right solution, we employ the following con-
straints (encoded by Y ∈ Y in (1)).

Only one object is manipulated : non overlap con-
straint. We assume that the manipulating modifies the state
of only one object in the video. However, in practice, it is
common to have multiple (spatially diverse) tracklets that
occur at the same time, for example, due to a false positive
detection in the same frame. To overcome this issue, we
impose that at most one tracklet can be labeled as belong-

4We concatenate all the decision variables Yn into one M×2 matrix
Y.

ing to state 1 or state 2 at any given time. We refer to this
constraint as “non overlap” in problem (1).

state 1→ Action→ state 2: ordering constraints. We
assume that the manipulating action transforms the object
from an initial state to a final state and that both states are
present in each video. This naturally introduces two con-
straints. The first one is the ordering constraints on the la-
beling Yn, i.e. the state 1 should occur before state 2 in
each video. The second constraint imposes that we have at
least one tracklet labeled as state 1 and at least one track-
let labeled as state 2. We call this last constraint the “at
least one” constraint in contrast to forcing “exactly one”
ordered prediction as previously proposed in a discrimina-
tive clustering approach on video for action localization [5].
While our novel constraint brings new optimization chal-
lenges (see Sec. 4.4), we show in the experimental sec-
tion 5.2 that it is key to get good results for our problem.

4.2. Action localization

We now detail the cost and constraint for action local-
ization. Given N input videos, our goal is to localize time
intervals corresponding to one common action in all clips.5

More formally, the n-th clip is composed of a video stream
decomposed in Tn chunks of frames (xnt )

Tn
t=1. The goal is

to find an assignment matrix Zn ∈ {0, 1}Tn for each clip n,

5Our action model is equivalent to the one of [5] applied to only one
action. This model is incomplete as the clips in our dataset can contain
other actions that do not manipulate the object of interest. Our key contri-
bution is to propose a joint formulation that links this simple action model
with the object state prediction model (see Sec. 4.3), thereby resolving the
ambiguity on actions, as we will see in our experiments.



where Znt = 1 encodes that the t-th time interval of video
is assigned to an action and Znt = 0 encodes that no action
is detected in interval t. We further assume that every time
interval t has an associated dv-dimensional feature vector
stored in the t-th row of the concatenated T × dv (video)
feature matrix Xv . Similar to localizing object states, we
formulate action localization as a discriminative clustering
problem with the following cost

f(Z) = min
Wv∈Rdv

1

2T
‖Z −XvWv‖2F︸ ︷︷ ︸

Discriminative loss on data

+
λ

2
‖Wv‖2F︸ ︷︷ ︸

Regularizer

, (3)

where Wv is a classifier for the considered action that we
seek to learn and λ is a regularization parameter. Similar to
the labeling of object states, we wish to find Z with action
labels for video frames so that the appearance features Xv

of the action frames are easily separated by a linear classi-
fier from the non-action frames in the video. To better steer
the cost to the desired solution, we employ the following
constraint (encoded by Z ∈ Z in (1)).

Action saliency constraint. An action can often be well
represented by a short and discriminative interval. We thus
force our model to predict exactly one time interval for an
action per clip. This can be interpreted as seeking the most
salient interval that best describes the action, an approach
for actions that was shown to be beneficial in a weakly su-
pervised setting [5].

4.3. Linking actions and object states

Actions in our model are directly related to changes in
object states. We therefore want to enforce consistency be-
tween the two tasks. To do so, we design a joint cost func-
tion that operates on the action video labeling Zn and the
state tracklet assignment Yn for each clip. We want to im-
pose a constraint that the action occurs in between the pres-
ence of the two different object states. In other words, we
want to penalize when state 1 is detected after the action
happens (type I), or when state 2 is triggered before the ac-
tion occurs (type II). In the following, we derive a symmet-
ric penalty on both Yn and Zn that enforces this constraint
in a soft manner.

