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Abstract: Kidney exchange programs enable transplants between incompatible donor-patient pairs: a set
of pairs is chosen in such a way that each selected patient receives a kidney from a compatible donor from
another pair in the set. The pairs are then notified and crossmatch tests are performed for the selected
exchanges. These tests may reveal incompatibilities between pairs, preventing a planned exchange from
proceeding. We study the case in which, if incompatibilities are discovered, a partaker has to withdraw and
a new set of pairs may be selected. The new set should be as close as possible to the initial set in order
to minimize the material and emotional costs of the changes. Various recourse policies that determine the
allowed post-matching actions are proposed. For each recourse policy, a robust model is developed. Besides
the development of a novel adjustable robust optimization model, our contribution includes techniques to
solve exactly the optimization problems at hand. Computational results show that for instances of realistic
size our models can be solved within run times that are acceptable for practice. More importantly, in a
substantial number of instances it is possible to actually protect patients against failures that prevent them
to undergo a transplant. In this regard, our algorithms may offer a significant improvement over current
practice.
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Abstract

Kidney exchange programs enable transplants between incompatible donor-patient pairs: a set of
pairs is chosen in such a way that each selected patient receives a kidney from a compatible donor from
another pair in the set. The pairs are then notified and crossmatch tests are performed for the selected
exchanges. These tests may reveal incompatibilities between pairs, preventing a planned exchange from
proceeding. We study the case in which, if incompatibilities are discovered, a partaker has to withdraw
and a new set of pairs may be selected. The new set should be as close as possible to the initial set
in order to minimize the material and emotional costs of the changes. Various recourse policies that
determine the allowed post-matching actions are proposed. For each recourse policy, a robust model is
developed. Besides the development of a novel adjustable robust optimization model, our contribution
includes techniques to solve exactly the optimization problems at hand. Computational results show that
for instances of realistic size our models can be solved within run times that are acceptable for practice.
More importantly, in a substantial number of instances it is possible to actually protect patients against
failures that prevent them to undergo a transplant. In this regard, our algorithms may offer a significant
improvement over current practice.

Keywords— Kidney exchange, Robust optimization, Integer programming.

1 Introduction

Kidney exchange programs (KEP’s) represent an alternative for patients suffering from end stage kidney
failure to receive a transplant from a living donor (e.g., [17], [35]). If a patient has someone willing to

donate him/her a kidney but patient and donor are physiologically incompatible, the pair can join a pool of

incompatible pairs (the KEP) and if compatibility between donor and patient in different pairs is found, an

exchange is allowed. For the simplest exchange, involving only two pairs P1 and P2, the patient from P1 would

receive a kidney from the donor in P2 and vice-versa. The concept can be extended to k-cycle, when k pairs

are involved in the transplants. The solution of a KEP is a set of disjoint exchange cycles that optimize a given

objective. Figure 1 represents a kidney exchange pool with six pairs. Nodes represent incompatible pairs

and arcs indicate compatibility between pairs. The solution that leads to maximum number of transplants

is represented by cycles (1, 2, 3) and (4, 6) – arcs associated to the planned transplants are represented in

bold.

The example in Figure 1 represents a planned solution (set of kidney transplants) that may totally or

partially fail to go forward if a crossmatch test, that is performed after the pairs that are selected for

transplant, is positive (see [19, 17, 29]). In such cases, pre-planned transplants involving those pairs are
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Figure 1: A kidney exchange program pool and respective solution (in thick lines).

cancelled and, if no recourse actions are implemented, the number of proposed and effective transplants may

substantially differ.

Most works related to the optimisation of KEPs that considers data uncertainty, associate probabilities of

failure to vertices and arcs of the graph. In [5, 15, 23, 33, 37, 31], the authors consider the expected number

of transactions that can go forward by associating probabilities to node and arc failure. However, considering

the expectation is not always tractable or desirable. For instance, in kidney exchanges there is a class of

patients who are highly sensitized, which means that these patients are compatible with only a very small

fraction of kidney donors. The rare matching opportunities that exist for these patients should be protected

against failure. Failure to match highly sensitized patients has led to the accumulation of these patients in

kidney exchange pools and in substantially longer waiting times and higher mortality for these patients [3].

Furthermore, assessing the probability of failure of each node/arc is in many cases impossible due to the lack

of reliable data.

In this research we focus on robust approaches (see for example [6]) that allow us to specify the desired level

of protection from uncertainty, namely, one can decide on the polytope of feasible attacks. A substantial

advantage of using robust optimization is that it requires no assumptions on the underlying probability

distribution. We consider various recourse policies that determine the allowed actions after an initial subset

of transplants is proposed for verification. In our first policy, called simple recourse, we take into account costs

(or missed gains) for failing transactions. Although this policy does not allow failing transaction cycles to be

recovered, it does allow better decisions to be made regarding the set of transactions that is initially proposed

because the possibility of failure is taken into account. In the second policy, called back-arcs recourse, we

allow part of a failing transaction cycle to be recovered if the remaining participants in the cycle can be

transplanted among themselves. In our last policy, full recourse, we allow for a complete recovery of the

initial solution using alternative transactions. We develop robust models for each of the recourse policies and

propose techniques to solve exactly the optimization problems at hand. Computational results show that for

instances of realistic size our robust models can be solved within run times that are acceptable in practice.

More importantly, in a substantial number of instances, it is possible to actually protect patients against

failures that prevent them to undergo a transplant.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of the kidney

exchange problem. Section 3 provides a mathematical description of the robust exchange problem. It first

presents a general model for market uncertainty and then details each policy: the simple recourse, back-arcs

recourse, and full recourse. Section 4 describes our theoretical results for each of these recourse policies.

Section 5 considers a method to refine the robust solution by embedding the robust optimization criteria in

a hierarchical set of criteria. Section 6 then provides computational results. Finally, Section 7 concludes.

2 Kidney exchange programs: an overview

Kidney exchange programs have received substantial attention in recent years as they represent an additional

possibility for patients suffering from end stage kidney disease of being transplanted with a healthy kidney.

National programs have been set up in several countries (e.g. the Netherlands [17], the US [38], the United

Kingdom [35]), under different regulations. Programs also differ on the composition of the pool, as well as

on the objective(s) to optimize. Initially only incompatible patient-donor pairs participated in KEP’s but
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nowadays compatible pairs may also be included. These pairs are given an incentive to participate in the

KEP (e.g., the patient may receive a more suitable kidney than if direct transplant from his/her donor was

done) and benefit the program if they allow more transplants to be triggered. Furthermore, KEP’s can have

altruistic donors (i.e. donors that do not have an associated patient): an altruistic donor donates to a patient

in the KEP, the patient’s associated donor donates to another patient and so forth. The last donor in the

chain either donates to a patient in the deceased donors’ waiting list, or acts as a “bridge donor” for future

matches [16]. Usually chains are also assigned a maximum size, l. In terms of objectives, the maximization

of the number of transplants seems to be the most commonly accepted evaluation criteria considered. But

other criteria such as maximizing the number of blood type identical matches (to maximize the likelihood of

O patients receiving a kidney and to help overcome their disadvantage), or prioritizing allocations based on

the number of involved recipients with a low match probability, are also studied [27].

The clearing problem associated to a KEP can be modelled through Integer Programming. It was formu-

lated as a cycle packing problem in a graph in [1] and the authors provided a branch-and-price algorithm.

Their approach worked well for cycles and chains involving up to three pairs. [27] showed how the pric-

ing problem could be solved efficiently in the cycle and chain length, thereby allowing the branch-and-price

approach to scale better to longer cycles and chains. [16] proposed and analyzed the performance of alter-

native compact edge formulations. The formulations can be adapted to incorporate problem variants such

as the possibility of a patient having multiple donors, or inclusion of altruistic donors. More recently, [22]

presented two new compact IP formulations. Furthermore, they showed that one of those formulations has a

linear programming relaxation that is exactly as tight as the previous tightest formulation known – the cycle

formulation.

All the above referred work considers that the problem is deterministic i.e. that no pairs will dropout of

the program in between pair matching and the actual transplant. However, that is not the case in practice:

pairs can actually withdraw from the program and it can also happen that final crossmatch tests detect

incompatibilities between pre-selected pairs. In both cases the transplants involving those pairs cannot

proceed and the actual number of transplants performed differs from the planned number.

Failure was first considered in [5], who heuristically solved the online clearing problem using scenario

sampling to minimize regret over several future scenarios. In [20], they presented an alternative heuristic

learning approach to deal with uncertain future scenarios. Their approach relied on using weighted myopia.

The same authors optimized the set of proposed transactions considering probabilistic failures, but allowed

no recourse to recover trading cycles [21]. Their approach resembles the simple recourse proposed in this work

in a probabilistic setting. [36] and [30] considered failures in a bilateral exchange setting where transactions
that verify positively must be executed.

Possibilities for recourse in KEPs were first considered in [35]. They introduced the notion of back-arcs

recourse, and gave preference to cycles containing back-arcs in the clearing problem. Back-arcs recourse was

also considered in [33] in a stochastic optimization setting where different probabilities of failure are assumed

for each element. A stochastic model in which, upon failure, remaining pairs that have not been matched

may (repeatedly) be subject to a new assignment was studied in [37]. In [31] the stochastic model is proposed

considering simple and back-arc recourse possibilities. A bi-objective problem is studied with Conditional

Value at Risk as a second criteria.

