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SOLVING STANDARD QUADRATIC PROGRAMMING BY
CUTTING PLANES

PIERRE BONAMI∗, ANDREA LODI† , JONAS SCHWEIGER‡ , AND ANDREA

TRAMONTANI§

Abstract. Standard quadratic programs are non-convex quadratic programs with the only
constraint that variables must belong to a simplex. By a famous result of Motzkin and Straus,
those problems are connected to the clique number of a graph. In this paper, we study cutting
plane techniques to obtain strong bounds for standard quadratic programs. Our cuts are derived in
the context of a Spatial Branch & Bound where linearization variables are introduced to represent
products. Their validity is based on the result of Motzkin and Straus in that it depends on the clique
number of certain graphs.

We derive in particular cuts that correspond to an underlying complete bipartite graph struc-
ture. We study the relation between these cuts and the classical ones obtained by the first level of
the reformulation-linearization technique. By studying this relation, we derive a new type of valid
inequalities that generalize both types of cuts and are stronger.

We present extensive computational results using the different cutting planes we propose in the
context of the Spatial Branch & Bound implemented by the commercial solver CPLEX. We show that
our cuts allow to obtain a significantly better bound than reformulation-linearization cuts and reduce
computing times for global optimality. Finally, we show how to generalize the cuts to non-convex
quadratic knapsack problems, i.e., to attack problems in which the feasible region is not restricted
to be a simplex.

Key words. Standard Quadratic Programming, Non-convex Programming, Global Optimiza-
tion, Cutting Planes, Reformulation-Linearization Technique

AMS subject classifications. 90C20, 90C26

1. Introduction. In this paper, we study the problem of optimizing a quadratic
function over the standard simplex, namely

min
{
xTQx

∣∣ x ∈ ∆
}
,(StQP)

where the standard simplex is defined as

∆ =

{
x ∈ Rd

∣∣ d∑
i=1

xi = 1, x ≥ 0

}
,

and Q ∈ Rd ×Rd is a symmetric matrix. We do not make any further assumption on
Q and the optimization problem (StQP) is a non-convex optimization problem, being
generally referred to as Standard Quadratic Program [4]. Variants or generalizations
of StQP appear in many applications where the sum of fractions has to sum up to 1
or where exactly one of several (binary) options has to be chosen. Applications in
finance and the Quadratic Assignment problem are just two examples. Problem StQP
also has fundamental relations with copositive programming [11]. In particular, StQP
has an exact reformulation as a copositive programming problem [3] and the solution
of StQP can be used to test if a matrix is copositive [7].

Although StQP is a purely continuous optimization problem it has strong con-
nections with combinatorial optimization and in particular with the maximum clique
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problem by a remarkable result of Motzkin and Straus [21]. Below, we remind the
definition of the maximum clique problem and state formally this result.

A clique in a simple, undirected graph G = (V,E) is a subset of nodes where every
node is connected to all other nodes. The size of the largest clique in G is called clique
number of G and denoted by ω(G). The problem of computing the clique number is
one of Karp’s 21 NP-hard problems [17].

The Motzkin-Straus Theorem [21] connects the clique number of a graph with
StQP.

Theorem 1 (Motzkin-Straus [21]). Let A be the adjacency matrix of a simple,
undirected graph G = (V,E) and ω(G) its clique number. Then, the following relation
holds:

max
{
xTAx

∣∣ x ∈ ∆
}

= 1− 1

ω(G)
.

Note the identification of each variable xi with node i ∈ G. This can most conveniently
be seen by rewriting the objective function as summation over the edges in G

xTAx =
∑

(i,j)∈E

2xixj .

The factor of 2 is due to the symmetry of the adjacency matrix. For notational
convenience, in the remainder, we maintain the identification of the index set of x
with the set V = {1, . . . , d} of nodes and all considered graphs G are meant to have
this node set.

It follows directly from Theorem 1 that StQP is an NP-hard problem.
Several authors have studied StQP and proposed solution methods that are ex-

ploiting the relationship with the max-clique problem. Bomze [4] coined the name
StQP and proposed a reformulation that ensures the equality constraint by an appro-
priate objective penalty. Bomze et al. [5] reviewed and compared several bounds on
the problem. Finally, Scozzari and Tardella [23] proposed a combinatorial enumera-
tion algorithm for the problem.

In this paper our goal is to exploit Theorem 1 to obtain strong convex relaxations
of StQP for general Q. We place ourselves in the context of a solution algorithm
for StQP by Spatial Branch & Bound (see, e.g., [2]). We employ a classical convex
relaxation of the problem using McCormick estimators [19] and strengthen it by us-
ing cutting planes that are based on solving clique problems for certain graphs. We
call these inequalities Motzkin-Straus Clique inequalities (MSC inequalities for short).
A generalization of those inequalities for the special case of bipartite graphs is then
proposed and we call these inequalities generalized MSC bipartite inequalities (GMSC
bipartite inequalities for short).

The paper is organized as follows. In section 2, we review the basics of Spa-
tial Branch & Bound and the so-called Reformulation-Linearization Technique (RLT,
[25]) is reviewed to an extent that is needed for the remainder of the paper. In sec-
tion 3, we present valid inequalities based on the theorem of Motzkin-Straus and show
connections to RLT inequalities. For complete bipartite graphs we provide an alter-
native RLT-based proof. Extending this result, in section 4, we propose a new type of
inequalities that generalize both the RLT methodology and some of our inequalities.
In Section 5 we propose separation algorithms to find violated inequalities. Section 6
provides computational results that show the effectiveness of the described inequal-
ities. In section 7, we show how the cuts can be generalized if x is not required to
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be in the standard simplex, but fulfills a more general inequality. Finally, section 8
concludes the paper.

2. Q-space relaxation and RLT inequalities. The first step to solve StQP
by Spatial branch-and-bound approaches is to construct a convex relaxation of the
problem that is then iteratively refined by branching. Here, we place ourselves in
the context of a reformulation of the problem where all the non-convex terms of
the objective function are replaced with linearization variables. We say that a term
Qijxixj is convex if and only if i = j and Qij ≥ 0 or i 6= j and Qij = 0. Accordingly,
the objective matrix Q is decomposed into Q = S + P , where S contains all positive
diagonal entries of Q and P = Q − S. Linearization variables Yij are introduced for
all nonzero entries of P and Yij = xixj has to hold in every feasible solution. By
abuse of notation, we interpret the linearization variables as a matrix Y for which the
equation

Y = xxT ,

holds, with the understanding that for those components for which Pij = 0, Yij = xixj
does not influence the optimal value and is omitted. Then, the reformulated StQP
reads as

min
{
xTSx+ 〈P, Y 〉

∣∣ Y = xxT , x ∈ ∆
}
,

where the function 〈P, Y 〉 =
∑d
i=1

∑d
j=1 PijYij is the trace of the matrix product (or

matrix scalar product). This formulation has a convex quadratic objective function
and all the non-convexities have been moved into the constraint Y = xxT .

Once this reformulation is performed a convex relaxation can be formed by taking
any convex relaxation of the feasible set

Γ =
{

(x, Y ) ∈ Rd × (Rd × Rd)
∣∣ Y = xxT , x ∈ ∆

}
.(1)

Based on such a relaxation, a Spatial Branch & Bound can then be performed
by branching on the variables x and tightening the convex relaxation of Γ with the
resulting local bounds at each node see, e.g., [2, 20, 26].