Joint cost definition. We propose the following joint
cost function for each clip:

d(Zn, Yn) =
∑

y∈S1(Yn)

[ty − tZn
]+ +

∑
y∈S2(Yn)

[tZn
− ty]+, (4)

where tZn
and ty are the times when the action Zn and

the tracklet y occurs in a clip n, respectively. S1(Yn) and
S2(Yn) respectively contains the tracklets that have been
assigned to state 1 and to state 2 in the n-th clip. Finally
the [.]+ is the positive part function. In other words, the
function simply penalizes every wrong decision on Yn of

(type I) (left sum in (4)) or (type II) (right sum in (4)) by
the amount of time that separates the inconsistent tracklet
decision with the single action decision for the clip.6 The
global joint cost is simply the sum over all clips weighted
by a scaling hyperparameter ν > 0:

d(Z, Y ) = ν
1

T

N∑
n=1

d(Zn, Yn). (5)

4.4. Optimization.

Here we describe our solution to the joint objective (1).
Convex hull relaxation. Problem (1) is NP-hard due to

the integer constraints. Inspired by the approach of [4] that
was successful to approximate combinatorial optimization
problems, we propose to use the tightest convex relaxation
of the feasible subset of binary matrices by taking its convex
hull. As our variables now can take values in [0, 1], we also
have to propose a consistent extension for the different cost
functions to handle fractional values as input. For the cost
functions f and g, we can directly take their expression on
the relaxed set as they are already expressed as (convex)
quadratic functions. Similarly for the joint cost function d
in (4), we use its natural bilinear relaxation:

d(Zn, Yn) =

Mn∑
i=1

Tn∑
t=1

(
(Yn)i1Znt[tni − t]+ +

(Yn)i2Znt[t− tni]+
)
, (6)

where tni gives the video time of tracklet i in clip n. This
relaxation is equal to the function introduced in (4) on the
integer points. However, it is not jointly convex in Y and Z,
thus one has to design a good optimization technique to get
good candidate solutions.

Joint optimization using Frank-Wolfe. When dealing
with a constrained optimization problem for which it is easy
to solve linear programs but difficult to project on the set,
the Frank-Wolfe algorithm is well adapted and presents nu-
merous advantages [18, 24]. It is exactly the case for our
relaxed problem, where the linear program over the convex
hull of the feasible integer matrices can be solved efficiently
via dynamic programming. Moreover, [23] recently showed
that the Frank-Wolfe algorithm with line-search converges
to a stationary point for non-convex objectives at a rate of
O(1/

√
k). We thus use this algorithm for the joint optimiza-

tion of (1). As the objective is quadratic, we can perform
exact line-search analytically, which speeds up convergence
in practice. Finally, in order to get a good initialization for
both variables Z and Y , we first optimize separately f(Z)
and g(Y ) (without the non-convex d(Z, Y )), which are both
convex functions.

Dynamic program for the tracklets. In order to ap-
ply the Frank-Wolfe algorithm, we need to solve a linear

6We see here that our saliency constraint modeling choice on actions
(one action per clip) simplifies this joint formulation.



program (LP) over our set of constraints. The LP for local-
izing actions is simple (taking the max over all time steps in
a clip). On the other hand, the previous dynamic program-
ming solutions proposed in related prior work [5, 20] cannot
handle our proposed constraints for the tracklet assignment
problem. We thus derived a novel dynamic programming
solution (described in Appendix B).

Rounding method. Once we get a candidate solution of
the relaxed problem, we have to round it back to an integer
solution in order to make predictions. [5] and [1] observed
that using the learned W ∗ classifier to round gave better
results than alternatives. We extend this approach to our
novel joint setup by proposing the following new rounding
possibility. We optimize problem (1) but fix the values of
W in the discriminative clustering costs. Specifically, we
minimize the following cost function over the integer points
Z ∈ Z and Y ∈ Y:

1

2T
‖Z −XvW

∗
v ‖2F +

1

2M
‖Y −XsW

∗
s ‖2F + d(Z, Y ), (7)

where W ∗v and W ∗s are the classifiers weights obtained at
the end of the relaxed optimization. Because y2 = y when
y is binary, (7) is actually a linear objective over the binary
matrix Yn for Zn fixed. Thus we can optimize (7) exactly
by solving a dynamic program on Yn for each of the Tn
possibilities of Zn, yielding O(MnTn) time complexity per
clip (see Appendix C).