3 Robust optimization models for kidney exchange programs

Robust optimization was first introduced in [39]. Under the assumption of ‘unknown but bounded’ data, the

goal was to optimize the objective value while guaranteeing feasibility with respect to all realizations of the

data within the considered ‘uncertainty set’. Because Soyster’s approach tends to provide very conservative

solutions, [34, 8, 9, 24, 25] developed new robust optimization frameworks for Integer Programming and

Convex Programming that allow adjusting the size and shape of the uncertainty set to reach a balance between

feasibility and the attainable objective value. Both static and dynamic approaches to robust optimization

have been considered in [12]. In a static uncertain optimization problem, all decisions have to be made before

the actual realizations of the parameters are known. In a dynamic uncertain optimization problem, some
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decisions - the so-called ‘recourse actions’ - may be made after the parameters’ values are known [7, 4, 14, 11].

Dynamic problems are referred to as two-stage or multi-stage problems, depending on the number of stages

in which the decisions can be made. In [7] the authors show that two-stage robust linear programming is

computationally intractable and propose a tractable alternative referred to as affinely adjustable robust linear

programming. Affinely adjustable robustness requires the recourse decision variables to be an affine function

of the realizations of the uncertain parameters.

The problem considered in this paper can be classified as a two-stage dynamic uncertain optimization

problem. In contrast to the robust optimization approaches discussed above, our focus is not on maintaining

feasibility in all scenarios, but instead on maximizing the gains of trade in the worst-case scenario in our

uncertainty set. Exchanges that are infeasible after second stage recourse actions, are considered as lost

exchanges. In this section we present a mathematical description of the robust kidney exchange problem

and propose different recourse policies. More precisely, in Section 3.1 we introduce the general robust model,

in Section 3.2 the recourse policies are described, and in Section 3.3, the robust solution before failure is

compared with the optimal solution for the deterministic case.

3.1 Robust exchange model

Let D = (V,A) denote an unreliable graph where the node set V is composed of two subsets: the set of

incompatible pairs P , and altruistic donors N , V = P ∪ N . The arc set A represents compatibilities. A

length k cycle is a cycle (v1, . . . , vk) in graph D such that {v1, . . . , vk} ⊆ P . A length l altruistic donor chain

is a path (v1, . . . , vl) in graph D such that v1 ∈ N and {v2, . . . , vl} ⊆ P . A solution to the clearing problem

corresponds to a set of vertex disjoint cycles and chains in D with length at most k and l, respectively. For

easiness of representation, consider that maximum cycle and chain length are equal, with value k, and denote

by C the set of all cycles and chains in D with cardinality at most k. For any cycle or chain c ∈ C we denote

by V (c) and A(c) a set of vertices and arcs, respectively, included in c.

As mentioned above, the cycle packing formulation was one of the most effective models for solving the

problem with no uncertainty considered. Define the decision variables xc as

xc =

{
1 if cycle/chain c ∈ C is selected in the planned solution,
0 otherwise.

The cycle packing formulation is written as follows:

max
x

∑
x∈C

wcxc (1)

s.t.
∑

c : v∈V (c)

xc ≤ 1 ∀ v ∈ V (2)

x ∈ {0, 1}|C| (3)

where wc =
∑
a∈A(c) wa denotes the benefit associated to executing a cycle or chain c ∈ C, and wa is a weight

associated to arc a ∈ A. If wc = |P ∩ V (c)| the objective is the maximization of the number of transplants.

In what follows we will refer to the problem (1)-(3) as deterministic problem, and denote by ZD its optimal

value.

In order to address uncertainty, consider U ⊆ 2V ∪A the collection of possible scenarios of ultimately

available nodes and arcs, u = V u ∪Au, V u ⊆ V , Au ⊆ A, i.e. each scenario defines the transplants that can

go forward after verification. A scenario set can be characterized, for example, by homogeneous failure:

Definition 1 The setting in which at most p% of the nodes and arcs can fail is called homogeneouse. This

corresponds to the uncertainty set U := {u = V u ∪Au ⊆ V ∪A : |V u|+ |Au| ≥ (|V |+ |A|)(100− p)%}.

Furthermore, under a given scenario u ∈ U , define a vector ζu = {0, 1}|C|, that indicates the availability

of each cycle and chain under the scenario as follows:

ζuc =

{
1, if V (c) ⊆ V u and A(c) ⊆ Au,
0 otherwise.



DS4DM-2017-007 DATA SCIENCE FOR REAL-TIME DECISION-MAKING 5

To model the robust exchange problem, that determines a solution to the clearing problem that is robust

against uncertainty, Consider a recourse function R(x, u) that specifies the objective value attained under

the recourse policy for the planned solution x = (x1, . . . , x|C|) and the scenario u ∈ U . The robust exchange

problem is given by:

max
x

min
u∈U

R(x, u) (4)

s.t.
∑

c : v∈V (c)

xc ≤ 1 ∀ v ∈ V (5)

x ∈ {0, 1}|C| (6)

The objective (4) is to maximize some objective value, as determined by the selected recourse policy, in

the worst case scenario (defined by the internal minimization problem on set of scenarios U). The packing

constraints (5) guarantee that each pair can be involved in at most one cycle or chain.

One advantage of the robust solution approach is that, opposed to the stochastic optimization, the

probability distribution for the uncertainty scenarios, which might be very difficult, or even impossible, to

achieve, is not needed.

3.2 Recourse policies for kidney exchange programs

There are several kidney exchange programs that consider the possibility of recourse in case of failure of nodes

or arcs between the time that elapses from pair matching and actual transplant. For example, in UK [35]

they test a cycle together with its back-arcs, if they exist. The recourse action on back-arcs is performed in

case of failure of elements of the main cycle. In the Dutch program [17] the cycles are tested sequentially. If

no failure identified, the cycle is fixed, otherwise entire solution is re-optimized.

Although there are ethical reasons to justify such behaviour (a topic that goes beyond the scope of this

paper), it is also commonly agreed among the peers that recourse might be considered as far as it does not

affect pairs that were selected and could proceed to transplant. This motivates for the simple and back-arc

recourse discussed in this paper. The last recourse policy discussed – full recourse – still captures the main

concerns of not significantly affecting previously selected pairs. Although it allows for complete recovery of

the planned solution using alternative exchanges, at the same time it maximizes the number of pairs that are

both in the original planned solution and the one obtained after recourse.

3.2.1 Simple recourse

In this policy we take into account costs (or missed gains) for planned transplants that do not proceed: the

alternative solution that may be selected after verifying the planned transactions consists only of the cycles

and chains in the planned solution for which all nodes and arcs are available. Although it does not allow

failing cycles or chains to be recovered, it ostensibly allows to make better decisions regarding the set of

transplants that is initially proposed because the possibility of failure is explicitly taken into account.

The simple recourse function is defined as:

RSimple(x, u) :=
∑
c∈C

wcζ
u
c xc (7)

If the weights wc = |P ∩ V (C)| for each cycle or chain c ∈ C (i.e. number of transplants, associated to

executing a cycle or chain), then RSimple(x, u) equals the number of arcs belonging to cycles and chains that

are in the planned solution x and are feasible under scenario u.

The simple recourse may appear to be very restrictive as it does not allow failing cycles or chains to be

recovered, however this restrictiveness corresponds to current practice in some kidney exchange programs as

mentioned previously in this section. By taking the possibility of failure already into account in the primary

decision stage, the simple recourse model allows to make better decisions even for those programs. Moreover,
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the model can be easily adapted to be used as a selection criteria among the multiple optimal solutions of

the deterministic program.

3.2.2 Back-arcs recourse

Under this policy we allow part of a failing cycle or chain to be recovered if the remaining participants in the

cycle or chain can be transplanted among themselves.

Definition 2 Let c be a cycle or chain in graph D. An arc a ∈ A : a = (i, j) is called a back-arc for c if

i, j ∈ V (c), but a /∈ A(c).

To formally define this recourse policy we consider additional decision variables, xuc that will identify the

recourse decision under scenario u:

xuc =

 1 if cycle or chain c ∈ C is selected in the recourse solution
under scenario u ∈ U ,

0 otherwise.

The back-arcs recourse function can be written as follows:

RBack-arcs(x, u) := max
xu

∑
c∈C

wcx
u
c (8)∑

c′:V (c′)⊆V (c)

xuc′ ≤ xc ∀c ∈ C (9)

xuc ≤ ζuc ∀c ∈ C, (10)

xu ∈ {0, 1}|C| (11)

The recourse objective (8) maximizes the benefit of the exchanges selected in the final solution given a specific

scenario u ∈ U . Constraints (10) ensure that only available cycles or chains can be selected, while constraints

(9) guarantee that only cycles or chains c′ embedded in cycle c will be chosen.

This policy is relevant as it allows a recovery stage, but does not include new participating nodes, reducing

possible node failures in the recovery plan.

3.2.3 Full recourse

The last recourse policy we consider, called full recourse, allows for a complete recovery of the planned

solution using alternative pairs. The aim is to determine a planned and recourse solution such that the

number of nodes in the intersection of both solutions is maximized.

