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Abstract Here we consider the question whether the lattice reformulation of
a linear integer program can be used to produce effective cutting planes. We
consider integer programs (IP) in the form max{cx | Az = b,x € Z } , where
the reformulation takes the form max{cz® + cQu | Qu > —x°, pu € Z"~™},
where @ is an n x (n —m) integer matrix. Working on an optimal LP tableau
in the p-space allows us to generate n — m Gomory mixed-integer inequalities
(GMIs) in addition to the m GMIs associated with the optimal tableau in the
x space. These provide new cuts that can be seen as GMIs associated to n—m
non-elementary split directions associated with the reformulation matrix Q.
On the other hand it turns out that the corner polyhedra associated to an LP
basis and the GMI or split closures are the same whether working in the « or p
spaces. Computationally we show that the effectiveness of the cuts generated
by this approach depends on the quality of the reformulation obtained by
the reduced basis algorithm used to generate @Q and that it is worthwhile to
generate several rounds of such cuts. However, the effectiveness of the cuts
deteriorates as the number of constraints is increased.
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1 Introduction

In a series of papers Aardal et al. [1-4] have shown that certain integer pro-
grams that cannot be solved by a standard MIP solver can be solved by using
a lattice-reformulation of the problem. This raises the question studied here
of whether such a lattice-reformulation can also be used to produce effective
cutting planes.

Specifically we consider pure integer programs (IP) in the form

max{cx | Az =b,x cZ" }, (1)
where A € Z™*", b e Z™, c € Z", and where we let P = {x € R} | Ax = b}
and S =PNZ".
The reformulation takes the form
max{cz’ + cQu | Qu > —x°, pcz" ™}, (2)

Where Q is an n x (n —m) integer matrix and x¥ is a point satisfying Az’

b, z° € Z". HereweletP—{uER" . Qu > —x°) and § = PNZM™,
The mteger sets S and S are related: @ € S if and only if there exists p € S
with z = 2" + Qu, or in other words S =proj,{(z, ) : * = °+Qu, u € S}.

The intuition behind our approach is that the polytope P has a regular
shape in the sense that it does not have an obvious thin direction, if P is created
after a basis reduction process of @, and that therefore split disjunctions in the
coordinate directions of P are potentially interesting. This idea is supported
by the computational experience with branch and bound on P rather than
on P. Branching in unit directions on P has proven to be computationally
more effective for certain problem types, see e.g. [2,3]. Thus our motivation
is to look for Gomory Mixed-Integer (GMI) cuts [20] that are not necessarily
tableau cuts for P, but are still computationally easy to generate.

A first practical observation is that if one considers the reformulated prob-
lem (2), one can generate (n—m) new Chvatal-Gomory (CG) [10] or GMI cuts
off an optimal linear program (LP) tableau. Here we will concentrate on GMI
cuts (also viewed as split cuts [12]). These will be called (lattice) £-cuts. This
raises a series of questions both theoretical and computational. For example:

- What is the relationship between P and p?

- Given a point p € S, what is the corresponding point € S7

- What do the ¢-cuts in the p-space give in the a-space?

- Are the corner polyhedra associated to a basis in the & and p spaces the
same?

- What, if any, is the relationship between the GMI or split closures of P
and P?
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Computational questions that we investigate are:

- How effective are the ¢-cuts?
- Can the f-cuts associated to a basis tableau be easily generated in the
x-space?

We now point to some related computational work. Bixby et al. [7] ob-
served that one round of GMI inequalities generated from an optimal basic
solution closed 24% of the integrality gap on average on 41 MIPLIB instances.
Cornuéjols et al. [14] suggested to multiply a row in the optimal LP tableau
by an integer k, and then derive a GMI off of the resulting row. They called
a cut generated in this way a k-cut. The standard tableau GMI inequality
is a k-cut with £ = 1. One motivation behind this approach is to create a
large fractional right-hand side of the resulting tableau row as this intuitively
could lead to a stronger inequality. Later Cornuéjols [13] suggested that one
should look for deep split cuts that can be separated efficiently. This is also
the viewpoint taken here.