5. Experiments

We first describe the object tracking pipeline includ-
ing the feature representation of tracklets and videos (Sec-
tion 5.1). Then we present (Section 5.2) the experimental
results that are divided into two main parts: (i) the evalu-
ation of state discovery and (ii) the evaluation of temporal
action localization.

5.1. Object representation and tracking

Object detection and tracking. In order to obtain de-
tectors for the five objects, we finetune the FastRCNN net-
work [14] with training data from ImageNet [8]. We use
bounding box annotations from ImageNet when available
(e.g. the “wheel” class). For the other classes, we manually
labeled more than 500 instances per class. In our set-up with
only moderate amount of training data, we observed that
class-agnostic object proposals combined with FastRCNN
performed better than FasterRCNN [29]. In detail, we use
geodesic object proposals [22] and set a relatively low ob-
ject detection threshold (0.4) to have good recall. We track
objects using a generic KLT tracker from [3]. The tracks are
then post-processed into shorter tracklets that last about one
second. This is to avoid very long tracks that may contain
several different object states.

Object tracklet representation. For each detected ob-
ject, represented by a set of bounding boxes over the course
of the tracklet, we compute a CNN feature from each (ex-
tended) bounding box that we then average over the length
of the tracklet to get the final representation. We use ROI
pooling [29] at block 5 of ResNet50 [16] with a spatial 2
by 2 subdivision. The ROI pooling allows to capture some
context around the object which is important for some cases
(e.g. wheel “on” or “off” the car). The resulting feature de-
scriptor of each object tracklet is 8,192 dimensional.

Representing video for recognizing actions. Each
video is divided into chunks of 10 frames that are repre-
sented by a motion and appearance descriptor averaged over
30 frames. For the motion we use a 2,000 dimensional bag-
of-word representation of histogram of local optical flow
(HOF) obtained from Improved Dense Trajectories [36].
Following [1], we add an appearance vector that is obtained
from a 1,000 dimensional bag-of-word vector of conv5 fea-
tures from VGG16 [33]. This results in a 3,000 dimensional
feature vector for each chunk of 10 frames.

5.2. State discovery and localization of actions

Experimental setup. For each action of the dataset (see
Table 1), we truncate the video 10 seconds before and af-
ter the annotated action of interest. This is to simplify the
set-up to contain video clips that contain one action that
changes the state of the object of interest. However, each
clip may contain other actions that affect other objects or
actions that do not affect any object at all (e.g. walking /
jumping). This results in a dataset of 630 video clips that
are about 20 seconds long and are annotated with tempo-
ral localization of 7 different actions together with about
20,000 object tracklets fully annotated with their states. We
believe understanding this simplified set-up with coarsely
pre-segmented clips is a necessary step towards the ambi-
tious goal of relating actions and their effects on states of
objects in continuous video streams. However, the proposed
method is applicable outside of this set-up in a more real-
istic scenario where the clips are pre-selected automatically
based on text metadata from, for example, natural language
narration [1].

Evaluation metric: average precision. For all variants
of our method, we use the rounded solution that reached
the smallest objective during optimization. We evaluate
these predictions with a precision score averaged over all
the videos. A temporal action localization is said to be cor-
rect if it falls within the ground truth time interval. Simi-
larly, a state prediction is correct if it matches the ground
truth state.7 Note that “precision” metric is reasonable in
our set-up as our method is forced to predict in all videos,
i.e. the recall level is fixed to all videos and the method
cannot produce high precision with low recall. We provide

7In particular, we count “ambiguous” labels as incorrect.



put remove fill open fill open closeMethod wheel wheel pot oyster coff.cup fridge fridge Average