Using the same notation of previous models, the full recourse is defined as follows:

RFull(x, u) := max
xu

∑
c∈C

 ∑
v∈V (c)

∑
c′:v∈V (c′)

xc′

xuc (12)

s.t.
∑
c:v∈c

xuc ≤ 1 ∀ v ∈ V u (13)

xuc ≤ ζuc , ∀c ∈ C, (14)

xu ∈ {0, 1}|C| (15)

In the recourse objective (12), the coefficient of xuc is the number of nodes from cycle c in the planned

solution x. Thus, the objective (12) maximizes the number of nodes selected in both the initial and the final

solution given a specific scenario u ∈ U . Constraints (13) ensure that nodes can be selected at most once
in the final solution, while constraints (14) guarantee that only cycles or chains available under u can be

selected.
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3.3 Optimality of the robust solution in the deterministic problem

To apply the robust solution in practice it is important to address the question, whether the robust solution

is optimal in the deterministic problem (1)–(3), i.e. the objective values of the recourse solution x∗ in the

deterministic problem, denoted by ZD(x∗), is equal to the ZD. In fact, this is always true if cycles and chains

length limitation is k = 2 and their weight is 2. Following the results in [10], any robust solution (matching)

can be augmented to be a maximum matching enabling us to conclude:

Lemma 1 If k = 2, an optimal solution x∗ for the simple, back-arc and full recourse problem can be augmented

to be a maximum matching (without uncovering nodes present in x∗), i.e. there exists an optimal solution x∗

such that ZD(x∗) = ZD.

For k = 3 and bigger, the optimal robust solution may fail to be optimal to the deterministic case as

examplified below.

Example 1 (Simple and Back-arc recourse case) Consider the instance represented in Figure 2, k = 3,

homogeneous failure setting with at most 4 failing nodes or arcs. The optimal solution x∗ for the simple and

back-arcs recourse robust problem is to have as initial exchange plan the cycles in green (cycles (2,4), (3,5),

(8,10) and (9,10) ), with ZD(x∗) = 8. At least 2 nodes are always maintained after an attack, since such

solution has 5 cycles of size 2, i.e. Z∗ = 2.

On the other hand, for the deterministic case, the optimal solution are the red cycles ((1,3,2), (4,5,6),

(7,8,9) and (10,11,12)) with optimal value ZD = 12, where under the worst failure all 4 cycles are attacked

and no node can be recovered, even under the back-arc recourse.

1 2

3

4

5

6 7 8

9

10

11

12

Figure 2: Compatibility graph.

Example 2 (Full recourse case) Consider the instance represented in Figure 3, k = 3, homogeneous failure

and maximum number of failures is 2. The optimal solution x∗ for the full recourse problem is to have as

initial exchange plan the green cycles ((1,2) and (3,4)) with ZD(x∗) = 4, a number of covered nodes before

failure. At least 2 nodes are always recovered after an attack, since there is a cycle of length 2 between any

of the 4 covered nodes, i.e. Z∗ = 2.

On the other hand, for the deterministic case, the optimal solution are the red cycles ((2,6,5) and (3,7,8))

with ZD = 6 covered nodes before failure; the worst case attack eliminates node 2 and 3, and thus, after

failure, no node from the deterministic solution can be recovered.

1

2

3

46

5 7

8

Figure 3: Compatibility graph.

Nevertheless, our computational results will show that the optimal robust solution is almost always also

optimal for the deterministic problem.
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4 Solving the robust exchange problem

In this section, we present a general approach for solving the robust kidney exchange problem. The pro-

posed delayed scenario generation method is based on the algorithm developed by [2] for “defender-attacker-

defender” models, and essentially differs it in the step requiring generation of the solution corresponding to

the scenario with maximal “damage”, the so-called adversary’s problem. In [2], a Benders decomposition

method is applied, while in our methods, in case of simple and back-arc recourse the adversary’s problem is

modeled by a Mixed Integer Program (MIP). For the case of full recourse we develop a branch-and-bound

algorithm taking advantage of some structural results associated to our special setting. Scenario generation

has been considered in stochastic programming (see e.g. [13]), but to the extend of our knowledge in has not

been used before in adjustable robust optimization.

Moreover, for the simple and back-arc recourse, by use of the properties of the problem, we were able to

formulate the robust problem under this policies as a MIP.

4.1 Delayed scenario generation

Since the set of scenarios U is finite, the robust exchange problem (4)-(6) can be alternatively formulated as
the following large program.

RE(U) := max
Z,x

Z (16)

s.t. Z ≤ R(x, u) ∀ u ∈ U (17)∑
c:v∈V (c)

xc ≤ 1 ∀ v ∈ V

Z ∈ R+ (18)

x ∈ {0, 1}|C|

Here, Z is an auxiliary decision variable and constraints (17) specify that the worst case is taken with respect

to the uncertainty set U .

The first difficulty in solving the robust exchange problem, regardless of the form of recourse, is that the

number of scenarios (and hence the number of constraints (17) in the formulation) is typically prohibitively

large to solve the problem directly as a mixed integer program. To try to overcome this difficulty we develop

the delayed scenario generation algorithm (see Algorithm 1). The main idea of the algorithm is to start with

a small set of scenarios and to generate additional scenarios only when required, i.e. when the corresponding

constraint (17) is violated. We will see that for full recourse (see section 4.4) the generation of a new scenario

implies simultaneous generation of a row and a column in the problem (16)-(18).

Algorithm 1 initializes the set of scenarios Ū with the scenario where all vertices and arcs are available

(Step 1). Then, in Step 2, RE(Ū) is solved. For the obtained solution, in Step 3 it is verified if there is a

scenario capable of decreasing the number of exchanges. If there is, in Step 4 that scenario is added to the

set Ū . Otherwise, the optimal solution is returned.

Algorithm 1 Delayed scenario generation algorithm

1: Let Ū := {N ∪A}.
2: Solve RE(Ū), let (Z∗, x∗) be the optimal solution.
3: if ∃u ∈ U\Ū such that RE(Ū ∪ {u}) < RE(Ū) then
4: Set Ū ← Ū ∪ {u} and go to Step 2.
5: else
6: Return (Z∗, x∗).
7: end if

Due to the finiteness of U , Algorithm 1 terminates in a finite number of iterations. This allows us to

claim the following.
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Proposition 1 Algorithm 1 returns the optimal solution to the robust exchange problem RE(U).

Proof. Indeed, due to Step 3, there is no u ∈ U\Ū such that RE(U ∪ {u}) < RE(U). Hence, all con-

straints (17) are satisfied by the returned solution x∗ and that solution is optimal to RE(U). �

In order to verify Step 3 of the algorithm, given a planned solution x, we can compute the worst case
scenario by solving the following adversary’s problem:

A(x) := min
u∈U

R(x, u) (19)

The objective of the problem minimizes the benefits after a recourse decision is taken.

As Step 3 of the algorithm is equivalent to solving (19), Proposition 2 below holds.

Proposition 2 Let (Z∗, x∗) denote an optimal solution to the robust exchange problem RE(Ū). Furthermore,

let u∗ denote an optimal solution of the adversary’s problem A(x∗) with objective value z∗. There exists no

scenario u ∈ U\Ū such that RE(Ū ∪ {u}) < RE(Ū) if and only if z∗ ≥ Z∗.

Proof. If there is no scenario u ∈ U\Ū such that RE(Ū ∪ {u}) < RE(Ū), by Proposition 1 we may conclude

that (Z∗, x∗) is the optimal solution of the problem RE(U). Hence Z∗ ≤ R(x∗, u) ∀u ∈ U and we establish

that Z∗ ≤ z∗ (as z∗ = minu∈U R(x∗, u).

In another way, if z∗ ≥ Z∗, then we may conclude that all the constraints (17) are satisfied and x∗ is

optimal solution. Hence there can not exist scenario u ∈ U\Ū such that RE(Ū ∪ {u}) < RE(Ū). �

In the following subsections we will apply this methodology for the considered recourse functions. For

the sake of simplicity and due to the fact that there is no relevant public data that allows us to build

the constraints defining the uncertainty scenarios, we restrict our analyses to homogeneous failure (i.e. the

uncertainty set corresponds to the cases where at most p% of the nodes and arcs fail). For the cases of simple

and back-arc recourse this assumption will allow us to propose an alternative way of solving the problem by

reducing it to an equivalent mixed integer program.

Nevertheless, the proposed methodology can be generalized for the cases of non-homogeneous failure or

cycles/chains of bigger size, if the the set of scenarios can be represented by a system of linear constraints and

function R(x, u) is also linear. In this case, both for simple and back-arc recourse the adversary’s problem

is modeled as a mixed integer program, and can be solved by standard optimization solvers. For the full

recourse problem the algorithm proposed in section 4.4.1 can be directly applied.