An alternative, but very costly approach, is to generate all the inequalities
from a given family, known as the closure. Balas and Saxena [6] performed
a computational study of the split inequalities and concluded that the split
closure closed 82% of the integrality gap, on average, on 33 mixed integer
MIPLIB instances, and 71%, on average, on 24 pure integer MIPLIB instances.
It is, however, NP-hard to optimize a linear function over the split closure
[9], so achieving these results is computationally expensive. Of course, a vast
literature has been devoted to computationally viable ways of approximating
the split closure, see, e.g., Dash and Goycoolea [16] and Fischetti and Salvagnin
[19].

In Section 2 we present the background material we need concerning in-
equalities and lattices. In Section 3 we see that most of the theoretical ques-
tions have simple and perhaps surprising answers. In particular, even though
the GMI/split cuts generated may be different, the GMI/split closures are the
same. We give a description of our approach for generating violated inequal-
ities in Section 4 and present our computational results comparing different
possible variants in Section 5. Finally, some conclusions are drawn in Section
6.

2 Background
2.1 Gomory mixed integer inequalities and split inequalities
We define Gomory mixed-integer inequalities (GMI) and split inequalities, k-

cuts and closures. For a more general exposition we refer to [11,27].
Consider the single row mixed-integer set

n P
X ={(z,y) €2 xR | Y aja; + Y gjy; = b} (3)
j=1 j=1
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and suppose that b & Z. Let

b:=|b] + fo with 0 < fp <1,
aj; 1= Lajj + fj with 0 S fj < 1.

The Gomory mized-integer (GMI) inequality [20] for X is

i - - -
> Fait 3 TR S %yj— 3 1fjfoyjz1.(4)

Gifi<fo} 70 {iki>fod {jig;>0} {ji9;<0}

If the row (3) is a row from a simplex tableau of a linear relaxation, the
associated GMI inequality is referred to as a tableau GMI inequality.

Cornuéjols et al. [14] introduced k-cuts, which are cuts that are obtained by
first multiplying (3) from an optimal tableau in which one of the x-variables is
basic by an integer k, and then deriving the GMI inequality. In this paper we
introduce ¢-cuts, which are tableau GMI cuts derived from an optimal tableau
of the LP-relaxation of (2). In Sections 3 and 4 we explain how to generate
these cuts in the space of the x-variables.

Let T be a polyhedron in R"*™P. Next, we consider a mixed integer set
T N (Z™ x RP). For given (m,m) € Z" ™! we define

I :=TNn{(x,y) € Z" xR? | mx < 7y}
II =TN{(x,y) € Z" xR? | mx > my + 1} .

An inequality ax +~y < 8 is called a split inequality [12] if there exists a
(1, mo) € Z"1 such that ax + vy < 3 is valid for IT; U IT5. The disjunction
mx < mogVmax > mo+1is called a split disjunction. The GMI inequality can be
viewed as a split inequality for (3) with the split in which 7; = |a; | if f; < fo,
7 = [a;] if f; > fo and my = |b].

The elementary closure, or simply the closure, associated with a family
F of inequalities valid for T'N (Z™ x RP) is the convex set obtained as the
intersection of all inequalities in F'. Not surprisingly, the GMI and split closures
are equivalent [28]. The separation problem for the split closure is NP-hard
[9].

Later we will encounter single row sets X both in the all integer case and
in the mixed integer case in which we add GMI cuts containing slack variables
that are not integer variables.

Observation 1 If X is replaced by
_ n P B
X ={(z,y) €2 xRY | > az; + > gjy; = b},
Jj=1 j=1

where a; = a; mod 1 for 1 < j <mn and b = b mod 1, the GMI (4) for X
and the GMI for X are the same inequality.
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2.2 Lattices and lattice reformulation

Given [ < n linearly independent vectors by, ...b; € R", theset L(by,...,b;) :=
{22:1 ¢ib;, ¢; € Z} is called the lattice generated by by,...b;. The vectors
by,...b; are called a lattice basis, and we often represent them as a matrix
B = (by,...b;). Given a lattice L generated by B, the basis B’ is an alter-
native basis for L if and only if we can write B’ = BU, where U is an [ x [
unimodular matrix.