(a) Constraints only 0.35 0.38 0.35 0.36 0.31 0.29 0.42 0.35
(b) Kmeans 0.25 0.12 0.11 0.23 0.14 0.19 0.22 0.18
(c) Salient state only 0.33 0.60 0.19 0.25 0.14 0.43 0.39 0.33
(d) At least one state only 0.51 0.65 0.33 0.48 0.28 0.45 0.35 0.44
(e) Joint model 0.42 0.63 0.48 0.59 0.24 0.50 0.49 0.48
(f) Joint model + det. scores. 0.47 0.65 0.50 0.61 0.44 0.46 0.43 0.51

State
discovery

(g) Joint + GT act. feat. 0.59 0.63 0.56 0.50 0.32 0.51 0.50 0.52
(i) Chance 0.31 0.20 0.15 0.11 0.40 0.23 0.17 0.22
(ii) [5] 0.22 0.13 0.15 0.07 0.33 0.35 0.21 0.21
(iii) [5] + object cues 0.26 0.17 0.15 0.14 0.84 0.34 0.36 0.32
(iv) Joint model 0.57 0.58 0.33 0.32 0.83 0.48 0.37 0.50

Action
localization

(v) Joint + GT stat. feat. 0.72 0.66 0.41 0.43 0.84 0.50 0.45 0.57

Table 2: State discovery (top) and action localization results (bottom).

additional results using in alternative evaluation set-up us-
ing both precision and recall of the learnt object state and
action classifiers in Appendix D.

Hyperparameters. In all methods that involve a dis-
criminative clustering objective, we used λ = 10−2 (action
localization) and µ = 10−4 (state discovery) for all 7 ac-
tions. For joint methods that optimize (1), we set the weight
ν of the distortion measure (5) to 1.

State discovery results. Results are shown in the top
part of Table 2. In the following, we refer to “State only”
whenever we use our method without looking at the action
cost or the distortion measure (1). We compare to two base-
lines for the state discovery task. Baseline (a) evaluates
chance performance by running our “State only” method
with random features for representing tracklets, using only
constraints (at least one ordering + non overlap) to make
predictions. Baseline (b) performs K-means clustering of
the tracklets with K = 3 (2 clusters for the states and 1
for false positives). We report performance of the best as-
signment for the solution with the lowest objective after 10
different initializations. The next two methods are “State
only” variants. Method (c) corresponds to a replacement of
the “at least one constraint” by an “exactly one constraint”
while the method (d) uses our new constraint. Finally, we
report three joint methods that use our new joint rounding
technique (7) for prediction. Method (e) corresponds to our
joint method that optimizes (1). Method (f) is a simple im-
provement taking into account object detection score in the
objective (details below). Method (g) is our joint method
but using the action ground truth labels as video features
in order to test the effect of having perfect action localiza-
tion for the task of object state discovery. We first note that
method (d) consistently outperforms (c), thus highlighting
the importance of the “at least one” constraint for modeling
object states. While the saliency approach (taking only the
most confident detection per video) was useful for action
modeling in [5], it is less suitable for our set-up where mul-
tiple tracklets can be in the same state. The joint approach
with actions (e) outperforms the “State only” method (d)

on 4 actions out of 7 and obtains better average perfor-
mance, confirming the benefits of joint modeling of actions
and object states. Using ground truth action locations fur-
ther improves results (cf. (g) with (e)). Our unsupervised
approach (e) performs not much lower compared to using
ground truth actions (g), except for the states of the coffee
cup (empty/full). In this case we observe that a high number
of false positive detections confuses our method (see a false
positive example in the second row of Figure 3). A sim-
ple way to address this issue is to add the object detection
score into the objective of our method, which then prefers to
assign object states to higher scoring object candidates fur-
ther reducing the effect of false positives. This can be done
easily by adding a linear cost reflecting the object detection
score to objective (1). We denote this modified method “(f)
Joint model + det. scores”. Note, in particular, the signif-
icantly improved performance on “fill coffee cup” and the
best overall average performance.