4.2 Simple recourse

To adapt the proposed methodology for solving the robust exchange problem with simple recourse, we start

by presenting the corresponding adversary’s problem:

ASimple(x) := min
u∈U

∑
c∈C

wcζ
u
c xc. (20)

The robust exchange problem for the simple recourse is written as follows:

RESimple(U) := max
Z,x

Z (21)

s.t. Z ≤
∑
c∈C

wcζ
u
c xc ∀ u ∈ U (22)∑

c:v∈V (c)

xc ≤ 1 ∀ v ∈ V

Z ∈ R+ (23)
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x ∈ {0, 1}|C|

When Algorithm 1 is applied to this problem, the adversary’s problem (20) is solved in Step 3 until the

condition of Proposition 2 is satisfied. For homogeneous failure setting, let us denote by let b = bp%(|N |+|A|)c
an uncertainty ’budget’ (number of vertices and arcs to be attacked). Then a straightforward strategy for the

adversary is to cancel the b most valuable cycles and chains, as a single arc or node failure completely cancels

them. In our implementation, from the set of most valuable cycles we create a scenario which interdicts the

vertices that participates in the largest number of cycles or chains.

4.2.1 MIP model for solving the simple recourse robust KEP

Considering the observation above, we can simplify the adversary’s problem by replacing node and arc failure

with cycle and chain failure. We do so by transforming a vector ζu into a decision variable vector ζ, such

that ζc = 1, if cycle or chain c is chosen to be attacked, 0 otherwise for c ∈ C, and rewrite the adversary’s

problem as:

ASimple(x) := min
ζ

∑
c∈C

wcxcζc (24)

s.t.
∑
c∈C

ζc ≥ |C| − b (25)

ζc ≤ 1 ∀c ∈ C (26)

ζ ∈ {0, 1}|C| (27)

By use of sufficient conditions from [40] it can be shown that the constraint matrix of the ASimple(x) is

totally unimodular (see proof in Appendix 8.1). As a result, one can conclude that every extreme point of

the feasible region is integral and constraints (27) can be relaxed.

Using strong duality on the relaxation of the adversary’s problem (24) – (26) and letting r denote the

dual of constraint (25) and hc, c ∈ C be the dual of the unit upper bounds (26), we can obtain an equivalent

mixed integer programming formulation of the robust exchange problem under simple recourse as follows:

MIPSimple := max
x,v

(|C| − b) r −
∑
c∈C

hc

s.t.
∑

c∈C(k):n∈c

xc ≤ 1 ∀v ∈ V

r − hc ≤ wcxc ∀c ∈ C

xc ∈ {0, 1} ∀c ∈ C

r ≥ 0

hc ≥ 0 ∀c ∈ C

Although the above model is still a mixed integer program, its size is smaller than that of formulation

RESimple.

4.3 Back-arcs recourse

In this section we build solution approaches to the robust exchange problem with back-arcs recourse. Similarly

to the analysis for the simple recourse, we begin by considering the adversary’s problem:
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ABack-arcs(x) := min
u∈U

RBack-arcs(x, u)

where RBack-arcs(x, u) is defined in (8)-(11)

Since the back-arcs recourse function, RBack-arcs(x, u) is a maximization problem, the adversary’s problem

is, in the general case, a non-linear optimization problem. However, when k = 3 and considering wc =

|P ∩V (c)| for all c ∈ C (i.e. we want to maximize the number of transplants) the adversary’s problem can be

linearized. By definition, back-arcs do not exist for cycles of length 2 and back-arcs recourse is meaningless

for chains of length 2, then we only have to consider recourse actions for cycles and chains of length 3. There

are four possible configurations for back-arc reaction in chains of size 3 (see Figure 4 (a)–(d)), and four

possible configurations for cycles of the same size (see Figure 4 (e)–(h)). Note that, in the absence of failure,

a length 3 chain involves 2 pairs from P (set of incompatible pairs), i.e. wc = 2, and a length 3 cycle involves

3 pairs from P , wc = 3.

A 1 2 A 1 2 A 1 2 A 1 2

(a) Attack on vertex A or
1 will cancel any chain

(b) Attack on vertex A
will cancel any chain

(c) Attack on vertex 1 will
cancel any chain and cy-
cle (1, 2)

(d) Need to attack two
vertices to cancel any
chain and cycle

1 2

3

1 2

3

1 2

3

1 2

3

(e) Attack on any vertex
1, 2 or 3 will cancel the
cycle

(f) Attack on vertex 1 or
3 will cancel any cycle

(g) Attack on vertex 1
will cancel any cycle

(h) Need to attack two
vertices to cancel all cy-
cles

Figure 4: Configurations of back-arcs for cycles and chains of length 3.

In the first three cases for chains (Figure 4, (a)-(c)) and cycles (Figure 4, (e)-(g)) a single node failure is

sufficient to forbid all nodes in the chain to be recovered, but in the last cases (Figure 4, (d) and (h)), two

failures are required. According to this reasoning, next we reformulate the adversary’s decision variables to

obtain a linearization of the back-arcs recourse function RBack-arcs(x, u).

Let C̄ ⊂ C be as set of chains and cycles of types (d) and (h). For cycles in this subset consider an additional

parameter: ξuc = 1, if there exists another cycle c′ ∈ C involving only vertices of c (i.e. V (c′) ⊆ V (c)) and

that cycle c′ was not attacked (i.e. ζuc′ = 1). Using these parameters, the back-arcs recourse function can be

rewritten as a linear function:

RBack-arcs(x, u) =
∑
c∈C\C̄

wcxcζ
u
c +

∑
c∈C̄

xc(ζ
u
c + (wc − 1)ξuc ) (29)

When both ζuc = ξc = 1 there was no failure in cycle c ∈ C, and the objective coefficient is equal to the

weight of the cycle, wc. If ζuc = 0, but ξuc = 1 then cycle c was attacked and partly recovered by back-arc

recourse, so the value of this cycle in the objective function is (wc − 1).

Thus the robust exchange problem under back-arcs recourse is written as follows:

REBack-arcs(U) := max Z (30)

s.t. Z ≤
∑
c∈C\C̄

wcζ
u
c xc+

+
∑
c∈C̄

(ζuc + (wc − 1)ξuc )xc ∀u ∈ U (31)
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∑
c∈C:v∈V (c)

xc ≤ 1 ∀v ∈ V

x ∈ {0, 1}|C|

In the following section we will discuss how to solve the problem in Step 3 (the adversary’s problem) of the

delayed scenario generation algorithm.

4.3.1 Solving the adversary’s problem

Recall that homogeneous failure is assumed, and let uncertainty budget b = bp%(|N | + |A|)c. Similarly to

simple recourse we transform ζu and ξu into decision variables ζc for c ∈ C and ξc for c ∈ C̄. Variable ξc is set

to 1 if cycle or chain c was not attacked, or was attacked only once. The adversary’s problem is rewritten as:

ABack-arcs(x) :=

min
ζ,ξ

∑
c∈C\C̄

wcxcζc +
∑
c∈C

xc(ζc + (wc − 1)ξc ) (32)

s.t.
∑
c∈C

ζc +
∑
c∈C

ξc ≥ |C|+ |C| − b (33)

ζc ≤ ξc ∀c ∈ C (34)

ξc ≤ 1 ∀c ∈ C (35)

ζc ∈ {0, 1} ∀c ∈ C
ξc ∈ {0, 1} ∀c ∈ C

Here, the objective (32) is to minimize the number of patients receiving a kidney under the back-arcs

recourse as specified by (29). Constraints (33) specify the adversary’s uncertainty ‘budget’ in the homogeneous

failure setting. Constraints (34) guarantee that chains and cycles of set C̄ are not canceled entirely unless they

contain two failures. Constraints (35) are redundant but are added to aid the exposition of the remaining of

our analysis.

Denote by A′Back-arcs(x) the relaxed adversary’s problem with no binary requirements on variables ζ and

ξ. We now provide greedy strategy to built a feasible solution to A′Back-arcs(x) and prove that such solution

is optimal. As a consequence, a lower bound to ABack-arcs(x) is determined. We also compute a binary

feasible solution to ABack-arcs(x) for which the objective value coincides with the determined lower bound.

As a conclusion, a solution to ABack-arcs(x) is immediate after solving its relaxation.

Let us partition the set of cycles and chains that need two attacks to be completely eliminated for all

their vertices into two subsets: C̄ = C̄N ∪ C̄P , where C̄N is a set of chains with configuration as in Figure 4
(d), and C̄P is a set of cycles with configuration as in Figure 4 (h).

A cycle or chain c in a solution, xc = 1, can be characterized by the ratio ρ =
wc
b(c)

between wc, which

corresponds to the decrease in the objective function of A′Back-arcs(x) by completely eliminating c, and b(c),

the number of vertices that must fail in order to completely eliminate c. ρ can be interpreted as “gain” of

adversary per “unit” of attack. By using this ratio, the cycles in a solution x can be partitioned into the

following sets Cρ, according to the value of ρ:

C3 = {c ∈ C − C̄P : wc = 3 and xc = 1}
C2 = {c ∈ C − C̄N : wc = 2 and xc = 1}
C1.5 = {C̄P : xc = 1}
C1 = {c ∈ C : wc = 1 and xc = 1}
C ′1 = {c ∈ C̄N : xc = 1}.



DS4DM-2017-007 DATA SCIENCE FOR REAL-TIME DECISION-MAKING 13

In this way, a natural greedy strategy to built a solution to A′Back-arcs(x) is described in Theorem 1 (see

the proof in Appendix 8.2).