We now can explain the reformulation of the integer program

max{cx | Ax =b, x € Z} }, (1)

presented in the Section 1, due to Aardal et al. [1]. The set kerz(A) = {x €
Z" | Ax = 0} is a lattice, called the kernel lattice of A.

Suppose  is a feasible solution in problem (1). If z° € Z" satisfies Az® =
b, it follows that A(x — x°) = 0 and thus, if Q is a lattice basis for kerz(A),
this is equivalent to (x — %) = Qu where pu € Z"~™. Now substituting
x = 2" + Qu and using = > 0 gives the reformulation

max{c(z’ + Qu) | Qu > —a’, p € """} . (2)

Let L be a lattice in a Euclidean vector space E. A subset K C L is
called a pure sublattice of L if there exists a linear subspace D of E such that
K=DnL.

A matrix A € Z™*" of full row rank is in Hermite Normal Form if it has
the form HNF(A) = (H,0™*("~™)) = AU, where H is a lower triangular
nonnegative m x m matrix in which the unique row maxima can be found
along the diagonal, and U is an n x n unimodular matrix.

Observation 2 A lattice L generated by the basis B = (by,...,b;) is a pure
sublattice of the standard lattice Z" if and only if HNF(BT) = (I,0).

Observation 3 The lattice kerz(A) is a pure sublattice of Z".

Theorem 1 (See Schrijver [29], Theorem 5.2.) The Hermite Normal
Form (H,0) of a rational matrix A of full row rank has size polynomially
bounded by the size of A. Moreover, there exists a unimodular matrix U with
AU = (H,0), such that the size of U is polynomially bounded by the size of
A.

Proposition 1 (See Schrijver [29], Corollary 5.3a.) Given a rational
matriz A of full row rank, a unimodular matriz U such that AU is in Hermite
Normal Form can be found in polynomial time.

3 Relations between solutions and polyhedra in - and p-space

Here we establish answers to the theoretical questions raised in the introduc-
tion.



CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-003

6 K. Aardal, F. von Heymann, A. Lodi, A. Tramontani, L.A. Wolsey

3.1 Expressing p € S as a function of & € S

The lattice reformulation gives a way of expressing each feasible vector « € .S
as a function of p. A natural question is how to express a feasible vector
un e S as a function of . In particular, this is our prime tool for generating
general disjunctions for deriving split inequalities, as described in more detail
in Section 4.

A consequence of kery(A) being a pure sublattice of Z™, and of Theorem
1 and Proposition 1, is that we can find, in polynomial time, a unimodular

matrix U such that
I
v'a-(,). Q

Let W be the matrix consisting of the first n — m rows of U as in (5). Since
W is a submatrix of U" it follows that all elements of W are integral. It is
also clear that

wQ=1I. (6)

This was also observed by Mehrotra and Li [26]. Note that W in general is not
unique: given a matrix W, we can form a matrix W’ = W + C, where C is
an integer (n —m) X n matrix consisting of rows obtained by taking an integer
linear combination of rows of A. The matrix W permits us to translate an
expression in p-variables back to an expression in a-variables. Specifically we
have Wa = Wa® + WQu and thus

pw=Wax—-Waz'.

3.2 Relations between polyhedra in the x- and p-spaces

Here we show that not only vectors in S and S correspond one-to-one, but
that there is also a one-to-one correspondence between vectors in P and P.

Proposition 2 Given A € Z™*" and b € Z™, define P = {x € R} | Ax =
b}. We can write x € PNZ" as x = x° +Qu, where 2°, Q, and p are defined
as in Section 2. Define P = {p e R"™ | Qu > —x°} for Q and x° as given
above. The map f(p) = Qu + x° is a bijective map from P to P.