McCormick estimators. The most common way to form a convex relaxation of Γ
is to relax each non-convex equality Yij = xixj separately using its convex hull given
by the McCormick inequalities [19]

xjxi + xixj − xi xj ≤ Yij ,(2)

xjxi + xixj − xi xj ≤ Yij ,(3)

xjxi + xixj − xi xj ≥ Yij ,(4)

xjxi + xixj − xi xj ≥ Yij ,(5)

where xi and xi are valid upper and lower bounds on xi, respectively.
In our initial relaxation, we use the lower bounds xi = 0 and upper bounds xi = 1

and obtain the convex Quadratic Programming (QP) relaxation of StQP

min

{
xTSx+ 〈P, Y 〉

∣∣ max{0, xi + xj − 1} ≤ Yij ≤ min{xi, xj},
x ∈ ∆

}
.(MC-StQP)

We refer to this relaxation as the Q-space relaxation.
While Y = xxT has to hold for each feasible solution, the McCormick inequalities

only give a coarse approximation of the set Γ. We therefore strive to find valid
inequalities that tighten this set and the Q-space relaxation.
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Reformulation-Linearization Technique [24, 25]. The RLT technique consists of
two steps. In the first step, valid constraints are multiplied by other constraints or by
variables yielding an equation or inequality with higher order terms. In the second
step, these terms are reformulated using linearization variables to obtain a linear
constraint. The result is a valid constraint on the linearization variables that is often
a very strong cutting plane [20].

Note that the McCormick inequalities (2)–(5) can be derived by applying this
technique to the bound constraints of two variables.

By repeatedly applying this procedure to all constraints in a model, a hierarchy
of valid constraints using higher order terms can be established. We restrict this
exposition to the first order that involves only bilinear terms and to the case where
a linear constraint is multiplied by a variable because the constraint set considered
here have only one constraint that is not a simple bound constraint.

Indeed, in the context of optimization over the standard simplex ∆, the only
constraint that is not a bound constraint is

∑d
i=1 xi = 1. In the first step of the RLT

procedure, this equation is multiplied by one of the variables xj , which yields the
equation

d∑
i=1

xixj = xj .(6)

In the second step, the quadratic and bilinear terms are replaced with the linearization
variables

d∑
i=1

Yij = xj .(7)

A second stronger relaxation, denoted by RLT-stQP, is obtained by adding each
equation (7) obtained by multiplying the standard simplex

∑d
i=1 xi = 1 by each

xj , j = 1, . . . , d.
Projected RLT inequalities. The RLT constraints are known to be strong, but

they might use linearization variables for zero entries in P , i.e., either zero entries
or convex terms (those in S) of Q. Because we build our relaxation in the space of
non-zero entries of P , we need to project out those variables for which no linearization
variable exists. Precisely, let the set Vj collect all indices i, for which a linearization
variable Yij exists, namely

Vj = { i ∈ V | Pij 6= 0} .(8)

Terms xixj for which i 6∈ Vj are replaced by linear over- and under- estimators, i. e.,
linear functions oij(xi, xj) and uij(xi, xj) such that

oij(xi, xj) ≥ xixj ,
uij(xi, xj) ≤ xixj .

In our implementation, we use

oij(xi, xj) = xixj ,

uij(xi, xj) = xixj .

4

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2016-002



For bilinear terms the McCormick over- and under-estimators would also be natural
choices. In our experiments, the objective matrix is dense and thus only the diagonal
entries of P might be zero.

Then, the projected RLT-inequalities rof each j are∑
i∈Vj

Yij +
∑
i6∈Vj

oij(xi, xj) ≥ xj ,(9)

∑
i∈Vj

Yij +
∑
i6∈Vj

uij(xi, xj) ≤ xj .(10)

As most over- and under-estimators become stronger as the bounds become tighter,
(9) and (10) can be separated in the nodes of the branch-and-bound tree as locally
valid cuts with estimators taking into account the local variable bounds, especially
after branching.

The same approach can be used to derive a valid RLT inequality from a general
equation ax = b. There, the sign of ai has to be considered for the estimators of
aixixj such that the RLT inequalities for each j become∑

i∈Vj

aiYij +
∑
i6∈Vj

ai≥0

aioij(xi, xj) +
∑
i6∈Vj

ai<0

aiuij(xi, xj) ≥ bxj ,

∑
i∈Vj

aiYij +
∑
i6∈Vj

ai≥0

aiuij(xi, xj) +
∑
i6∈Vj

ai<0

aioij(xi, xj) ≤ bxj .

Similarly, an inequality ax ≤ b can be the starting point, but in this case xj needs to
be non-negative or non-positive and the relation has to be adjusted accordingly.

3. Motzkin-Straus Clique inequalities. We now come back to Theorem 1
and its use. On the one side, Theorem 1 can be seen as a method to compute the
clique number of a graph. On the other side—as soon as the clique number of the
graph is known—a valid inequality for Γ can be derived.

Corollary 2. For any simple, undirected graph G with adjacency matrix A and
clique number ω(G), the following inequality is valid for (x, Y ) ∈ Γ:

〈A, Y 〉 ≤ 1− 1

ω(G)

Proof. The inequality xTAx ≤ 1− 1
ω(G) for x ∈ ∆ follows immediately from the

Motzkin-Straus theorem. Reformulation using the definition of Γ yields the result.

In the remainder, we call the inequalities derived from Corollary 2 Motzkin-Straus
Clique inequalities (MSC inequalities).

For any instance of Γ one can derive a different MSC inequality from any graph
G on d nodes. However, the following Theorem establishes that the inequalities stem-
ming from certain graphs are dominated.

Theorem 3. Let G = (V,E) be a subgraph of G̃ = (V, Ẽ) with the same clique
number ω(G) = ω(G̃). Then, every point that violates the MSC inequality correspond-
ing to G also violates the MSC inequality corresponding to G̃.

Proof. Let the point (x, Y ) be violated by the MSC inequality corresponding to
G. Let A and Ã be the adjacency matrices of G and G̃, respectively. Since G is a
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subgraph of G̃, it holds1 A ≤ Ã. Then, with Y ≥ 0 we have〈
Ã, Y

〉
≥ 〈A, Y 〉 > 1− 1

ω(G)

Therefore, the MSC inequality corresponding to G̃ is also violated.

We are therefore mostly interested in graphs that are “maximal” for a certain clique
number in the sense that adding any edge increases their clique number.

If the original quadratic objective Q of StQP is the adjacency matrix of a graph,
then the relaxation obtained by adding the corresponding MSC inequality to the Q-
space relaxation of Γ has the same objective function of StQP. Because neither relax-
ations MC-StQP nor RLT-stQP solve general clique problems directly, the Motzkin-
Straus Clique inequalities are not dominated by McCormick inequalities and RLT
inequalities. This observation is indeed formalized in the following theorem, whose
proof shows that a feasible point for the RTL-stQP relaxation can violate a Motzkin-
Straus Clique inequality obtained from a graph G with clique number 2. Before
proceeding to the statement of the theorem, we remind the reader that a complete
bipartite graph with partition (M,M̄) (with M ⊂ V ) is a graph where every node
in M is connected to all nodes in M̄ , but there are no edges between any pair of
nodes in M or in M̄ . An obvious property of bipartite graphs is that their clique
number is 2 and the MSC inequality corresponding to a bipartite graph is given by∑
j∈M

∑
i∈M̄ Yij ≤ 1

4 .

Theorem 4. Let G = (V,E) be a complete bipartite graph, the Motzkin-Straus
Clique inequality obtained from G is not implied by RLT equations.

Proof. Let (M,M̄) be the partition of V induced by G and define a point (x̃, Ỹ )
as

x̃i =

{
1

2m if i ∈M
1

2(d−m) otherwise,

Ỹij =

{
1

2m(d−m) if (i, j) ∈ (M × M̄) ∪ (M̄ ×M)

0 otherwise.

The notation (i, j) ∈ (M × M̄) ∪ (M̄ ×M) means that exactly one of the two indices
is in M and the other in M̄ .

It is easy to verify that x̃ ∈ ∆ and (x̃, Ỹ ) fulfills the McCormick inequalities for
bounds x ∈ [0, 1]d. Furthermore, (x̃, Ỹ ) fulfills the RLT equations (7) for every j ∈ V .
Indeed, for j ∈M ∑

i∈V
Ỹij =

∑
i∈M̄

Ỹij =
d−m

2m(d−m)
=

1

2m
= x̃j ,

and for j ∈ M̄ ∑
i∈V

Ỹij =
∑
i∈M

Ỹij =
m

2m(d−m)
=

1

2(d−m)
= x̃j .