Action localization results. We compare our method to
three different baselines and give results in the bottom part
of Table 2. Baseline (i) corresponds to chance performance,
where the precision for each clip is simply the proportion
of the entire clip taken by the ground truth time interval.
Baseline (ii) is the method introduced in [5] used here with
only one action. It also corresponds to a special case of our
method where the object state part of the objective in equa-
tion (1) is turned off (salient action only). Interestingly, this
baseline is actually worse than chance for several actions.
This is because without additional information about ob-
jects this method localizes other common actions in the clip
and not the action manipulating the object of interest. This
also demonstrates the difficulty of our experimental set-up
where the input video clips often contain multiple different
actions. To address this issue, we also evalute baseline (iii),
which complements [5] with the additional constraint that
the action prediction has to be within the first and the last
frame where the object of interest is detected, improving the
overall performance above chance. Our joint approach (iv)
consistently outperforms these baselines on all actions, thus



Figure 3: Typical failure cases for “removing car wheel” (top) and
“fill coffee cup” (middle, bottom) actions. Yellow indicates correct
predictions; red indicates mistakes. Top: the removed wheel is in-
correctly localized (right). Middle: the “empty cup” is incorrectly
localized (left). Bottom: In this case, both object tracklets are an-
notated as “ambiguous” in the ground truth as they occur during
the pouring action and hence the predictions, while they appear
reasonable, are deemed incorrect.

showing again the strong link between object states and ac-
tions. Finally, the approach (v) is the analog of method (g)
for action localization where we use ground truth state la-
bels as tracklet features in our joint formulation showing
that the action localization can be further improved with
better object state descriptors.

Benefits of joint object-action modeling. Interestingly,
we observe that the joint modeling of object states and ac-
tions benefits both tasks. This effect is even more pro-
nounced for actions. Intuitively, knowing perfectly the ob-
ject states reduces a lot the search space for action localiza-
tion. In addition, despite the recent major progress in ob-
ject recognition using convolutional neural networks, action
recognition still remains a hard problem with much room
for improvement.

Failure cases. We observed two main types of failures,
illustrated in Figure 3. The first one occurs when a false pos-
itive object detection consistently satisfies the hypothesis of
our model in multiple videos (the top two rows in Figure 3).
The second typical failure mode is due to ambiguous labels
(bottom row in Figure 3). This highlights the difficulty in
annotating ground truth for long actions such as “pouring
coffee”.

Figure 4: Qualitative results for joint action localization
(middle) and state discovery (left and right) for 6 actions
from our dataset (see Fig. 1 for “fill coffee fup” action).

6. Conclusion and future work
We have described a joint model that relates object states

and manipulating actions. Given a set of input videos, our
model both localizes the manipulating actions and discov-
ers the corresponding object states without additional su-
pervision. We have demonstrated that our joint approach
improves performance of both object state recognition and
action recognition. More generally, our work provides ev-
idence that actions should be modeled in the larger context
of goals and effects. While we have focused on modeling a
single object state change per video, our work opens up the
possibility of large-scale learning of manipulating actions
from video sequences with multiple actions and objects.
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A. Outline of Supplementary Material
This supplementary material provides additional details and

quantitative results. The organization is as follows. In Ap-
pendix B, we describe the dynamic program that we use to solve
the linear program over the track constraints defined in Section 4.1
as needed for the Frank-Wolfe optimization algorithm. In Ap-
pendix C, we detail how we implement the new joint rounding
method (7) that was briefly introduced in Section 4.3. In Ap-
pendix D, we complement the results from Section 5.2 with an
additional set of results that use an alternative evaluation setup,
where we evaluate the quality of the classifiers that are implicitly
learned by our method.

B. Dynamic program for the tracklets
The track constraints defined in Section 4.1 introduce new chal-

lenges compared to the previous related work [1, 4, 20]. Recall
that there are three main components in the constraints. First, we
assume that only one object is manipulated at a given time. Thus
at most one tracklet can be assigned to a state at a given time. This
constraint is referred to as the non-overlap constraint. Second,
we have the ordering constraint that imposes that state 1 always
happens before state 2. The last constraint imposes that we have
at least one tracklet labeled as state 1 and at least one tracklet
labeled as state 2. We need to be able to minimize linear func-
tions over this set of constraints in order to use the Frank-Wolfe
algorithm. More precisely, as the constraints decompose over the
different clips, we can solve independently for each clip n the fol-
lowing linear problem:

minimize
Yn∈{0,1}Mn×2

Tr(CT
n Yn) (8)

s.t. Yn ∈ Yn︸ ︷︷ ︸
non-overlap + ordering

+ at least one

,

where Cn ∈ RMn×2 is a cost matrix that typically comes from
the computation of the gradient of the cost function at the current
iterate. In order to solve this problem, we use a dynamic program
approach that we explain next. Recall that we are given Mn track-
lets (yi)