Proof Take p € P and let & = Qp + x2°. The vector & is nonnegative since
Qpn > —x°. Moreover, Az = AQj1 + Az? = Ax® = b, where the second
equality holds since @ is a basis for kerz(A).

Take & € P. Since Q spans the Euclidean vector space {x € R" | Az = 0},
we can write & as £ = Q + x° for some i € R"™™. & € P implies > 0,
and hence Q4+ 2° > 0, so 1 € P. O

Given an LP-basis, we examine the corresponding partitions of A, @ and
W.
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Proposition 3 Given A, Q,W as described above and an LP-basis B in x-
space, write A = (B,N), Q" = (Qp,Qy), W = (W, Wy) and Bz} +
Nz% =b.

For Qp and Qy the following holds:

1) Qp = —BilNQN,
i) Qy' = Wy — WpB™'N.

Proof i) As AQ = 0, BQg+NQy = 0and, as B~ ' exists, Qg = —B ' NQ .

i) AsWQ =1, WgQz+WnQy = I, and using i), one has (-WzB™ ' N +
WN)Qy = I. Tt follows as Q y and Wy — W g B~ N are both (n—m) x (n—
m) matrices that @ is non-singular and thus Q]_\,1 =Wy -WgB!N. O

Now we consider the representation of the basis in the x- and p-spaces.
A basic solution in the x-space is written as

g+ B 'Naey =B 'b, xp,zy >0.

Writing the reformulation in equality form we observe that the x-variables
are precisely the slack variables, i.e.,

z-Qu=1°,

which we can write as

(2r) - (&)= () @
Since the p-variables are free, they must be basic and thus the basic variables
are (xp, p). Multiplying the last n — m rows of (7) by —Qy' yields

—Q;Vlch +Ip= —Qj\,lm(])v , or equivalently p = Q;[lmN — Qﬁlm?\, .
Substituting for p in the first m rows of (7) gives
zp — QpQy' @y =25 — QpQy'zYy,

and we obtain an expression for a basic solution:

-1 0 -1..0
() - (% e (Pgiy™) o

Now using Proposition 3, the basic solution (8) can be rewritten as
z5 | B'N o — % + B 'Nx%,
m —(Wy —WpB™IN) )™ 7 \ -(Wy — Wz B~ !N)z%,

_ B 'b ()
T\ -(Wx -WpgB 'N)z /-
From (8) we see that, given an LP-basis, the p-variables can be expressed

solely as a function of Q.
We now illustrate the different basis representations in an Example.
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Ezample 1 Consider an instance with m =2, n =5,

9
14 )

05317
(Ab)_<630112

To obtain a reformulation, one can take

1-3-3 0
3 3 0 1
Q=] 0-3 4|, 2°=1]1
-1 1 2 1
-2 -1-2 0
A matrix W corresponding to Q is:
—-2-10-4-1
W=\|-2 11-3 2
-3 01-5 1

For the feasible basis € = (x1,x2), the corresponding x-tableau is:

v, L (=952 11\ [0 1 (43

z2) T30\ 18 6 42) | * ] T 30\54) "
Now setting p = Wax — Wz and eliminating the basic variables xp by
substitution, the corresponding p-tableau is:

I 0-10 —10\ /3 10
1 1

e | mag | 76 8 A m = a5 | -

M3 3 6 -3 Ts -9

From the ps row, one has f3 = g—g,ﬂ; = %,f5 = ;—0 and fo = % giving the
{-cut:
1

X X €T .
33 34 75_

a

We now turn our attention to the group problem associated with the two
formulations, and the related corner polyhedra [21]. Let A = (B, N), where B
corresponds to the basic variables in an optimal solution to the LP-relaxation
of (1). The following integer optimization problem is a relaxation of (1) ob-
tained by dropping the nonnegativity constraints on the basic variables xp.

max{cz | (B N) (iB) =b, zy > 0, zp,zy integral}. (10)
N

Using the relation Bxp + Nxy = b and the integrality of xp gives the

equivalent formulation of (10) as:

maX{CBB_1b+(CN—CBB_1N)ﬂ$N ‘ B_leN = B_lb mod 1, TN € Zi_m}.
(11)

DS4DM-2018-003
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Problem (11) is referred to as the group problem [21].
We will now prove that the feasible sets of the group problem is the same
whether we view it in the original x-space or in the reformulated space.