1Unless otherwise stated, we understand comparisons between two matrices and between a matrix
and a scalar componentwise.
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However, Ỹ violates the Motzkin-Straus Clique inequality for the bipartite graph
corresponding to the partition (M,M̄)∑

j∈M

∑
i∈M̄

Ỹij =
∑
j∈M

d−m
2m(d−m)

=
m(d−m)

2m(d−m)
=

1

2
>

1

4
.

Even though the Motzkin-Straus Clique inequalities are not dominated by the
RLT equations, a close relation exists. In particular, if G = (V,E) is a complete
graph, it is easy to see that aggregating the RLT constraints leads to an inequality
that dominates the corresponding Motzkin-Straus Clique inequality. Indeed, summing
up the equations (7) for all j ∈ V yields∑

j∈V

∑
i∈V

Yij =
∑
j∈V

xj = 1.

The last equation holds because x is in the standard simplex. Moving the quadratic
terms to the right-hand side and observing that minx∈∆

∑
i∈V x

2
i = d−1, the Motzkin-

Straus Clique inequality for the complete graph with d vertices is∑
j∈V

∑
i∈V
i6=j

Yij = 1−
∑
j∈V

x2
j ≤ 1− 1

d
.

A more involved aggregation can be used to show the validity of Motzkin-Straus
Clique inequalities for complete bipartite graphs. Consider a set M ⊂ V . First, sum
up equations (6) obtained by multiplying the standard simplex constraint with xj for
each j ∈M , to obtain ∑

j∈M

∑
i∈V

xixj =
∑
j∈M

xj .

Next, regroup all the terms that have both indices in M in the right-hand side and
obtain ∑

j∈M

∑
i∈M̄

xixj =
∑
j∈M

xj −
∑
j∈M

∑
i∈M

xixj

=
∑
j∈M

xj −

∑
j∈M

xj

2

.

Note that, so far, the linearization variables Y were not used and this last step used
basic algebra to factor the right-hand side (this last step would not be satisfied by Y
if only looking at the RLT inequalities). In the next step, we linearize the products
on the left-hand side by using Y , namely

∑
j∈M

∑
i∈M̄

Yij =
∑
j∈M

xj −

∑
j∈M

xj

2

.(11)

Now, the right-hand side is the function g(z) = z− z2 applied to
∑
j∈M xj . Basic

calculus tells us that g(z) attains its maximum at g( 1
2 ) = 1

4 (see Figure 1 for a plot
of g(z) on the domain of interest [0, 1]). Therefore, we get that the right-hand side is
smaller than or equal to 1

4 , which is exactly the Motzkin-Straus Clique inequality for
the complete bipartite graph with partition (M, M̄).
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

z

g(z) = z − z2

Tangent at 0: f0(z) = z

Tangent at 1
2 : f 1

2
(z) = 1

4

Tangent at 1: f1(z) = 1− z

Fig. 1: The function g(z) with tangents at 0, 1
2 , and 1.

4. Generalized MSC inequalities for bipartite graphs. In the previous
section, we have introduced Motzkin-Straus Clique inequalities and showed how, if
G is a complete bipartite graph, the corresponding Motzkin-Straus Clique inequality
can also be deduced by performing a specific aggregation of RLT inequalities. In this
section, we generalize this reasoning and deduce a new class of cutting planes that
can be obtained from bipartite graphs.

Note that to go from (11) to the Motzkin-Straus Clique inequality we used a
constant over-estimator of g but, due to the concavity of g, every tangent overestimates
g so that for the tangent fα taken at α, the following inequality holds:

∑
j∈M

∑
i∈M̄

Yij ≤ fα

∑
j∈M

xj

 .(12)

Because fα(z) is an affine function, the right hand side of (12) is linear in x.
Of course, any missing linearization variable Yij can also be projected out in a

similar way as in the RLT case. This way, the inequality using a tangent fα becomes

∑
j∈M

∑
i∈M̄∩Vj

Yij +
∑
j∈M

∑
i∈M̄∩V̄j

uij(xi, xj) ≤ fα

∑
j∈M

xj

 .(13)

We denote constraint (13) as generalized MSC bipartite inequality, and that depends
on the choice of the point α where the tangent is taken and of the subset M . It turns
out that, regardless of the choice of the partition (M,M), the tangent obtained from
α = 0 and α = 1 are always implied by the RLT inequalities (10).

Theorem 5. If a point (x, Y ) ≥ 0 satisfies the RLT inequality (10) for all j ∈ V ,
then it satisfies the generalized MSC bipartite inequalities (13) for α = 0 and α = 1
and for all M ⊂ V .
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

z

g(z) = z − z2

Fig. 2: Violated points separated by generalized MSC bipartite inequalities. Notice
that each point corresponds to a different set M .

Proof. Take any M ⊂ V . We assume without loss of generality that the under-
estimators uij(xi, xj) are chosen non-negative. Since (x, Y ) ≥ 0 and because of the
validity of the RLT inequalities (10), the following chain of inequalities is valid for
every j ∈ V :∑

i∈M̄∩Vj

Yij +
∑

i∈M̄∩V̄j

uij(xi, xj) ≤
∑
i∈Vj

Yij +
∑
i∈V̄j

uij(xi, xj) ≤ xj .

Summing over j ∈M , we get

∑
j∈M

∑
i∈M̄∩Vj

Yij +
∑
j∈M

∑
i∈M̄∩V̄j

uij(xi, xj) ≤
∑
j∈M

xj = f0

∑
j∈M

xj

 ,(14)

which is the generalized MSC bipartite inequality for M at f0(z) = z.
For the generalized MSC bipartite inequality at f1(z) = 1 − z, it suffices to

exchange M and M̄ in (14) and, due to x ∈ ∆, it holds that∑
j∈M

xj = 1−
∑
j∈M̄

xj .

Figure 2 illustrates the generalized MSC bipartite inequalities than are separated
in addition to RLT inequalities for one specific instance. More precisely, we separate
generalized MSC bipartite inequalities as long as they are violated by using the sep-
aration algorithms that will be discussed in the next section. Each point in Figure 2
has the value z =

∑
i∈M x∗i on x-axis and the value

∑
i∈M

∑
j∈M̄ Y ∗ij on the y-axis

and corresponds to a different relaxation solution (x∗, Y ∗) and a different set M . The
color indicates the round in which the point was separated and warmer colors mean
that it was found later in the cut loop. The plot clearly illustrates that the tangents at
0 and 1 are implied for sets M by the RLT inequalities, but many additional cutting
planes can be separated.
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5. Separation. To separate a violated Motzkin-Straus Clique inequality a graph
has to be determined and its clique number has to be computed. On top of the
fact that the latter computation is NP-hard, this boils down to a bilevel separation
problem [18] with the determination of the graph in the first level and the computation
of the clique number in the second one. This turns out to be computationally very
hard because bilevel (integer-integer) optimization problems are, in general, extremely
challenging both in theory and in practice (see, e.g., [8]).

We focus on finding graphs with a fixed clique number, especially bipartite graphs,
and devise exact separation algorithms for these two classes. That corresponds to
removing the second level above. This is by far the best way we have found to generate
effective cutting planes. We have also tried a number of algorithms based on the idea
of using the solution of the continuous relaxation as starting point to heuristically
find graphs that yield violated inequalities. This approach corresponds to eliminating
the first level. Although some neat bound improvements can be obtained in this way
(e.g., roughly 1% over some of algorithms discussed in subsection 6.2), it turns out
that computing the clique number of instances of relevant sizes is feasible but not
computationally effective, leading to too high separation times. Detailed results on
those attempts are reported in [22].

In the following, we will study mathematical programming formulations to sepa-
rate MSC inequalities on specific classes of graphs striving for exact separation. This
is computationally viable by restricting ourselves to graphs with known clique num-
ber so as to avoid solving bilevel programming problems (to separate a single cut).
First, we will concentrate on general graphs with fixed clique number. Iterating over
all possible clique sizes yields a separation algorithm for general graphs. Second, we
focus on complete bipartite graphs, which clearly have clique number 2.