Theorem 1 Consider the setting with back-arcs recourse and homogeneous failure. Let k = 3, x be an

arbitrary feasible solution to the robust exchange problem, and b = bp(|N | + |A|)c. An optimal solution to

A′Back-arcs(x) is described below depending on the value of b.

1. If b ≤ |C3|, set ζc = 0 for b cycles of C3 and the remaining variables of A′Back-arcs(x) equal to 1.

2. If |C3| < b ≤ |C3|+ |C2|, set ζc = 0 for all c ∈ C3, ζc = 0 for b− |C3| chains and/or cycles of C2 and

the remaining variables of A′Back-arcs(x) equal to 1.

3. If |C3|+ |C2| < b ≤ |C3|+ |C2|+2|C1.5|, set ζc = 0 for all cycles of C3∪C2, ζc = ξc = 0 for b b−|C3∪C2|
2 c

cycles of C1.5, ζc = ξc = 1
2 for one distinct cycle of C1.5 if b − |C3 ∪ C2| is odd and the remaining

variables of A′Back-arcs(x) equal to 1.

4. If |C3|+ |C2|+ 2|C1.5| < b ≤ |C3|+ |C2|+ 2|C1.5|+ |C1|, set ζc = 0 for all c ∈ C3 ∪ C2 ∪ C1.5, ξc = 0

for all c ∈ C1.5, ζc = 0 for b − |C3 ∪ C2| − 2|C1.5| elements of C1, and the remaining variables of

A′Back-arcs(x) equal to 1.

5. If |C3| + |C2| + 2|C1.5| + |C1| < b ≤ |C3| + |C2| + 2|C1.5| + |C1| + 2|C ′1|, set ζc = 0 for all c ∈
C3 ∪ C2 ∪ C1.5 ∪ C1, ξc = 0 for all c ∈ C1.5, ζc = ξc = 0 for b b−|C3∪C2|−2|C1.5|−|C1|

2 c elements of C ′1,

ζc = 0 for distinct element of C ′1 if b− |C3 ∪ C2| − 2|C1.5| − |C1| is odd and the remaining variables of

A′Back-arcs(x) equal to 1.

6. If b > |C3|+ |C2|+ 2|C1.5|+ |C1|+ 2|C ′1|, set ζc = 0 for all c ∈ C3 ∪C2 ∪C1.5 ∪C1 ∪C ′1, ξc = 0 for all

c ∈ C1.5 ∪ C ′1.

Corollary 1 In case of back-arcs recourse, homogeneous failure and k = 3, the optimal value of ABack-arcs(x)

is equal to the optimal value of A′Back-arcs(x) rounded up.

Proof. The optimal value for A′Back-arcs(x) rounded up gives a lower bound to the adversary’s problem

ABack-arcs(x) and can be obtained through Theorem 1. Note that case 3 of Thereom 1 is the only one for

which the optimal solution of A′Back-arcs(x) might fail to be binary (and thus, unfeasible to ABack-arcs(x)). In

this way, it remains to show that under this situation, by rounding up the optimal value of A′Back-arcs(x), the

optimal value for ABack-arcs(x) is obtained.

For case 3, at most two variables, ζc and ξc for some c ∈ C1.5, are equal to 1
2 . By making ζc = 0 and

ξc = 1, the solution becomes a feasible solution to ABack-arcs(x) and the objective value increases by 1
2 which

is equal to the optimal value of A′Back-arcs(x) rounded up. �

When applying Algorithm 1 to solve the robust exchange problem with back-arc recourse, Step 3 implies

the cancellation of cycles and chains according to the greedy strategy defined in Theorem 1. Similarly to

simple recourse (see the end of Section 4.2), from the set of cycles and chains to be canceled we create a

scenario that interdicts the vertices that participate in the largest number of cycles.

4.3.2 MIP for solving the back-arcs recourse robust exchange problem

Corollary 1 can be used to build a mixed integer program for solving the robust exchange problem with back-

arcs recourse. Recall that A′Back-arcs(x) denotes the relaxed adversary’s problem. By making this relaxation,

the adversary has a larger set of feasible strategies and thus is potentially inducing more damage to the

planned solution. This is the reason why we get a lower bound to the robust exchange problem by relaxing

the integrality of the adversary’s variables. By applying strong duality on A′Back-arcs(x) the following linear

formulation can be build:

MIP ′Back-arcs(U) :=

max
x,v

(
|C|+ |C| − b

)
r −

∑
c∈C(3)

hc (36)
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s.t.
∑

c∈C:v∈V (c)

xc ≤ 1 ∀v ∈ V

r − hc ≤ wcxc ∀c ∈ C\C (37)

r + h̄c − hc ≤ (wc − 1)xc ∀c ∈ C (38)

r − h̄c ≤ xc ∀c ∈ C (39)

xc ∈ {0, 1} ∀c ∈ C
r ≥ 0

hc ≥ 0 ∀c ∈ C
h̄c ≥ 0 ∀c ∈ C

where r, h̄c and hc are the dual variables associated with constraints (33), (34) and (35), respectively.

The above formulation is a straightforward MIP that provides a lower bound to the original robust

exchange problem. In fact, we will prove that from the optimal adversary’s relaxed solution, a binary feasible

interdiction can be determined such that the objective function does not increase by more than 1
2 , and thus,

the optimal solution for the back-arcs recourse is attained. Before that, we illustrate this situation in the

following example.

Example 3 Consider the market graph represented in Figure 5 in which at most 2 nodes can fail. We have

the set of cycles C(3) = {c1 = 〈1, 2〉 , c2 = 〈2, 3〉 , c3 = 〈1, 3〉 , c4 = 〈4, 5〉 , c5 = 〈1, 2, 3〉 , c6 = 〈3, 2, 1〉} and

C ′′(3) = {c5, c6}.

1 2

3

4

5

Figure 5: Compatibility graph of example 3

The optimal solution to the robust exchange problem with back-arcs recourse is to select cycles c4 and

c5 with objective value equal to 2. Although the optimal solution for the relaxed robust exchange problem

MIP ′Back-arcs(U) leads to the same planned solution, the objective value is equal to 1.5, since the adversary

variables need not be binary and will be chosen as follows: ζc1 = 1, ζc2 = 1, ζc3 = 1, ζc4 = 0, ξc5 = ζc5 =
1
2 , ξc6 = ζc6 = 1.

Corollary 2 In case of back-arcs recourse, homogeneous failure and k = 3, the optimal value for the ro-

bust exchange problem REBack-arcs(U) is equal to the optimal value of the relaxed robust exchange problem

MIP ′Back-arcs(U) rounded up.

Proof. Recall that by Corollary 1 the optimal value ofABack-arcs(x) is equal to the optimal value ofA′Back-arcs(x)

rounded up. We prove that the result propagates to the objective values ofREBack-arcs(U) andMIP ′Back-arcs(U).

Let x∗ and x∗∗ be the optimal solutions to REBack-arcs(U) and MIP ′Back-arcs(U), respectively. By construction,

it holds that

A′Back-arcs(x
∗) ≤ A′Back-arcs(x

∗∗) ≤ ABack-arcs(x
∗∗) ≤ ABack-arcs(x

∗).

Since the value of ABack-arcs(x
∗∗) is integer, rounding up A′Back-arcs(x

∗) we get a value less or equal to

ABack-arcs(x
∗∗). This enables us to conclude that x∗∗ must be optimal to REBack-arcs(U). �
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4.4 Full recourse

In this section discuss the application of Algorithm 1 for solving the robust exchange problem with full

recourse. To start we consider a reformulation of the recurse function, that will allow us to reformulate the

robust exchange problem REFull(U) as a linear integer program.

The full recourse function RFull(x, u) is defined by problem (12)–(15). Let us consider the following

additional decision variables:

yuv =

 1 if vertex v ∈ V is selected in both the planned solution
and the final solution under scenario u ∈ U ,

0 otherwise.

Then we can rewrite the full recourse function as:

RFull(x, u) := max
xu,yu

∑
v∈V

yuv (40)

s.t. yuv ≤
∑

c:v∈V (c)

xc ∀ v ∈ V (41)

yuv ≤
∑

c:v∈V (c)

xuc ≤ 1 ∀ v ∈ V u (42)

xuc ≤ ζuc ∀c ∈ C (43)

yu ∈ R|V |+

xu ∈ {0, 1}|C|

As before, the objective (40) is to maximize the number of vertices in the intersection of the planned and

the final solution given the scenario u ∈ U . Constraints (41) check whether a node is in the planned solution

and constraints (42) check whether a node is in the final solution. Constraints (43) ensure that only available

cycles and chains are used on the second stage.