Theorem 2 The group problems arising in the x- and p-spaces are the same.

Proof We consider the feasible regions corresponding to the underlying groups.
Let
G={zy€Z! ™ |B 'Nzxy =B 'b mod 1}

and
G={zny €ZV™™ | ~(Wx—-WpB 'N)zy = —(Wy-WpB 'N)z% mod 1}.
As Wy, Wiyz%, are integer,

G={xzy €Z!™™ | WpB 'Nay = WpB 'Nzl mod1}.  (12)

Now as W is an integral matrix, it follows that G' C G.
Conversely, take G in the form (see (8)):

G={xy € 27 Qy'ey = Q') mod 1},
Suppose xy € G. As Q@ is an integer matrix, x y lies in
{zny € Z7™ | QpQy'en = QpQY'aly mod 1},
which, as QBQ;,1 = —B~ !N, is precisely G. O

As the order of the groups is given by the determinant, it follows that
|det(B)| = |det(Qp)| and as the corner polyhedron is the convex hull of
the solutions to the group problem, it follows immediately that the corner
polyhedra are the same.

Based on Observation 1, we see that the ¢-cuts generated from the second
set of equations of (8), the second set of equations of (9) or from (12) are the
same.

Observation 4 Taking p= W (z — x°) or p/ = W(xp — %) leads to the
same £-cuts because Wyxy =0 mod 1 and WNch)V =0 mod 1. Therefore
a stmple way to obtain the (-cuts is to left multiply the x-tableau by W . It
follows that W g is an m-dimensional generalization of the k in k-cuts. In
particular, if m = 1, taking k = W gives us a specific choice for k. On the
other hand, if m > 1, the {-cuts can be viewed as multi-row tableau cuts, see
e.g. [15].

Now we consider closures. Let Ps (Pog ) be the split (Chvatal-Gomory)
closure with respect to P. Analogous notation is used for . We show that the
split closures associated with P and P are equivalent.

Theorem 3 Ps = {x € R" | & = x° + Qu, p € Ps}.
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Proof We use the definition of split cuts [12]. Let (m,m) € Z"*! and let

ax —q(rx — ) < g

ax+r(me—mr—1) < ap

be valid inequalities for P with ¢, > 0. Then, ax < qg is valid for
(PNn{mx < m}) U(PN{mx > mp+ 1}). The inequality ax < o is called a

split cut.
Substitute  for Qu + x°. Let
T =7Q,
’fro = Ty — 7'(':130 y
a=aQ,

dp = ag — ax’.

Notice that (7, 7o) € Z" ™ *! as Q and x° are integer. We obtain
ap — q(rp — 7o) < do (13)
ap+r(Fp—"7o—1) <dp. (14)
If inequalities (13) and (14) are valid for P, then épu < dj is valid for
(Pd{mrp < fo}) U(PN{rpu > 7o+ 1}).
Going from a split cut for P to a split cut for P is similar by using g =
W (z — 2°) and using that W and z° are integer. O

Similarly one can show the following result:

Proposition 4 Pog = {x € R" |z =2+ Qu, p € ch}.

4 Separating Cuts from Lattice Reformulations

In Subsection 4.1 we give a high-level description of our approach. In Subsec-
tion 4.2 we describe three different reduction methods to derive the basis Q
in the reformulation (2). In our computations we test how the quality of the
reduction influences the effectiveness of the cuts generated. We also describe
how to derive the matrix W in (6).