Mn
i=1 and our goal is to output the Yn matrix that assigns

to each of these tracklets either state 1, state 2 or no state at all
while respecting the constraints. The whole method is illustrated
in Figure 5 with a toy example.

Non-overlap data structure for the tracklets. We first pre-
process the tracklets to build an auxiliary data-structure that is used
to enforce the non-overlap constraint between the tracklets, as il-
lustrated in Figure 5a. First, we sort and index each tracklet by
their beginning time, and add two fictitious tracklets: y0 as the
starting tracklet and yf as the ending tracklet. These two track-
lets are used to start and terminate the dynamic program. If all the
tracklets were sequentially ordered without any overlap in time,
then we could simply make a decision for each of them sequen-
tially as was done in previous work on action localization for ex-
ample (one decision per time step) [4]. To enforce the non-overlap
constraint, we force the decision process to choose only one pos-
sible successor among the group of overlapping valid immediate
successors of a tracklet. For each tracklet yi, we thus define its

(smallest) set of “valid successors” as the earliest tracklet yj8 after
yi that is also non-overlapping with yi, as well as any other track-
let yl for l > j that is overlapping with yj (thus giving the earliest
valid group of overlapping tracklets). The valid successors are il-
lustrated by red dotted arrows in Figure 5a. For example, the valid
successors of y1 are y3 (the earliest one that is non-overlapping)
as well as y4 (which overlaps with y3 thus forming an overlap-
ping group). Skipping a tracklet in this decision process means
that we assign it to zero (which trivially always satisfies the non-
overlapping constraint); whereas once we choose a tracklet to po-
tentially assign it to state 1 or 2, we cannot visit any overlapping
tracklet by construction of the valid successors, thus maintaining
the non-overlap constraint.

Dynamic program. The dynamic programming approach is
used when we can solve a large problem by solving a sequence
of inclusive subproblems that are linked by a simple recursive for-
mula and that use overlapping solutions (which can be stored in a
table for efficiency). In terms of implementation, [4] encoded their
dynamic program as finding an optimal path inside a cost matrix.
This approach is particularly suited when the update cost rule de-
pends only on the arrival entry in the cost matrix as opposed to
be transition dependent. As we will show below, we can encode
the solution to our problem in a way that satisfies this property.
We therefore use the framework of [4] by casting our problem as
a search for an optimal path inside a cost matrix C̃n illustrated
in Figure 5b, and where the valid transitions encode the possible
constraints.

One main difference with [4] is that we have to deal with the
challenging at least one constraint in the context of ordered labels.
To do so, we can filter further the set of valid decisions by using
“memory states” that encode in which of the following three situa-
tions we are: (i) that state 1 has not yet been visited, (ii) that state 1
has already been visited, but state 2 has not yet been visited (and
thus that we can either come back to state 1 or go to state 2) and
(iii) that both states have been visited. These memory states can be
encoded by interleaving complete rows of 0s in between columns
of Cn stored as rows, to obtain the 5 × Mn matrix C̃n. These
new rows encode the three different memory states previously de-
scribed when making a prediction of 0 for a specific tracklet, and
we enforce the correct memory semantic by only allowing a path
to move to the same row or the row immediately below, except for
state 1 which can also move directly to state 2 (two rows below),
and the middle “between state 1/2” row, where one can go up one
row additionally to state 1. Finally, the valid transitions between
columns (tracklets) are given by the valid successors data struc-
ture as given in Figure 5a to encode the non-overlap constraints.
Combining these two constraints (at least one ordering and non-
overlap), we illustrate with grey arrows in Figure 5b the possible
transitions from the states along the path in red. To describe the
dynamic program recursion below, we need to go the opposite di-
rection from the successors, and thus we say that yj is a predeces-
sor of yi if and only if yi is a successor of yj .