The advantage of this formulation is that we can now again replace the recourse function in the robust
exchange problem (4)-(6) and write it as the following linear problem:

REFull(U) := max Z

s.t. Z ≤
∑
v∈V

yuv ∀ u ∈ U (44)

yuv ≤
∑

c:v∈V (c)

xc ≤ 1 ∀ u ∈ U , v ∈ V (45)

yuv ≤
∑

c:v∈V (c)

xuc ≤ 1 ∀ u ∈ U , v ∈ V u (46)

xuc ≤ ζuc ∀c ∈ C, u ∈ U (47)

Z ∈ R+

yu ∈ R|V |+ ∀ u ∈ U (48)

x, xu ∈ {0, 1}|C| ∀u ∈ U . (49)

In the following section we present the approach for solving of adversary’s problem for full recourse, when

applying Algorithm 1. Notice, that differently from simple and back-arcs recourse, where adding a scenario

u to the RESimple and REBack−arcs formulations corresponds to generating a row, for the full recourse

the addition of scenario implies simultaneously generating the relevant rows in (44), (45) and (46) and the

relevant columns associated with the variables yu and xu.



16 DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-007

4.4.1 Solving the adversary’s problem

The adversary’s problem for the full recourse reads as:

AFull(x) := min
u∈U

RFull(x, u) (50)

It was proven in [28] that this problem is NP-hard. In what follows we develop a branch and bound method

for solving exactly the adversary’s problem AFull(x
∗) (Algorithm 2).

Let x∗ denote an optimal solution to the robust exchange problem RE(Ū). The algorithm does branching

on the vertices and arcs in the exchange graph D. It starts by initializes the queue Q of active nodes of the

search tree with root node t, which has no arcs and vertices fixed: F 0(t) = F 1(t) = ∅ (see lines 1-4).

The algorithm terminates, returning the best found solution, if the list Q of active nodes of the tree

is empty (lines 5-7). Otherwise, it chooses node t ∈ Q to explore (see line 8), in our implementation, by

applying depth first search strategy. Scenario ut is formed by vertices and arcs, interdicted on the path from

root node to t (i.e., those belonging to set F 0(t)) and filled to have maximal attack (line 9). For the case of

homogeneous failure, the latter implemented by interdicting vertices and arcs, that are not fixed yet (do not

belong to F 0(t) or F 1(t)) until uncertainty budget b is available (i.e. until |V u| + |Au| = |V | + |A| − b. To

choose elements to be interdicted we applied simple greedy strategy, cancelling the cycles and chains with

the maximum value. Objective value of recourse function RFull(x
∗, ut) provides an integral upper bound for

node t, while the lower bound LBt is obtained by objective value of adversary’s problem for simple recourse

ASimple(x, u
t) (see lines 9-12).

If the scenario ut already leads to an objective function smaller than RE(Ū) (line 19), the algorithm stops

as that is the goal of this scenario generation subproblem (recall Step 3 of Algorithm 1 and Proposition 2).

Whenever for any node in the search tree the lower bound is no better than the best upper bound found so

far or the uncertainty budget is fully explored, that node’s subtree can be pruned (see lines 22–24).

Finally, if the node was not pruned, the branching is performed on the element τ (vertex or acr) from

scenario ut (τ /∈ V u ∪Au) that have not been fixed yet (do not belong to F 0(t) or F 1(t)), and two branches

are created (see lines 25-29).

There may be proposed different ways on improvement the bounds for the nodes in the tree. One of them

is presented in Appendix 9 for the calculation of better upper bounds that can be particularly good for nodes
near the root of the branch-and-bound tree.

5 Refinement of the robust solution

In KEP there may be multiple solutions that are optimal with respect to the chosen objective. Preliminary

experiments suggest that this may also happen for our robust exchange models.

The most common approach to deal with multiple optimal solutions is to use a set of tie-breaking rules

or secondary criteria [35, 27]. A set of multiple objectives may be combined into a single objective function

by including a separate term for each criterion under consideration. Each term is then multiplied with the

relative weight attached to the criterion it models. It is very common in kidney exchange for the criteria

to be hierarchically ordered [18, 35, 32]. The objective weights should then be scaled such that the first

criterion is indeed more important than the second, the second criterion more important than the third, etc.

Alternatively, in case of hierarchical criteria, an iterative lexicographic approach may be considered [27].

In Section 6, we compare the deterministic problem with no vertices failure (only the best scenario

U = {N ∪ A} is taken into account) and worst case scenario for at most b vertices failure (takes into

account all scenarios U := {u ⊆ V ∪ A : |V u| ≥ |V | − b, |Au| = |A|}). Frequently, an optimal solution to

the deterministic problem performs equally to an optimal robust solution in the worst case scenario. This
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Algorithm 2 Solving the scenario generation subproblem AFull(x
∗)

Require: solution x∗

Ensure: Optimal solution (z∗, u∗) for the adversary’s problem AFull(x
∗)

//Initialization

1: Create a queue Q with one node t,
2: F 0(t) = ∅ and F 1(t) = ∅ sets of vertices fixed to 0 and 1, respectively, defining branches of the tree.
3: Solution u∗ = None

4: Objective value z∗ ←∞.
//Termination

5: if Q = ∅ then
6: return (z∗, u∗)
7: end if

//Problem selection and relaxation

8: Select and remove a node t from Q
9: Construct scenario ut: ut = F 0(t) and fill it to have maximal attack

10: if |F 0(t)| ≤ b then
11: UBt ← RFull(x

∗, ut)
12: LBt ← ASimple(x∗, ut)
13: if UBt ≤ z∗ then
14: Update best solution: u∗ ← ut, z∗ ← UBt

15: end if
16: else
17: Go to line 5
18: end if

//Optimality checking

19: if UBt ≤ RE(Ū) then
20: return (z∗, u∗)
21: end if

//Pruning

22: if |F 0(t)| = b or LBt ≥ z∗ then
23: Go to line 5
24: end if

//Branching

25: Choose an element τ (a vertex or an arc) from ut and create two new nodes:
26: t0, F 0(t0)← F 0(t) ∪ τ , F 1(t0)← F 1(t)
27: t1, F 0(t0)← F 0(t), F 1(t0)← F 1(t) ∪ {τ}
28: Add new nodes: Q← Q ∪ {t0, t1}
29: Go to line 5
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traduces in the fact that there are multiple optimal robust solutions and thus we would like to select the one

among them that performs best in the optimistic scenario.

In order to select the optimal solution for the robust exchange problem that performs best for the opti-

mistic scenario we replace the objective function in (4) by

max
Z,x

Z + ε
∑
c∈C

wcxc

with ε > 0.

The value of ε must be carefully chosen in order to avoid to get kidney exchange programs that are

not robust, i.e, the second term in the new objective function should never be greater than the first term.

Therefore, it is sufficient to set

ε =
1∑

v∈V
max

c:v∈V (c)

wc
|c|

(51)

Note that we can also add the term ε
∑
c∈C wcxc to the objective function of the adversary’s problem

(19). As variables x are fixed in the adversary’s problem, this is equivalent to adding a constant. In this way

the results we obtained for solving the robust exchange problem for the various forms of recourse still apply.

In a similar way, we can use objective weights to assign priority to specific groups of agents, such as

highly sensitized patients in kidney exchange. In case of the full recourse, we can also use a more efficient

formulation than adding another term to the objective function. The structure of the recourse objective

(40) allows to replace the unit objective weights of the y variables by scaled weights, such that the desired

groups of agents are prioritized, e.g. highly sensitized patients. Let PH denotes the set of pairs with highly

sensitized patients. We replace the full recourse objective function (40) by:

RHFull(x, u) = max
xu,yu

∑
v∈PH

yuv +
∑

v∈V \PH

εyuv + ε2
∑
c∈C

wcxc (52)

where ε is defined by (51).

As highly sensitized patients have a particularly high probability of match failure compared to non-highly

sensitized patients (see [26]), we explicitly consider arc failure for this patients’ group.

6 Computational results

In this section, we present computational experiment to validate the effectiveness of proposed robust models

and compare solution approaches. In order to evaluate the impact of robustness, we compare the robust

solutions for the different recourse policies to the deterministic ones. For all recourse policies the delayed

scenario generation method was implemented for solving the robust exchange problem, as detailed in sec-

tions 4.2, 4.3 and 4.4. The problems for simple and back-arcs resources were also solved through their mixed

integer programs reformulations(see sections 4.2.1 and 4.3.2).

We performed experiments for the particular case of the homogeneous failure, where the set of scenarios

defined by at most b failing vertices U = {u = V u ∪Au : |V u| ≥ |V | − b, |Au| = |A|} for b = 1, . . . , 4.

6.1 Instance generator

Test instances for the computational experiments were generated by the simulator in [38] that uses US

population data from the United Network for Organ Sharing (UNOS). The simulator generates patients with

a random blood type, sex, and probability of being crossmatch incompatible (this probability is called the
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PRA level) with a randomly chosen donor. Each patient is assigned a potential donor with a random blood

type and relation to the patient. If the patient and the potential donor are incompatible, they are added to

the kidney exchange pool. Blood types and probabilities of crossmatch failure are then used to determine

the compatibilities in the pool. Table 1 summarizes the parameters of the generation as described in [38]. As

the original simulator did not include altruistic donors, we add to each pool a fixed percentage of altruistic

donors (generated as above but without assignment to a patient).

Prob. blood type A .3373
Prob. blood type B .1428
Prob. blood type AB .0385
Prob. blood type O .4814
Prob. low PRA (5 %) .7019
Prob. medium PRA (10 %) .2
Prob. high PRA (90 %) .0981
Prob. female .409
Prob. spousal donor* .4897
% altruistic donor** 4.5
* Applies to female patients only.