Graphs with fixed clique number. Consider a point (x∗, Y ∗) and a fixed integer
k > 1. The aim is finding a graph with clique size at most k whose corresponding
Motzkin-Straus Clique inequality separates (x∗, Y ∗) from Γ. Since x∗ ∈ ∆, without
loss of generality (x∗, Y ∗) can be assumed to be non-negative. Then, the following
Mixed-Integer Linear Programming problem (MILP) serves the purpose:

max 〈A, Y ∗〉 −
(

1− 1

k

)
(15)

s. t.
∑
i,j∈S
i<j

Aij ≤
|S| (|S| − 1)

2
− 1 for all S ⊆ V, |S| = k + 1(16)

Aij = Aji for all i, j ∈ V(17)

Aij = 0 for all i 6∈ Vj(18)

Aij ∈ {0, 1} for all i, j ∈ V(19)

The program maximizes the violation of the cut and (x∗, Y ∗) can be separated if and
only if the objective value is greater than 0. Since the clique size is fixed, only the
graph (in form of its adjacency matrix A) has to be computed. Constraints (17), (18),
and (19) ensure that A is indeed the adjacency matrix of a simple undirected graph.
The inequalities (16) ensure that G contains no clique of size k + 1. To this end, it

requires that from every set of S ⊆ V of cardinality k+ 1, at least one if the |S|(|S|−1)
2

possible edges is missing.
A posteriori, if the clique size of G is smaller than k, then all edges connecting a

maximum clique with the rest of the nodes have zero weight. Adding enough of these
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nodes will yield a graph with clique size k and the same objective value.
The drawback of this formulation is its exponential size for fixed k, which makes

it impractical for computational purposes.
Complete Bipartite Graphs. We now turn to the separation of Motzkin-Straus

Clique inequality stemming from bipartite graphs with partition (M,M̄). We will
always assume that both sets in the partition are nonempty and restrict ourselves
to complete bipartite graphs (bipartite graphs such that adding any edge forms a
triangle), since these are maximal w.r.t. the clique number and thus yield the strongest
inequalities. For our purposes, bipartite graphs have two advantages: First, the clique
number is 2 and therefore the Motzkin-Straus Clique inequalities have the best right-
hand side value. Second, they have a very clean structure. For a fixed subsetM ( V of
nodes, the Motzkin-Straus Clique inequality corresponding to the complete bipartite
graph with partition (M,M̄) is

∑
i∈M

∑
j∈M̄

2Yij ≤ 1− 1

2
.

Separating a maximally violated Motzkin-Straus Clique inequality corresponding
to some complete bipartite graph means finding a bipartite graph with maximum
weight, where the weight for each edge (i, j) is given by Y ∗ij . This is equivalent to
finding a maximum-weight cut and is thus NP-hard [17]. However, since both, the
number of nodes and the cardinality of the support (i. e., the nonzero values) of Y ∗,
are typically relatively small, it is computationally feasible to separate by solving a
simple binary QP. To this end, we introduce a binary variable zi for each i ∈ V and
say that nodes whose variables take the same value are in the same set of the partition.
The problem to be solved is

max
∑
i∈V

∑
j∈V

2Y ∗ij zi(1− zj)−
1

2

s. t. z ∈ {0, 1}|V |.
(20)

We assume without loss of generality that Y ∗ is symmetric. The product zi(1 − zj)
ensures that Y ∗ij is counted if and only if zi = 1 and zj = 0, i. e., i and j are in
different sets. The objective function therefore maximizes the violation of the cut.
Every solution with positive objective function value corresponds to a violated cut
with partition (M, M̄), where M = { i ∈ V | zi = 1}. If the optimal objective value is
non-positive, no violated cut exists.

Generalized MSC bipartite inequalities. To separate a violated generalized MSC
bipartite inequality a set M has to be found such that

∑
i∈M

∑
j∈M̄

Y ∗ij > g

(∑
i∈M

x∗i

)
.

The generalized MSC bipartite inequality for M and α =
∑
i∈M x∗i will then separate

this point. The separating binary QP for bipartite graphs can be generalized to
separate violated generalized MSC bipartite inequalities. It maximizes the violation
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and adds the α as one of the decision variables. Namely,

max
∑
i∈V

∑
j∈V

Y ∗ij zi(1− zj)− (α− α2)

s. t. α =
∑
i∈V

x∗i zi

z ∈ {0, 1}|V |, α ≥ 0.

(21)

As for bipartite graphs, nodes are partitioned according to the value of their associated
variables.

6. Computational Experiments. In this section, we present the results of a
large set of computational experiments. They were carried out on a cluster of Intel
Xeon 5160 quadcore CPUs running at 3.00 GHz with 8 GB RAM and using RHEL5 as
operating system. To avoid random noise by cache misses and alike only one process
was executed on each node at a time.

The implementation is based on a slightly modified version of the IBM CPLEX
Optimizer 12.6.3 [16] (CPLEX for short) where the C-API has been extended to
provide callbacks the access to the linearization variables Y . The cuts are separated
from the user cut callback, only at the root node, and are added with the purgeable
flag set to CPX USECUT PURGE, in order to allow CPLEX to purge the cuts that are
deemed to be ineffective according to its internal strategies.

Our computational investigation focuses on the application of the proposed cut-
ting planes in a Spatial Branch & Bound algorithm and studies their impact on the
root node and on the overall solution time. Therefore, we omit a direct comparison
with alternative formulations or solution approaches as presented for example in [23].
Nevertheless, in subsection 6.4 we report computational results on the small set of
publicly-available instances from [23], while in the next section we describe the large
amount of randomly-generated instances we extensively based our computation on.

6.1. Instances. As anticipated, we considered a large set of randomly-generated
instances, and, in particular, we considered two sizes, d = 30 and d = 50, so as
only the objective matrix has to be sampled. The instances are available on http:
//or.dei.unibo.it/library/msc

The sign of the objective coefficients plays a major role in these instances. Assum-
ing all terms are linearized (i. e., all diagonal entries are negative and all off-diagonal
entries are not zero), the objective function only acts on the Y variables. When
optimizing the value of Y over Γ, Yij with i 6= j is restricted by the McCormick
inequalities and whether it will take the upper or the lower bound is defined by the
sign of Qij , namely

Yij =

{
max{0, xi + xj − 1} if Qij > 0,

min{xi, xj} if Qij < 0.

We therefore strive to generate instances with different fractions of positive and neg-
ative entries in Q. Since the inequalities presented in this paper can only cut points
where at least some entries Yij exceed xixj , the biggest impact is expected for in-
stances with a lot of negative entries in Q.

We used triangular distributions, which are characterized by 3 parameters a <
c < b. Namely, a and b are the minimum and the maximum of the value range. The
mode c describes the peak of the piecewise linear density function. Of course, the sign
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of the coefficients is of great impact in general; on the diagonal they even decide if the
respective terms are convex. We therefore use the triples (−10,−5, 0) and (0, 5, 10)
to get instances with only negative and only positive coefficients. For instances with
mixed signs, we used the triples (−10,−3, 10), (−10, 0, 10), and (−10, 3, 10), where
the second is a symmetric distribution and the other two are more likely to have
positive or negative coefficients, respectively. The diagonal entries are divided by
2. In addition, 2 variants of each instance are generated by taking the positive and
negative absolute values of the diagonal elements. For (−10,−5, 0) only the positive
and for (0, 5, 10) only the negative variants are generated since the respective opposite
would yield the same instance again. Furthermore, the instances with positive off-
diagonal entries (distribution (0, 5, 10)) in the variant with negative diagonal entries
are trivially solved by all approaches. Indeed, since the objective is to minimize,
setting the variable xi with lowest diagonal entry Qii in the objective to 1 gives the
optimal solution. For this reason, those instances are excluded.