To perform the dynamic program, we maintain a matrix Dn of
the same size as C̃n where Dn(k, i) contains the minimal valid
path cost of going from (1, y0) to (k, yi) inside the cost matrix
C̃n. To define the cost update recursion to compute Dn(k, i), let

8Earliest means the smallest j.



(a) Non-overlap data structure for tracklets (b) Cost matrix C̃n for the dynamic program

Figure 5: In (a), we provide an illustration of a possible situation for the tracklets. y0 and yf are two fictitious tracklets that encode the
beginning and end of the video. Each tracklet is indexed based on its beginning time. The time overlap between tracklets is shown by the
grey color. We specify for each tracklet its possible successors by the dotted red arrows (see main text). Finally an admissible labeling
is illustrated by yellow tags where y1 and y5 have both been assigned to state 1 and y6 to state 2. In (b), we give an illustration of our
approach to solve (8) with a dynamic program. We display the modified cost matrix C̃n (see main text). A valid path has to go from
the green dot (y0) to the red dot (yf ). The light yellow entries show part of the Cn matrix that are inserted in C̃n, whereas white entries
encode the rows of 0s that are inserted to impose the at least one ordering constraint. The red arrows specify an example optimal path
inside the matrix. The red entries display the tracklets that have been assigned to state 1 (y1 and y5) or state 2 (y6) (equivalent to putting
ones in the appropriate corresponding entries in Yn). Finally, the grey arrows display the possible valid transitions that can be made for
the entries along the red path, for clarity. We see for example that from (2, y1), there are 6 possible transitions: two column choices from
the two red arrows from y1 in (a) encoding the non-overlap constraint; and three row choices encoding the valid transition from “state 1”
(corresponding to the choice “state 1”, 0 or “state 2” for the next tracklet) encoding the “at least one” ordering constraint.

P (k, i) be the set of tuples (l, j) for which it is possible to go from
(l, j) to (k, yi) according to the rules described above. The update
rule is then as follows:

Dn(k, i) = min
(l,j)∈P (k,i)

Dn(l, j) + C̃n(k, yi). (9)

As we see here, the added cost depends only on the arrival entry
C̃n(k, yi). We can therefore use the approach of [4] and only con-
sider entry costs rather than edge costs. Thanks to our indexing
property (tracklets are sorted by the beginning time), we can up-
date the dynamic program matrix by filling each column of Dn

one after the other. Once this update is finished, we back-track to
get the best path by starting from the ending track (predecessors
of yf ) at the last row (to be sure that both states have been visited)
that has the lowest score in the Dn matrix. The total complexity
of this algorithm is of order O(Mn).

C. Joint cost rounding method
Recall that we propose to use a convex relaxation approach in

order to obtain a candidate solution of main problem (1). Thus,
we need to round the relaxed solution afterward in order to get
a valid integer solution. We propose here a new rounding that is
adapted to our joint problem. We referred to this rounding as the
joint cost rounding (see Section 4.4 of main paper). This round-
ing is inspired by [5, 1]. They observe that using the learned W ∗

classifier to round gives them better solutions, both in terms of
objective value and performance. We propose to use its natural
extension for our joint model. We first fix the classifiers for ac-
tions Wa and for states Ws to their relaxed solution (W ∗a ,W

∗
s )

and find, for each clip n, the couple (Zn, Yn) that minimizes the
joint cost (7). To do so, we observe that we can enumerate all Tn

possibilities for Zn, and solve for each of them the minimization
of the joint cost with respect to Yn. The minimization with re-
spect to Yn can be addressed as follows. First, we observe that
the distortion function (6) is bilinear in (Zn, Yn). Let Zn be a
Tn × 1 vector, and let 12 be a vector of ones of length 2. We
can actually write: d(Zn, Yn) = Tr((BnZn1

>
2 )
>Yn) for some

matrix Bn ∈ RMn×Tn . Thus, when Zn is fixed, the joint term
d(Zn, Yn) is actually a simple linear function of Yn. In addition,
the quadratic term in Yn coming from (2) is also linear over the
integer points (using the fact that y2 = y for y ∈ {0, 1}). Thus,
when Zn, W ∗a and W ∗s are fixed, the minimization over Yn is a
linear program (8) that we solve using our dynamic program from
the previous section. The final algorithm is given in Algorithm 1.
Its complexity is of order O(TnMn).