Spousal PRA := 1 - .75 (1 - PRA )
** Original simulator did not have

altruistic donors

Table 1: Parameters used for generation of instances by generator from [38]

For our experiments we generated 30 instances with 20, 50 and 100 vertices. Table 2 summarizes some

characteristics of these instances: the number of nodes, |V |, the average number of arcs, |A|, and of cycles and

chains, C, also partitioned into sets of cycles and chains with 0, 1, 2 or 3 back-arcs: CPk and CNk , respectively,

where k is the number of back-arcs.

|V | |A| |C| CP0 CP1 CP2 CP3 CN0 CN1 CN2
20 90.40 49.07 10.43 7.87 10.27 2.20 6.07 9.83 2.40
50 576.13 733.7 74.00 133.93 138.30 34.00 88.60 208.80 56.07
100 2367.20 6085.77 350.83 1047.3 1186.83 308.87 565.77 1994.37 631.80

Table 2: Average characteristics of the instances.

6.2 Evaluation of recourse policies under nodes failure

All the methods and models were implemented with C#.NET programming language and using CPLEX 12.8

for solving LPs and MIPs. The experiments were run on a computer equipped with a 3.6 GHz Intel Core i7

processor with 16 GB of RAM memory.

The results for tree recourse policies are presented in table 3. As mentioned above, they are also compared

to performance of the deterministic problem with anticipation of failures (columns “Determ. Problem”) were

the following values are shown: ZD is the average objective value for 30 instance of a given size; ZDb is the

average objective value in the worst case scenario for a given optimal solution for maximum number of failing

nodes b.

As to recourse policies the following results are provided: Z∗ is the average objective value for the robust

problem RE(U); rl% is the percentage of instances in which the loss in transplants (i.e. the difference between

the the objective value of the optimal recourse solution x∗ in deterministic problem, ZD(x∗), and number

of actual transplants in the second stage Z∗) is lower than the maximum possible loss for given instance

and failure budget b. The latter is defined as a sum of values (wc) of b the most valuable cycles or chains.

TMIP and TDSG are average CPU times (in seconds) using mixed integer program (for simple and back-arc
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recourse) and delayed scenario generation Algorithm 1 (for all recourse policies), respectively; Ns is the

average nubmer of scenarios generated by the latter. The computational time for each instance was limited

by 3600s., and we provide in parenthesis the number of instances (out of 30) which were not solved within

this limit. The best bound of optimal solution was considered as Z∗ for those instances. In addition, table 4
provides the average gaps for unsolved instances for each method and recourse policy.

First of all, we notice that despite the results shown in section 3.3, for all robust policies, all the instances

and all the failure budgets, with single exception of an instance with |V | = 50, b = 4 and Back-arcs recourse,

the optimal robust solution x∗ was also optimal in deterministic problem, i.e. ZD(x∗) = ZD.

For all the recourse policies the optimal value in the worst case scenario was better that the deterministic

problem with no care on uncertainty (compare columns Z∗ and column ZDb ). The optimal values Z∗ obtained

for simple and back-arcs recourse are very similar. They only differ for instances with 20 vertices for b = 1, 2,

and for instances with |V | = 50 and b = 4. This indicates that in the worst case scenario the additional

flexibility for recovering from failures provided by the back-arcs recourse is insufficient to reduce the losses

compared to what could be gained by anticipating failures as by the simple recourse. The main reason is

that, in almost all instances, it is not possible to select only cycles and chains with sufficient back-arcs to

recover from a single node or arc failure. Therefore, in the worst case any of the selected ‘non-robust’ cycles

and chains will be cancelled. In the case of a single failure (b = 1) the maximum possible loss can sometimes

be restricted with those recourse policies (see the instances of size 20). However, for larger instance sizes

(50 and 100) the loss cannot be avoided by anticipation of failure (see columns rl% for simple and back-arcs

recourses). In the case of two failures, again the maximum loss can be restricted if the instance size is

small enough (in the instances of size 20 and 50). Interestingly, in case the number of failures is higher, the

percentage of instances in which the loss can be reduced increases substantially.

The full recourse clearly outperforms the other two policies by the quality of the solution provided in

the worst case scenario. The better performance can be observed for instances with 50 vertices and bigger

uncertainty budget b = 2, 3, 4, where in more than half of instances the maximal loss was reduced (see column

rl% for Full recourse).

As to computational time, and comparing mixed integer programs opposed to delayed scenario generation

for Simple and Back-arcs recources, there is no significant difference between the two solution approaches

for smaller number of failures b = 1, 2. The MIP is slightly outperforming DSG by CPU time for simple

recourse, |V | = 100 and b = 2, and by the quality of bounds obtained in case of unsolved instance (see table 4)

for Back-arcs recourse and b = 2. However, for b = 3, 4 the delayed scenario generation algorithm clearly

outperforms the mixed integer programs in particular for bigger instances with 100 vertices. If compare TMIP

and TDSG for b = 4, 9 instances were not solved to optimality by MIP for both recourse policies opposed to

5 instances for DSG, and the computational time for the solved instances is significantly lower. Moreover,

the average gaps between lower and upper bounds are also better for DSG algorithm than for MIP.

For the full recourse policy both the size of instance and the maximum number of failures b are the

bottleneck for the developed algorithm. There 13 (out of 30) unsolved within time limit instances for |V | = 100

and b = 3, and the average time of solved instances dramatically increases when compare, for example,

instances with 50 and 100 vertices, and the results for b = 2 and b = 3.

7 Conclusions

In this research we have considered the centralized clearing of barter exchange markets in which proposed

transactions must be verified before they can proceed. Proposed transactions may fail to go forward if

verification fails or if a participant withdraws. We have modeled the clearing problem in these markets as a

vertex-disjoint cycle packing problem in an unreliable graph. The arcs and nodes of this graph are subject

to failure.

Our research has many natural and interesting applications, of which kidney exchange is probably the

most important. Deciding which donors get matched to which patients in kidney exchange can be a matter

of life and death. Unfortunately, the current algorithms employed to clear kidney exchanges often leave
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Simple Back-arcs Full
MIP DCG MIP DCG DCG

N b N∗ gap% N∗ gap% N∗ gap% N∗ gap% N∗ gap%
100 2 1 2.79 1 1.60 1 2.79 1 3.97 1 6.78
50 3 0 0 - - - - - 1

100 3 1 6.81 2 2.39 2 5.30 2 3.17 13 3.61
50 4 0 - 0 - - - - - 3 16.11

100 4 9 6.79 3 4.52 9 5.99 5 3.80 26 4.62

Table 4: Gap for unsolved instances for different approaches; N* is the number of unsolved instances, gap%
for MIP is integrality gap, for DCG as an upper bound we considered the current solution of the RE(Ū) or
its bound, the lower bound is the last solution of adversary’s problem or its lower bound.

highly-sensitized patients, which are hard to match, without a transplant. It has been the need to protect

the rare transplant opportunities for these highly-sensitized patients that has motivated us in particular to

consider the concept of a “robust exchange”.

Other methodologies that aim to take market uncertainty into account, such as maximizing the expected

number of transplants, typically disadvantage highly-sensitized patients as transactions involving these pa-

tients tend to have a high probability of failure. Under our “robust exchange” methodology we aim to

protect transactions against a large set of possible scenarios for failure. Our methodology allows in particular

to protect the transactions for highly-sensitized patients.

In addition to protecting against failure, we explicitly consider the option of flexible response to failures.

We do this by allowing recourse actions. We have considered three recourse policies - simple recourse, back-

arcs recourse, and full recourse - which can be easily implemented in practice. Our clearing algorithm selects

an optimal planned solution taking the possibility of recourse into account. If actual failures occur, our

algorithm selects the optimal recourse action.

We have provided results for settings in which the problem of determining the optimal recourse action can

be solved efficiently. Moreover, we have shown that for these settings the problem of determining the worst

case scenario (taking into account the possibility of recourse) can also be solved efficiently. These results

apply to the simple recourse and back-arcs recourse, when trading cycles and chains are limited to three

agents and failure is considered to be homogeneous. For other settings and for the full recourse, we have

developed an advanced methodology for delayed scenario generation. In this methodology row and column

generation are combined with a branch-and-bound algorithm.

We have tested our algorithms on various instances generated by the most commonly used kidney exchange

simulator based on US population data. Our computational results show that instances of realistic size (the

size of current kidney exchange pools), can be solved within run times that are acceptable to practice. More

importantly, our results show that in a substantial number of instances, it is possible to actually protect

patients against failures that prevent them to undergo a transplant. In this regard, our algorithms may offer

a significant improvement over current practice.

There are several opportunities to expand the research presented in this paper. Direct extensions include

extending the experiments to different types of uncertainty sets that reflect non-homogeneous failure or that

tail-off as scenarios become more extreme (as per the concept of globalized robustness [6]). Another direction

would be to combine our solution approach with delayed generation of trading cycles and chains [1, 27]. This

would be particularly advantageous if the market size grows far beyond what it is today or if the bound on

the trading cycles and chains becomes large.