The 3 distributions in 3 variants, 1 distributions in 2 variants for the diagonal,
and 1 distribution in 1 variant for the diagonal give 12 different instance types. For
each instance type and for each size d ∈ {30, 50} we generated 10 instances, yielding
120 instances with d = 30 and 120 instances with d = 50 in total. All instances are
available on http://or.dei.unibo.it/library/msc. In all computational experiments we
enforced a time limit of 2 hours for instances of size d = 30 and 6 hours for those of
size d = 50.

Since we can only separate MSC inequalities and generalized MSC bipartite in-
equalities if the linearization variable Yij exceeds the respective product, i. e., Yij >
xixj , for some (i, j), one could assume that the instances (0, 5, 10) will not be affected
by Motzkin-Straus Clique inequalities given that the objective function drives the lin-
earization variables towards 0. This is only true for instances with positive diagonal
elements in Q. For these instances, the quadratic terms Qiix

2
i are convex and thus

not linearized, and the resulting projected RLT inequalities are redundant. For the
variation with negative diagonal elements in Q, the quadratic terms are linearized
and the RLT equations

∑
i Yij = xj for all j ∈ V force some Yij to be positive. In all

these instances it is then possible to separate MSC inequalities and generalized MSC
bipartite inequalities.

6.2. Optimizing over the bipartite closures. As a first set of experiments,
we want to evaluate the impact of Motzkin-Straus Clique inequalities corresponding
to bipartite graphs and generalized MSC bipartite inequalities at the root node of the
branch-and-cut tree. Since RLT equations and inequalities can be easily separated by
enumeration and are expected to be effective, we separate our inequalities only if no
violated RLT inequalities can be found.

For MSC and GMSC bipartite inequalities we have exact separation algorithms
and thus we can optimize over the associated closures. The closure of a class of
inequalities is the relaxation obtained by adding all possible inequalities of this class.
Although the closure itself may be intractable to compute, one can optimize a linear
function over it by separation. The comparison of the values gives an indication of
the strength of the class of inequalities.

MSC and GMSC bipartite inequalities are separated by solving the associated
mathematical models (20) and (21) in a classical cutting-plane scheme, by using
CPLEX as a black box. To limit the tailing-off effect that often arises in cutting
plane algorithms, we try to separate up to 5 cuts per round, i.e., at every separation
round we collect the first 5 incumbent solutions returned by CPLEX that correspond
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to violated cuts. Specifically, we consider the following four settings:
CPLEX CPLEX with empty cut callback;
RLT Violated RLT equations and inequalities are added;
Bipartite At each call of the cut callback, first violated RLT equations and in-

equalities and then violated MSC bipartite inequalities are added. If no
inequality can be separated anymore, the final dual bound gives the value
of the closure over these two types of cuts;

GMSC Same as Bipartite, but GMSC bipartite inequalities are separated in-
stead of MSC bipartite inequalities.

Each of these configurations improves the closure of the previous ones since
Bipartite and GMSC also separate RLT equations and inequalities and since Motzkin-
Straus Clique inequalities for bipartite graphs are generalized MSC bipartite inequal-
ity at α = 0.5.

Tables 1 and 2 report aggregated results at the root node for these configurations
on the instances of size d = 30 and d = 50, respectively. Both tables have the
following structure: First, we report the average root gap to measure the strength
of the separated cuts. For all considered approaches we give the %gap left at the
root, computed as (UB − LBroot)/|UB|, where LBroot is the dual bound at the
root node and UB is the optimal solution value or the value of the best solution
found by any of the approaches reported in subsection 6.3. Then we report the gap
closed with respect to CPLEX root (resp. CPLEX with RLT inequalities), computed
as (LBroot − LBbase)/(UB − LBbase), where LBbase is the dual bound obtained by
CPLEX root (resp. CPLEX with RLT). Then, the number of instances solved to
proven optimality is given, along with the number of time limits hit. Next, we give
the average and maximum separation time, first considering all instances and then
disregarding the instances where any of the compared approaches hit the time limit.
In addition, we report the average and maximum number of separated cuts, along
with the number of cuts applied to the root LP at the end of root node, as reported
by CPLEX. Finally, the average and maximum number of separation rounds is given,
to specify how many times the callback was called (note that in the last round no cut
was separated otherwise the callback would have been called again). In both tables
we do not report the column for CPLEX because no cuts are generated and it would
only have zeros.

The results reported in the tables clearly show that RLT inequalities are funda-
mental for StQP. Indeed, by themselves RLT inequalities already close about 85%
of the root gap obtained by default CPLEX. On the other hand, MSC and GMSC
bipartite inequalities are very effective to improve on the dual bound on top of RLT
inequalities, and the GMSC bipartite closure appears definitely stronger than the
MSC bipartite closure. Bipartite and GMSC greatly improve over RLT reducing the
arithmetic mean of the root gap and GMSC gives the best dual bounds by a large
amount. Concerning the separation time, Bipartite appears on average to be very
fast, while GMSC is instead too time consuming. With GMSC, 3 instances of size d = 30
and 10 of size d = 50 do not finish the root node within the time limit. However, it
is remarkable that GMSC is able to solve 3 instances of size d = 30 without resorting
to branching.

To investigate the main differences between Bipartite and GMSC we analyzed
closely the evolution of the root node for some specific instances. All plots reported
in the following are given on one instance of size d = 30 with positive diagonal entries
and distribution (−10, 0,−5) (i.e., instance triangular 30 -10 0 -5 04 posDiag). The
instance has been selected as the one on which the separation time of both Bipartite
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RLT Bipartite GMSC GraphPool Hybrid

Average root gap [%]
Gap left 67.11 21.55 11.04 13.73 11.33
Closed wrt CPLEX root 84.95 90.02 91.22 90.94 91.20
Closed wrt RLT – 68.81 86.19 81.93 85.69

Solved/Timeout at the root
Solved 0 0 3 0 3
Timeout 0 0 3 0 0

Separation time in seconds
Mean 0.00 1.24 425.39 7.23 17.07
Max 0.00 14.50 7139.10 118.30 142.00

Separation time in seconds (exclude time limit)
Mean 0.00 1.02 255.04 5.15 15.06
Max 0.00 14.60 5651.30 98.30 147.20

Number of cuts
Separated Mean 26.98 97.62 748.83 2456.58 433.13
Separated Max 30.00 382.00 4651.00 16491.00 782.00
Applied Mean 26.98 53.72 84.67 78.16 77.34
Applied Max 30.00 137.00 228.00 200.00 168.00

Number of separation rounds
Mean 1.92 47.29 225.28 96.39 216.73
Max 2.00 176.00 1032.00 515.00 376.00

Table 1: Comparing the closures on StQPs of size 30.

and GMSC exceeds the respective arithmetic mean by the smallest amount, but the plots
would look similar for other instances.

Figure 3 shows the evolution of the dual bound from round to round. Even if
GMSC converges towards a stronger dual bound, Bipartite is superior in the first
rounds and shows a very limited tailing off effect. On the contrary, GMSC stalls after
about 200 rounds and after that each round of cuts increases the bound only by a
very small amount.

Figure 4 plots the time used in each round of separation for Bipartite and GMSC

on the same instance. For Bipartite the separation times remain almost constant
at a very low value. For GMSC, in contrast, separation times are modest for the first
rounds but start to increase soon, with outliers taking up to more than 20 seconds.
Such a difference in the separation time between Bipartite and GMSC can be easily
explained: the former separation problem is a binary QP that can be linearized and
solved by MILP techniques, while the latter has a non-convex quadratic continuous
variable (namely α) and requires Spatial Branch & Bound to be solved.