4.1 High-level description of our approach

As discussed in Section 3, ¢-cuts are tableau GMI cuts derived from an optimal
tableau in the space of the p-variables. However, they can be generated by
working directly in the space of the ax-variables. The approach for separating
{-cuts in the space of the x-variables is as follows.

Initialization: Generate a reduced basis Q for kerz(A) as in (2), and a cor-
responding matrix W (6) as shown in Section 4.2.

Iteration t: After the addition of ¢ rounds of ¢-cuts,
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1. Solve the resulting linear program and take the rows corresponding to the
x-variables in the basis. The resulting set of equations is of the form:

g+ Nxy + Sysy =Zp (15)

B N
B EZL‘,ZL’N EZlJr ‘,SNZO

where & are the non-basic x-variables, sy are non-basic slack variables
from previously added cuts and IN and S are the associated matrices in
this part of the optimal tableau.

2. For every row w; of W such that w;Zp ¢ Z, left multiply the equations
(15) by w; and generate the GMI cut from the resulting “aggregated” row.
(See (12).)

3. Add a selection of the separated cuts to the current LP.

4.2 How to generate the matrices @ and W
The reformulation (2) is valid for any basis Q of the lattice kerz(A). We will,

however, be interested in a basis that is reduced. To test how the quality of the
reduction plays a role in computations, we consider three different reductions.

4.2.1 LLL reductions

Given linearly independent vectors by, ...,b; € R™, the corresponding Gram-
Schmidt orthogonalized vectors are

>{:b17
j—1
b;ij—ZMjkbz, 2<j <1, where
k=1
b;rb;; 1<k ) < [
ik = T3 w959 ~ < >0,
1k = T2 ’

Definition 1 (Lenstra, Lenstra, Lovasz [25]) A basis by, bs,...,b; is
called LLL-reduced if

1
|pjk\§§ for1<k<j<I, (16)
167 + pjj—167 4[> > - |6 [[* for 1< j <1, (17)
for1/4 <y < 1.

Many quality guarantees can be given for a reduced basis. Well-known guaran-
tees are that the first reduced basis vector is an approximation of the shortest
non-zero vector in the lattice, and that all reduced basis vectors are approxi-
mations of the successive minima of the lattice. We refer to [25] for details. A
reduced basis can be computed in polynomial time, and the larger the param-
eter y in (17), the better the quality guarantees become.
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4.2.2 Korkine-Zolotarev reduction

A basis bq,...b; of the lattice L is reduced in the sense of Korkine and
Zolotarev (KZ-reduced) [23] if it satisfies the following conditions.

1. by is a shortest non-zero vector of L in the Euclidean norm,

2. || <2 for2<i<ly,

3. if LU= denotes the orthogonal projection of L on the orthogonal comple-
ment (Rb;)* of Rby, then the projections b; — p;1by of by, ..., b yield a
KZ-reduced basis by — pig1by, ..., b; — pyiby of LE—1,

So, the first basis vector in a KZ-reduced basis is a shortest non-zero lattice
vector. Several other bounds on the quality of such a basis, along with a non-
recursive definition of a KZ-reduced basis, can be found in [24]. Since a shortest
lattice vector is computed, determining a KZ-reduced basis is computationally
much more costly than determining an LLL-reduced basis.

In our computational study we test the following reduction methods.

LLL-low: LLL reduction with y = 26/100, to test a low-quality reduction.

LLL: LLL reduction with y = 99/100, to test a high-quality basis that is rea-
sonably fast to compute.

KZ: Korkine-Zolotarev reduction, to test in some sense an “optimally” re-
duced basis.

4.2.3 Computing the matrizc W

As mentioned before, the matrix W is not unique. Let e; be the ith column
of the (n — m)-dimensional identity matrix. The matrix W can be calculated
by computing the Hermite Normal Form as stated in Proposition 1. However,
any method for finding a feasible solution to the n — m systems of integer
equations

QT'LUZ'ZGZ', wiEZ"izl,...,n—m, (18)

can be used. A valid matrix W is then obtained by taking the n—m vectors w;
as its rows. In our computational study we again use the lattice reformulation
technique described in [1] to derive the vectors w;, as this technique yields
vectors w; in which the absolute value of the elements is relatively small.
For each of the Q-matrices generated according to the three reductions given
above, we generated an associated matrix W and the computations for (18)
are all done using LLL reduction with y = 99/100.