There also remain general challenges to barter exchange markets that are important to mention. Dynamic

market clearing - in which the market is not cleared by accumulating batches of agents and then maximizing

the transactions per batch as is done in present exchanges, but in which the market is cleared while taking

future arrivals into account - is a problem that has received attention but has not yet been solved optimally.

Our model of market uncertainty can ostensibly be extended to take future arrivals into account. Another
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challenge is the internationalization of markets and the conflicts of interest that may arise between market

participants (e.g. participation and incentive compatibility for hospitals and networks of hospitals in kid-

ney exchange). Finally, we would like to mention that generalizations of our work could consider allowing

monetary transfers and private information regarding agent preferences. While these factors may be less

important in kidney exchange markets, they may be important in other markets such as house trading.
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8 APPENDIX

8.1 Proof of totally unimodality of the constraints for simple recourse of adversary’s
problem

In case of simple recourse and homogeneous failure, the constraint matrix associated to the adversary’s

problem ASimple(x) is totally unimodular.

In case of simple recourse and homogeneous failure, and after relaxing the integrality requirement (27)

on the ζ variables, the constraint matrix associated with the adversary’s problem as specified by (25)-(26) in

standard form is of the form


1 1 1 . . . 1
−1 0 0 . . . 0
0 −1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . −1

 . (53)

Theorem 13.3 from [40], gives sufficient conditions to prove that matrix (53) is totally unimodular. The

first requirement is that all the entries in the matrix belong to {−1, 0, 1} which holds. Second, no more than

two entries in the same column may be non-zero. This condition is also satisfied since each decision variable

ζc appears exactly in two constraints: once in (25) and another when stating the bound ζc ≤ 1. Finally, it

must be possible to partition the rows of the matrix into two sets A and B such that: i) if a column has

two entries of the same sign, their rows are in different sets; ii) if a column has two entries of different signs,

their rows are in the same set. This is easily fulfilled if A contains all the rows and B is the empty set.

8.2 Proof of Theorem 1

Note that for any c ∈ C3 not selected in x, this is, xc = 0, the adversary’s variables can simply be set to be

1 without affecting its objective function. Thus, without loss of generality and for sake of simplicity, let C3

be restricted to the elements selected in the planned solution x.

The feasibility of the solution described by the theorem to A′Back-arcs(x) can be directly checked.

It remains to prove optimality for this greedy solution. To that end, strong duality wil be used. We will

built a solution for the dual of A′Back-arcs(x) such that the associated dual objective value coincides with the

one of A′Back-arcs(x) under theorem solution, establishing optimality.

The dual of A′Back-arcs(x) is

max
v

(|C3|+ |C2|+ 2|C1.5|+ |C1|+ 2|C ′1| − b) v0
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−
∑
c∈C3

vc −
∑
c∈C2

vc −
∑
c∈C1.5

vc −
∑
c∈C1

vc −
∑
c∈C′1

vc (54)

s.t. v0 − vc ≤ 3 ∀c ∈ C3

v0 − vc ≤ 2 ∀c ∈ C2

v0 − vc ≤ 1 ∀c ∈ C1

v0 + v1
c − vc ≤ 2 ∀c ∈ C1.5

v0 + v1
c − vc ≤ 1 ∀c ∈ C ′1
v0 − v1

c ≤ 1 ∀c ∈ C ′1
v0 − v1

c ≤ 1 ∀c ∈ C1.5

v0 ≥ 0

vc ≥ 0 ∀c ∈ C3 ∪ C2 ∪ C1.5 ∪ C1 ∪ C ′1
v1
c ≥ 0 ∀c ∈ C1.5 ∪ C ′1

As done the the theorem statement, we divide the proof in cases, according with the value of b.

1. In the described solution, the objective value of A′Back-arcs(x) is

3|C3| − 3b+ 2|C2|+ 3|C1.5|+ |C1|+ 2|C ′1|. (55)

The value of (54) under the following dual feasible solution

v0 = 3

vc = 0 ∀c ∈ C3, vc = 1 ∀c ∈ C2, vc = 2 ∀c ∈ C1, vc=3 ∀c ∈ C1.5

v1
c = 2 ∀c ∈ C1.5, vc = 4 ∀c ∈ C ′1, vc = 2 ∀c ∈ C ′1

coincides with the primal value (55).

2. In the described solution, the objective value of A′Back-arcs(x) is

2|C3|+ 2|C2| − 2b+ 3|C1.5|+ |C1|+ 2|C ′1|. (56)

The value of (54) under the following dual feasible solution

v0 = 2

vc = 0 ∀c ∈ C3, vc = 0 ∀c ∈ C2, vc = 1 ∀c ∈ C1, vc=1 ∀c ∈ C1.5

v1
c = 1 ∀c ∈ C1.5, vc = 2 ∀c ∈ C ′1, vc = 1 ∀c ∈ C ′1

coincides with the primal value (56).

3. In the described solution, the objective value of A′Back-arcs(x) is

3

2
|C3|+

3

2
|C2|+ 3|C1.5| −

3

2
b+ |C1|+ 2|C ′1|. (57)

The value of (54) under the following dual feasible solution

v0 =
3

2

vc = 0 ∀c ∈ C3, vc = 0 ∀c ∈ C2, vc =
1

2
∀c ∈ C1, vc=0 ∀c ∈ C1.5

v1
c =

1

2
∀c ∈ C1.5, vc = 1 ∀c ∈ C ′1, vc =

1

2
∀c ∈ C ′1

coincides with the primal value (57).

4. In the described solution, the objective value of A′Back-arcs(x) is

|C3|+ |C2|+ 2|C1.5|+ |C1| − b+ 2|C ′1|. (58)

The value of (54) coincides with the primal value (58), if the dual (feasible) solution with vc = 1 and

the remaining dual variables equal to zero is considered.

5. This case is completely analogous to 4.

6. In the described solution, the objective value of A′Back-arcs(x) is zero. All dual variables equal to zero

is a dual feasible solution with objective value equal to zero.
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9 Refining the procedure to obtain better upper bounds

For some nodes in the branch-and-bound tree it is possible to obtain substantially better upper bounds than
those obtained by solving RFull(x

∗, ut) (Step 3). This is particularly the case for nodes near the root of
the branch-and-bound tree. In order to explain how to achieve these improved bounds, note that if the
integrality of the recourse variables xu in the full recourse problem RFull(x

∗, ζ) described by (12), (13), (14)
is relaxed, the adversary’s problem AFull(x

∗) can be solved by rewriting the nonlinear min-max objective as
a minimization problem by using the dual of the recourse problem. The resulting problem is a minimum
vertex and arc cover problem with variable cost:

A′Full(x) := min
ζ,W

∑
v∈V

ζnWn +
∑
a∈A

ζaWa (59)

s.t.
∑
n∈c

Wn +
∑
a∈c

Wa ≥
∑
n∈c

∑
c′∈C:n∈c′

xc′ ∀ c ∈ C (60)

Bζ ≤ b
ζ ∈ {0, 1}|N |

W ∈ R|N |+|A|+

Here, the variables W are the duals of constraints (13) and (14). The objective (59) is to find a minimum

cost cover. Constraints (60) imply that all cycles that include nodes selected in the first stage must be

covered.

The nonlinear terms
∑
v∈V ζnWn and

∑
a∈A ζaWa in the objective (59) may be linearized by introducing

a variable Tn := ζnWn for each v ∈ V and a variable Sa := ζaWa for each a ∈ A, and by imposing the
additional constraints Tn ≥ Wn −M(1 − ζn) for all v ∈ V and Sa ≥ Wa −M(1 − ζa) for all a ∈ A, where
M is some sufficiently large number. In this case, setting M := k is sufficient because constraints (60) imply
that neither any Wn nor any Wa ever need to be larger than k. Applying these adjustments, we obtain the
following mixed integer program:

A′Full(x) := min
ζ,W,S,T

∑
v∈V

Tn +
∑
a∈A

Sa

s.t.
∑
n∈c

Wn +
∑
a∈c

Wa ≥
∑
n∈c

∑
c′∈C:n∈c′

xc′ ∀ c ∈ C

Wn + kζn − Tn ≤ k ∀ v ∈ V
Wa + kζa − Sa ≤ k ∀ a ∈ A
Bζ ≤ b
ζ ∈ {0, 1}|N |

W ∈ R|N |+|A|+

S ∈ R|A|+

T ∈ R|N |+

The difference between the bound obtained by solving RFull(x
∗, ut) and the bound obtained by solving

A′Full(x
∗) is that the former accurately takes into account the recourse actions but underestimates the ad-

versary’s potential by using the scenario ut, whereas the latter overestimates the recourse actions because

the recourse variables are relaxed but accurately takes into the adversary’s potential to damage the planned

solution.

Finally, note that it is possible to use the LP relaxations R′Full(x
∗, ut), A′Simple(x∗), and A′Back-arcs(x

∗)

when determining the bounds in the branch-and-bound procedure. While this may provide bounds that are

less tight, it may save computation time. We have the following relationships:

R′Full(x
∗, ut) ≥ RFull(x

∗, ut),
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A′Simple(x∗) ≤ ASimple(x∗),

A′Back-arcs(x
∗) ≤ ABack-arcs(x

∗)

that hold in any branch-and-bound node t.
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