D. Additional evaluation using another metric

In the main paper, we focus on the task of action time localiza-
tion and state discovery predictions for a given video. Thus, we



put remove fill open fill open closeMethod wheel wheel pot oyster coff.cup fridge fridge mAP

(a) Chance 0.31 0.34 0.29 0.20 0.19 0.31 0.30 0.28
(c) Salient state only 0.27 0.53 0.26 0.35 0.16 0.35 0.36 0.33
(d) At least one state only 0.34 0.58 0.28 0.38 0.29 0.32 0.36 0.36
(e) Joint model 0.32 0.62 0.32 0.57 0.25 0.43 0.47 0.42
(f) Joint model + det. scores. 0.37 0.64 0.47 0.67 0.28 0.49 0.52 0.52

State
discovery

(g) Joint + GT act. feat. 0.33 0.62 0.36 0.59 0.26 0.46 0.48 0.44
(i) Chance 0.34 0.21 0.16 0.12 0.40 0.25 0.18 0.23
(ii) [5] 0.25 0.16 0.13 0.09 0.36 0.26 0.19 0.21
(iii) [5] + object cues 0.30 0.21 0.16 0.16 0.71 0.33 0.27 0.31
(iv) Joint model 0.50 0.40 0.22 0.23 0.75 0.34 0.28 0.39

Action
localization

(v) Joint + GT stat. feat. 0.59 0.50 0.27 0.27 0.77 0.38 0.31 0.44

Table 3: Evaluation of object state and action classifiers (average precision).

Algorithm 1 Joint cost rounding for video n

Get W ∗s and W ∗a from the relaxed problem.
Initialize Z∗, Y ∗ and val∗ = +∞.
# Loop over all possibilities for Zn (saliency)
for t in 1 : Tn do

Z ← zeros(Tn, 1)
# Set the t-th entry of Z to 1

Zt ← 1
# Definition of the cost matrix
Cn ← 1

2M (ones(Mn, 2)− 2XsWs) +
ν
T BnZ1

>
2

# Dynamic program for the tracks
Ymin ← argminY ∈Yn

Tr(CTn Y )
# Cost computation
costZ ← 1

2T ‖Z −XaWa‖2F
costY ← 1

2M ‖Ymin −XsWs‖2F
costZY ← ν

T d(Z, Ymin)
# Update solution if better
val← costZ + costY + costZY
if val < val∗ then

Z∗ ← Z
Y ∗ ← Ymin

val∗← val
end if

end for
return Z∗, Y ∗

have reported performance in Table 2 with a metric that was eval-
uating the quality of our prediction obtained from rounding our
relaxed solutions. We provide here a complementary study that
evaluates the quality of the classifier weights that are implicitly
learned by all methods based on discriminative clustering a.k.a.
DIFFRAC [2]. This study is important to demonstrate that it is not
only the constraints that give us better prediction performance but
that we are also learning better models with the joint approach. In
addition, it also evaluates the quality of the score obtained from
the classifier weights. This is important, notably if we want to
use these classifiers to predict on unseen videos. Therefore for
each method that uses discriminative clustering cost, we keep the
weights obtained at the last iteration of the optimization algorithm

and evaluate them with an AP (average precision) score. For ac-
tions, this score is simply the area under the precision-recall curve
for the given action, where positives are all time intervals that were
labeled as part of the action and negatives are all other intervals.
For object states, we average the AP scores over the two states
to get the final AP score. We compare the different methods that
uses discriminative clustering objective together with the chance
baselines in Table 3. Results are in line with what is shown in
the result section (Section 5.2) of the main paper. This confirms
the superiority of the joint approach both for state discovery and
action localization.