Finally, we analyze the diversity of the graphs that are generated by Bipartite

and GMSC. To this end, we compare each graph that is returned by the separation
problems to all graphs that have been separated previously. The difference between
two bipartite graphs is defined in terms of the partitions: Let M = (M,M̄) and
N = (N, N̄) be two partitions of the same set. Then, define the distance d(M,N )
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RLT Bipartite GMSC GraphPool Hybrid

Average root gap [%]
Gap left 61.14 20.40 10.37 13.66 11.20
Closed wrt CPLEX root 87.94 90.73 91.46 91.23 91.42
Closed wrt RLT – 68.45 86.79 81.10 85.24

Solved/Timeout at the root
Solved 0 0 0 0 0
Timeout 0 0 10 0 0

Separation time in seconds
Mean 0.00 18.07 2183.95 203.22 92.98
Max 0.00 533.10 21488.30 4732.70 2097.00

Separation time in seconds (exclude time limit)
Mean 0.00 2.23 439.81 20.02 28.17
Max 0.00 7.00 8266.00 230.20 121.40

Number of cuts
Separated Mean 45.63 240.19 1771.27 12281.52 676.42
Separated Max 50.00 2068.00 9230.00 76722.00 2634.00
Applied Mean 45.63 97.75 159.83 150.72 136.15
Applied Max 50.00 326.00 354.00 447.00 349.00

Number of separation rounds
Mean 1.96 102.91 477.81 285.40 285.59
Max 3.00 583.00 2175.00 1210.00 783.00

Table 2: Comparing the closures on StQPs of size 50.

between the partitions by

d(M,N ) = min(|M4N |, |M4N̄ |),

where 4 is the symmetric difference. Note that M4N = M̄4N̄ , so the above is
well-defined.

Figure 5 plots the minimum distance of every graph to all previous graphs for
Bipartite (5a) and GMSC (5b). Specifically, for each round, the picture reports the
minimum distance of every graph generated at the given round. Since Bipartite

requires only 175 rounds to converge against the 717 required by GMSC, the plot for
GMSC is restricted to the first 175 rounds. The picture clearly shows that Bipartite

tends to separate cuts associated with bipartite graphs that are more diverse with
respect to GMSC. While for Bipartite the vast majority of the graphs has a distance
between 5 and 10 to the previously separated graphs, we see a lot of graphs that are
very similar, e. g., distance smaller or equal to 2, to one of the previous graphs for
GMSC. Frequently we even separate from the same graph multiple times with different
values of α. This is problematic since the resulting cuts in this case are very similar.
Indeed, the more diversity in the observed graphs the more diverse cuts are.

In order to overcome the main drawbacks of GMSC discussed above while trying to
approximate the GMSC bipartite closure as much as possible, we have tried a number
of heuristics to combine the separation of MSC and GMSC bipartite inequalities.
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Detailed results on these heuristic versions are reported in [22]. In this paper, we
focus on two main ideas denoted as GraphPool and Hybrid.

In GraphPool, we adopt a heuristic approach to find violated GMSC bipartite
inequalities without solving the corresponding separation problem (21). Namely, while
separating MSC bipartite inequalities, we store the new graphs (i. e., the partitions)
that get separated in a graph pool. After adding the MSC bipartite inequalities, we
compute the GMSC bipartite inequalities from all graphs in the pool with respect to
the current relaxation solution (x∗, Y ∗) and add the violated ones. This approach is
expected to generate a lot of very similar cuts at every round, and thus we rely on
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CPLEX cut purging to discard the ones that are not useful. The repeated separation
of GMSC bipartite inequalities from the same graphs can be seen as a way to “update”
the existing cuts based on the current relaxation solution to cut-off.

In Hybrid, we combine exact separation of MSC and GMSC bipartite inequalities
as follows. First, we optimize over the MSC bipartite closure (i.e., perform Bipartite)
and then we separate up to 200 rounds of GMSC bipartite inequalities (i.e., perform
up to 200 rounds of GMSC). Further, at each separation round of GMSC, we enforce a
deterministic work limit as follows. Let τ0 be the deterministic time2 needed to find
the first violated cut and Φ > 0 a scaling parameter. The additional deterministic
time to find the ith violated cut after finding i−1 of them is then limited by τ̃i = τ0Φi.
In our computations, we chose Φ = 0.9, so we allow less work on every iteration.

The results obtained with GraphPool and Hybrid are reported in the last columns
of Tables 1 and 2 and show that both approaches are quite effective in achieving
the simultaneous goal of closing almost as much gap as generalized MSC bipartite
inequalities at a quite reasonable computational price.

6.3. Branch-and-cut results. Branch-and-cut results obtained with all the
approaches discussed in subsection 6.2 are given in Table 3 for the case d = 30 and in
Table 4 for the case d = 50. The tables have the same structure and report aggregated
results on all the instances that can be solved to optimality by at least one of the
considered approaches. For the case d = 30, only 3 instances cannot be solved within
the time limit of 2 hours, while 10 instances with d = 50 are not solved by any of
the methods within the time limit of 6 hours. Interestingly, all the unsolved instances
are generated with positive diagonal entries and distribution (−10,−5, 0). This is
somewhat not surprising since for those instances the Q-space relaxation (MC-StQP)
is expected to be very weak. Indeed, the negative objective coefficients drive the
relaxation variables Yij towards min(xi, xj), which is typically much further away
from the correct values of xixj than the opposite bound that is 0. For example,
taking xi = xj = 1

n , the correct value would be xixj = 1
n2 , but the linearization

2CPLEX uses a deterministic measure of the work it performes, called ticks, and allows to set
proper deterministic time limits accordingly. See [1, 15] for details.
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variables takes the value Yij = 1
n . Furthermore, on these instances the diagonal

terms are not linearized and thus only the weaker projected RLT inequalities can be
separated instead of RLT equations.

Each of the tables gives separate results on all solved instances and on solved
“hard” instances, where an instance of size d = 30 (resp. d = 50) is considered to be
hard if it takes at least 30 seconds (resp. 300 seconds) to be solved with all compared
approaches. For each of the tested methods and for each class of problems, the
tables report the number of solved instances, the average computing time in seconds,
the shifted geometric mean of the computing times (with a shift of 10 seconds), the
average number of branch-and-bound nodes, the shifted geometric mean of the number
of nodes (with a shift of 100 nodes) and the average percentage gap left at the root
node. Time limits are accounted in the computations on the running time, and out-of-
memory errors (that only happen for CPLEX) are accounted as time limits. Computing
average and geometric mean of the number of nodes is problematic for instances that
are not solved to optimality. To make a fair comparison, the calculations for number
of nodes only consider those instances that all solvers but CPLEX can solve within the
time limit. For CPLEX, the number of nodes processed until running out of memory
or time is used and thus the reported numbers of nodes for CPLEX (which is already
an order of magnitude higher as for RLT) are underestimated.

Solved Time [s] Nodes Root Gap

Avg. S. Geom. Avg. S. Geom. Avg.

All 117 instances solved by at least one
CPLEX 88 2394.6 503.4 238799.2 64871.3 982.6 %
RLT 110 471.9 23.2 17581.6 1975.2 67.3 %
Bipartite 117 245.6 17.3 7951.0 1005.4 21.8 %
GMSC 115 325.4 31.3 1420.0 468.8 11.2 %
GraphPool 117 103.7 14.5 2245.6 533.4 13.9 %
Hybrid 117 92.3 23.0 2060.4 465.3 11.4 %

15 hard instances (all more than 30 seconds)
CPLEX 2 6273.9 4616.2 442361.3 330591.4 1940.2 %
RLT 8 3561.3 1424.8 136804.2 80704.2 55.1 %
Bipartite 15 1850.7 630.3 62796.9 25174.6 21.5 %
GMSC 13 2391.6 726.5 8748.2 4481.3 14.4 %
GraphPool 15 757.4 333.8 15902.9 8837.0 17.0 %
Hybrid 15 608.9 241.7 14538.8 5613.0 15.5 %

Table 3: Branch-and-cut results on StQPs of size 30.

The branch-and-cut results given in Tables 3 and 4 are consistent with the ones
reported in subsection 6.2 for the root node. On the one side, RLT inequalities
appear to be fundamental for StQP, since RLT clearly outperforms CPLEX. On the
other side, MSC and GMSC bipartite inequalities are also very effective. Indeed,
Bipartite outperforms RLT on all the performance indicators reported in the tables
(i.e., number of solved instances, computing time and number of branch-and-bound
nodes), while, in turn, both GraphPool and Hybrid provide a neat improvement over
Bipartite, especially on the hard instances. This indicates that MSC bipartite in-
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Solved Time [s] Nodes Root Gap

Avg. S. Geom. Avg. S. Geom. Avg.