5 Computational Experiments

The goal of the computational experiments reported in this section is threefold.

— In Section 5.1 we compare the strength of ¢-cuts generated from different
reduced bases leading to different Q/W pairs as discussed in Section 4.2.
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— In Section 5.2 we compare {-cuts from a single Q/W pair (the “best”
discussed in Section 5.1) against standard GMIs and k-cuts [14]. More
precisely, we considered those two families of cutting planes because the
former is the standard reference for cutting plane generation, while the gen-
eration of the latter has some similarities with our approach, as previously
discussed.

— In Section 5.3 we compare the strength of ¢-cuts from a single Q/W pair
obtained by iteratively separating from the tableau, i.e., by increasing the
rank, with approximate closure counterparts (¢-cuts, lift-and-project and
split closures), i.e., by optimizing over the row aggregation.

The test instances are obtained as in Cornuéjols et al. [14] except that
the matrix coefficients a;;, requirements b; and variable upper bounds h;
are required to be integer. Specifically, the objective function coefficients c;
are generated uniformly at random in [1,1000] and the coefficients a;; are
integer-generated uniformly at random in [1,1000]. For binary instances, de-
noted by “B”, and for instances with unbounded integer variables, denoted
by “U”, we compute b; as b; = [0.53°7_, a;;]. For instances with bounded
integers, denoted by “I”, the h; are generated uniformly in [5,10] and b; =
10.5377 hjai;).

5.1 Comparing the effect of basis reduction algorithms

In this section, we examine the effect of the basis reduction method used to
generate lattice basis matrix @ on the quality of the resulting ¢-cuts. In addi-
tion, as a reference, we compare with GMI cuts. More precisely, we consider
the three reduction methods LLL-low, LLL, and KZ mentioned in Section 4.2.

Table 1 reports on the results of the comparisons between: GMIs from the
optimal LP tableau, denoted by GMI, ¢-cuts from the reduction method LLL-
low, denoted by ¢-LLL-low, ¢-cuts from the reduction method LLL, denoted
by ¢-LLL, f-cuts from the reduction method KZ, denoted by ¢-KZ, and a
combination of GMIs and ¢-LLL, denoted by GMI + ¢-LLL).

The other column headings are: R for the number of rounds of cuts, followed
by n and m for the number of variables and constraints, respectively, and T for
the type of the instance. Then, for each approach, we report on the number
of cuts generated and the percentage of the gap that is closed between the
optimal LP and IP values, on average over 20 instances.

The results in Table 1 clearly show that the gap closed by ¢-cuts, indepen-
dently of the basis reduction method, is significantly larger than that closed by
only using GMIs, but the number of cuts is much larger. Moreover, by using a
strongly reduced lattice basis (¢-LLL or ¢-KZ), we obtain a significantly larger
gap reduction than with a weaker reduction (¢-LLL-low). The gaps closed for
the ¢-LLL and ¢-KZ reductions are not significantly different, typically varying
by less than 1%. As the LLL reduction is much cheaper to compute, we will
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Table 1 Comparing how the quality of cuts depend on the basis reduction method.