All 110 instances solved by at least one
CPLEX 31 17800.0 13063.7 334357.7 251486.3 1433.6 %
RLT 106 1697.4 167.7 22010.8 4621.9 61.6 %
Bipartite 110 602.2 111.2 5580.8 1668.4 21.5 %
GMSC 110 653.2 194.4 2641.9 675.2 10.9 %
GraphPool 110 248.6 85.4 2647.7 687.2 14.4 %
Hybrid 110 233.0 92.9 2568.6 585.4 11.6 %

16 hard instances (all more than 300 seconds)
CPLEX 6 14053.3 6814.8 163380.6 103019.4 1997.0 %
RLT 12 10190.3 4825.9 114540.0 75263.0 64.1 %
Bipartite 16 3530.8 2081.9 28236.0 20190.5 42.0 %
GMSC 16 2857.7 2012.7 13989.6 5300.7 35.6 %
GraphPool 16 1260.8 988.0 14369.9 5983.9 38.1 %
Hybrid 16 1152.1 858.0 14482.7 6138.1 37.4 %

Table 4: Branch-and-cut results on StQPs of size 50.

equalities are important on top of RLT inequalities and that a “clever” selection of
GMSC bipartite inequalities is also important to improve over MSC bipartite in-
equalities. More precisely, although the number of problems solved to optimality
is the same for Bipartite, GraphPool and Hybrid, separating GMSC bipartite in-
equalities yields a remarkable reduction in the number of nodes, which is reflected in
a significant reduction in the computing times, as mentioned, especially on the hard
instances.

In order to gather more insights on the branch-and-cut results, Figures 6 and 7
show Dolan-Moré performance profiles [10] on all solved instances and on solved hard
instances, respectively. This time, instances of size d = 30 and d = 50 are considered
together. In such plots every approach is compared to the virtual best of all approaches
according to some performance measure, in our case running time. To this end, for
every x ≥ 1, the fraction of the instances where relative performance of the approach
compared to the virtual best is at most x is plotted. Consequently, higher values on
the y-axis (for fixed x) and smaller values on the x-axis (for fixed y) are beneficial.
We omit the results obtained with default CPLEX from the plots because it is clearly
dominated by all the other methods.

The performance profiles confirm the importance of MSC and GMSC bipartite
inequalities. Even from those plots one can conclude that Bipartite outperforms
RLT while in turn GraphPool outperforms Bipartite. Finally, GraphPool appears to
be the best approach if all (solved) instances are considered (Figure 6), while Hybrid

becomes instead the best one if we restrict ourselves to hard instances only (Figure 7).

6.4. Computational results on the instances from [23]. As mentioned
previously, Scozzari and Tardella [23] proposed a combinatorial algorithm for (StQP)
and performed experiments on randomly generated instances from which a subset of
14 instances has been published. The website mentioned in the reference is no longer
active, so we republish the instances on http://or.dei.unibo.it/library/msc. Since
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Fig. 6: Dolan-Moré performance profile for all solved instances.
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Fig. 7: Dolan-Moré performance profile for “hard” solved instances.

some of the instances have very large dimension (up to d = 1000), we impose a time
limit of 12 hours.

Table 5 summarizes the results on this testset. Our callback is able to separate
a cut at the root on 6 out of the 14 instances. Two instances (Problem 30x30 0.75
and Problem 50x50 0.75) are solved to optimality as soon as RLT inequalites are
separated (i. e., in all configurations but CPLEX). Table 5 reports time to optimality
and number of nodes for these two instances. The last column shows the average root
gap of those 6 instances on which our callback separates at least one cut.

The results are consistent with those of the previous sections. Although MSC
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Problem 30x30 0.75 Problem 50x50 0.75 Root Gap

Time [s] Nodes Time [s] Nodes Avg.

CPLEX 43200.0 1370290 43200.0 276080 4147.5 %
RLT 43.1 5130 7962.6 119634 50.6 %
Bipartite 12.2 1224 669.9 3239 11.2 %
GMSC 26.3 60 4344.6 413 13.7 %
GraphPool 14.9 494 513.6 440 9.2 %
Hybrid 31.5 63 254.0 440 8.8 %

Table 5: Results on instances from [23] affected by RLT or (G)MSC inequalities.

and GMSC bipartite inequalities do not allow to solve more instances than RLT, they
greatly reduce the root gap, as well as the time to optimality and the number of
nodes. As before, GraphPool and Hybrid show the best compromise between time
needed for separation and impact on the root gap and overall solution time. Finally,
note that the 14 instances are among the hardest that the combinatorial algorithm
[23] can solve within 1 or 2 hours of time limit, so the overall reduced gaps are quite
satisfactory.

7. Generalization. While so far we focused on the set Γ where x is in the
standard simplex, we now want to generalize MSC inequalities and GMSC bipartite
inequalities to more general sets. In a first step, we will show that an upper bounding
inequality on the sum of the x variables suffices. In a second step, we will generalize
to coefficients different than 1.

The theorem of Motzkin-Straus establishes a relation between the clique number
of a graph and the optimization of a quadratic function over the standard simplex.
The objective matrix is the adjacency matrix of the graph. In that QP the objective
coefficients are non-negative, thus any solution with eTx < 1 can be improved by a
positive factor scaling, where e denotes the vector of all ones. Following this argu-
mentation, we can relax the condition on x in the definition of the set Γ and show
that MSC inequalities are valid for set

Γ≤ =
{

(x, Y ) ∈ Rd × (Rd × Rd)
∣∣ Y = xxT , eTx ≤ 1, x ≥ 0

}
,

where equation eTx = 1 is relaxed to an inequality.

Lemma 6. MSC inequalities are valid for all points (x, Y ) ∈ Γ≤.

Proof. Consider a graph G and a given (x, Y ) ∈ Γ≤. Let

β =
1

eTx
,

be the scaling factor. Note that β ≥ 1 is constant for fixed x. The vector x̄ = βx is
in the standard simplex such that

〈A, Y 〉 = xTAx ≤ β2xTAx = x̄TAx̄ ≤ 1− 1

ω(G)
.

The next step is to replace the simplex inequality eTx ≤ 1 with a more general
constraint aTx ≤ b and to also relax non-negativity, i. e., to approximate the set

Γa,b =
{

(x, Y ) ∈ Rd × (Rd × Rd)
∣∣ Y = xxT , aTx ≤ b, aixi ≥ 0,∀i ∈ V

}
.
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The condition aixi ≥ 0 ensures that xi is non-negative if ai is positive and non-positive
if ai is negative.

A similar scaling argument as above is used to generalize the MSC inequality.
This time, the coefficients a and the right hand side b also determine the coefficients
of the cut.

Theorem 7. Let a ∈ Rd, b > 0. Then, the following inequalities are valid for
Γa,b:

1. Motzkin-Straus Clique inequalities∑
(i,j)∈E

aiaj
b2

Yij ≤ 1− 1

ω(G)
,(22)

where G = (V,E) is a simple graph.
2. Generalized MSC bipartite inequalities

∑
i∈M

∑
j∈M̄

aiaj
b2

Yij ≤ fα
(∑
i∈M

ai
b
xi

)
,(23)

where M ⊂ V and fα is the tangent to the function g(z) = z−z2 at α ∈ [0, 1].

Proof. Consider (x, Y ) ∈ Γa,b and define (x̄, Ȳ ) as

x̄i =
ai
b
xi,

Ȳij =
aiaj
b2

Yij .

Node that x̄ ≥ 0 and, by construction, eT x̄ ≤ 1 and Ȳ = x̄x̄T and thus (x̄, Ȳ ) ∈ Γ≤.
Therefore, the validity of (22) follows directly from the previous lemma, namely

∑
(i,j)∈E

aiaj
b2

Yij =
∑

(i,j)∈E

Ȳij ≤ 1− 1

ω(G)
.

To prove (23), it suffices to realize that the same procedure used to derive the
GMSC bipartite inequalities can be repeated with (x̄, Ȳ ). The only difference is
that we start with the inequality eT x̄ ≤ 1 instead of the equation. Multiplying this
inequality by x̄j gives the inequality∑

i∈V
x̄ix̄j ≤ x̄j ,

which is valid for all x̄j ≥ 0. All remaining operations (addition of inequalities, sub-
traction of terms on both sides of the inequalities) preserve the sense of the inequality
such that the final result is

∑
j∈M

∑
i∈M̄

Ȳij ≤ fα

∑
j∈M

x̄j

 .

This completes the proof.
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Clearly, Γe,1 = Γ≤ and it is easy to see that the scaled MSC inequality (22) is really
a generalization of the MSC inequality. Also, the separation problems (20) and (21)
can be easily adjusted to take the coefficients a and b into account by properly scaling
the solution (x∗, Y ∗) to be cut off.

We end the section by noting that Theorem 7 establishes the applicability of
Motzkin-Straus theorem to a surprisingly large family of optimization problems char-
acterized by an indefinite quadratic objective function subject to a linear inequality.
Obviously, such an inequality could also be obtained by aggregation of a large(r)
system of inequalities. This makes of Motzkin-Straus Clique inequalities a rather
universal tool for indefinite quadratic programming.

7.1. Computational Experiments. In section 6 MSC and GMSC bipartite
inequalities have been shown to be extremely effective for StQP. However, it is not
obvious if this result carries over to the generalized version of such inequalities when
applied to more general problems. To start investigating this question we considered
the Quadratic Knapsack Problem (QKP), which is a straightforward generalization of
StQP. In QKP one asks to maximize a quadratic objective function subject to a knap-
sack constraint wTx ≤ c, where x is a vector of binary variables, w are non-negative
weights and c is the non-negative capacity. We considered the continuous relaxation
of QKP because CPLEX reformulates the problem to a MILP if the variables x are bi-
nary. Then, the knapsack constraint is the constraint that is used as basis to formulate
RLT inequalities and (generalized) Motzkin-Straus Clique inequalities.

In our experiments we considered two sets of instances. The first set, referred as
QKP1, is generated by following an approach often used in the literature, see, e. g.,
[9, 12]. There, the instances are parametrized by their size d and density D, i. e., the
fraction of nonzero elements in the objective function. After sampling the nonzero
elements, the objective coefficientsQij = Qji are sampled uniformly from [1, 100]. The

weight wi are sampled uniformly from [1, 50] and the capacity c from [50,
∑d
i=1 wi]. As

for StQP, we use only fully dense objective matrices, i. e., D = 1.0, and we generated
150 instances with size d = 30. The second set of instances, referred as QKP2 in the
following, has the same structure (again 150 instances), but the objective matrices
are sampled as described in subsection 6.1. Instances from both test sets are available
on http://or.dei.unibo.it/library/msc.

Computations were done for the four configurations3 CPLEX, RLT, Bipartite and
Hybrid that are defined as in subsection 6.2. In these experiments, another cutting
plane technique already applied by CPLEX, namely BQP cuts [6, 14], has a substantial
impact. We present results both with BQP cuts disabled, to get a fair comparison
between closures, and with BQP cuts enabled, to evaluate the effect of combined
cutting planes.

Tables 6 and 7 show aggregated results at the root node on instances QKP1 and
QKP2, respectively. For each of the considered settings, the tables report the number
of instances solved, the number of timeouts, the number of instances that are affected
by each class of inequalities, and the average root gaps obtained. An instance is
considered to be affected by a given class of inequalities if at least one cut from that
class is separated.

As seen for StQP, applying RLT inequalities is very beneficial, both in terms of
number of instances solved at the root and of root gap reduction. The effect is more
pronounced on the instances of type QKP1 (Table 6) where 144 out of 150 instances

3In this case, GMSC turns out to be too expensive computationally.
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CPLEX RLT Bipartite Hybrid

BQP disabled

Average root gap [%]
Gap left 5.65 0.29 0.11 0.10
Closed wrt CPLEX root – 80.26 85.21 85.41
Closed wrt RLT – – 39.62 40.84

Solved/Timeout at the root
Solved 6 25 39 39
Timeout 0 0 0 12

Affected
RLT/MSC/GMSC 0/0/0 144/0/0 144/101/0 144/101/47

BQP enabled

Average root gap [%]
Gap left 5.65 0.02 0.00 0.00
Closed wrt CPLEX root – 94.80 95.74 95.74
Closed wrt RLT – – 24.24 24.24

Solved/Timeout at the root
Solved 6 110 144 143
Timeout 0 0 0 2

Affected
RLT/MSC/GMSC 0/0/0 144/0/0 144/103/0 144/101/5

Table 6: Root node results on Quadratic Knapsack instances QKP1.

are affected by RLT, 19 additional instances are solved w.r.t. CPLEX when BQP cuts
are disabled and 104 with BQP cuts enabled. With BQP cuts disabled, the average
gap left is reduced from 5.65 to 0.29 %, Bipartite can then close an additional 39.62 %
gap w.r.t. RLT leaving only 0.11 % on average and solving in total 39 instances at the
root. Surprisingly, separating GMSC bipartite inequalities on top of Bipartite has
almost no effect. Even tough almost one third of the instances is affected, number
of instances solved and gap stay (almost) the same. When the various types of cuts
are combined with BQP cuts, the overall comparison is similar but the gap closed by
all techniques is even more important. Remarkably, Bipartite and Hybrid can solve
almost all instances (with 6 and 7 unsolved instances at the root respectively).

Instances of type QKP2 (Table 7) have much larger average root gap, but show
similar phenomena. On both test sets, RLT and Bipartite contribute to the solution
of several additional instances at the root. On the seconds test set, with BQP cuts
disabled, the effect of Bipartite on the average root gap is very small, but 16 % gap
is closed with respect to RLT. Even if Hybrid allows to solve 3 more instances w.r.t.
Bipartite, GMSC bipartite inequalities appear to be less effective w.r.t. what we
observed for StQP where the impact on the root gap is much more marked. Again
the combination with BQP cuts seems beneficial.

8. Conclusion. We studied cutting planes for standard quadratic programs and
quadratic knapsack. Those cutting planes exploit the relation between those problems
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CPLEX RLT Bipartite Hybrid

BQP disabled

Average root gap [%]
Gap left 124.86 118.44 116.40 115.74
Closed wrt CPLEX root – 22.69 28.14 29.12
Closed wrt RLT – – 16.08 17.78

Solved/Timeout at the root
Solved 24 32 43 46
Timeout 0 0 0 0

Affected
RLT/MSC/GMSC 0/0/0 94/0/0 94/72/0 94/72/73

BQP enabled

Average root gap [%]
Gap left 48.77 45.29 44.63 44.54
Closed wrt CPLEX root – 27.66 37.05 39.76
Closed wrt RLT – – 22.39 26.48

Solved/Timeout at the root
Solved 29 40 55 56
Timeout 0 0 0 21

Affected
RLT/MSC/GMSC 0/0/0 94/0/0 94/80/0 94/72/69

Table 7: Root node results on Quadratic Knapsack instances QKP2.

and the maximum clique problem. By analyzing the relationship between the new
cutting planes and the RLT inequalities, we have shown that, interestingly, (i) MSC
bipartite inequalities are not comparable with first level RLT inequalities, and (ii) the
derivation of GMSC bipartite inequalities generalizes both MSC bipartite inequalities
and first level RLT. Our computational experiments show that both MSC bipartite in-
equalities and GMSC bipartite inequalities allow to get a significantly stronger bound
than first level RLT alone.

Some possible extensions of our approach would be to derive cuts corresponding
to graphs with larger clique number (greater than 2) and to exploit generalized version
of the Motzkin-Straus Theorem [13].
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