GMI ¢-LLL-low £-LLL 0-KZ GMI + ¢-LLL

R n_ m T |cuts %gap cuts  %gap cuts  Y%gap cuts Yogap cuts Yogap
1 10 1 B 1.0 18.61 5.8 44.19 9.0 50.86 9.0 51.21 9.9 51.17
20 1 B 1.0 9.75 6.6 23.08 14.7 34.83 15.2 36.63 15.5 34.88
50 1 B 1.0 12.41 6.3 23.62 15.1 34.40 15.1 33.55 15.4 34.46
100 1 B 1.0 10.66 6.5 25.54 15.3 31.00 12.9 31.16 15.4 31.00
10 1 1 1.0 15.67 6.1 45.63 8.9 55.10 8.9 56.62 9.9 55.23
20 1 I 1.0 13.36 7.2 30.17 14.4 39.88 14.7 41.46 15.4 40.45
50 1 1 1.0 11.59 6.6 20.48 15.5 35.22 15.3 32.62 15.6 35.22
100 1 1 1.0 13.83 7.2 27.72 15.9 34.71 13.8 37.92 16.1 34.71
10 1 U 1.0 37.27 5.3 70.12 7.8 76.65 7.8 74.23 8.6 76.65
20 1 U 1.0 34.88 6.1 65.65 10.4 77.52 11.1 77.48 10.9 77.96
50 1 U 1.0 62.36 4.5 85.17 7.5 92.13 7.5 89.71 7.6 92.13
100 1 U 1.0 64.07 3.4 85.89 5.1 98.59 4.9 98.71 5.3 98.59
50 2 B 2.0 5.31 10.0 9.30 26.6 12.03 31.6 12.32 27.6 12.13
50 3 B 3.0 2.55 11.9 3.62 32.5 5.10 41.8 5.68 34.7 5.19
50 4 B 4.0 1.17 14.8 1.66 37.0 2.06 45.4 2.25 40.4 2.14
50 2 U 2.0 13.02 10.0 22.23 26.6 32.14 31.5 32.58 27.7 32.50
50 3 U 3.0 5.48 11.9 9.34 32.5 12.26 41.7 13.60 34.9 12.68
50 4 U 4.0 3.48 14.9 4.91 37.2 6.95 45.4 7.42 40.4 6.99
5 10 1 B 9.0 35.29 28.2 68.88 36.6 79.98 36.3 81.02 51.8 81.23
20 1 B|10.4 25.32 42.2  47.77 75.3 57.27 79.6 57.93 96.1 57.04
50 1 B|10.5 28.08 44.6 43.38 91.7 51.77 92.4 50.78 100.4 52.06
100 1 B|10.1 28.91 45.8 44.23 95.0 50.46 87.9 50.38 99.5 50.58
10 1 I 8.3 31.12 30.4 68.06 40.3 77.55 40.4 79.05 57.9 77.55
20 1 1 8.0 25.27 41.4 51.85 74.0 65.32 72.6 64.08 91.9 67.32
50 1 1 7.7 22.17 40.9 41.89 88.8 57.70 88.7 54.03 95.2 57.73
100 1 I 7.9 25.27 46.2 48.96 93.3 57.45 87.5 57.45 97.7 59.02
10 1 U 6.6 53.44 17.5 87.47 22.2 95.12 22.7 94.36 30.5 95.58
20 1 U 5.7 57.01 23.2 90.73 29.5 97.82 24.1 99.04 35.0 98.65
50 1 U 4.5 84.83 10.2 94.83 16.6 95.73 15.9 95.03 17.6 95.73
100 1 U 4.1 81.91 8.1 97.67 7.6 100.00 6.4 100.00 8.0 100.00
50 2 B|19.1 11.20 62.0 15.03 | 141.8 18.09 | 167.9 18.66 158.8 18.36
50 3 B|25.5 4.66 72.1 5.73 | 170.4 7.59 | 210.9 8.30 196.4 7.61
50 4 B|3l.1 2.08 85.0 2.68 | 189.8 3.30 | 227.4 3.79 224.8 3.36
50 2 U|15.9 19.87 59.2 33.04 | 139.9 40.10 | 162.3 40.98 156.2 41.17
50 3 U|21.9 9.75 68.2 14.71 | 166.9 17.14 | 208.2 18.51 192.9 17.63
50 4 U |28.2 5.45 81.7 6.87 | 188.7 9.11 | 226.9 9.66 222.0 9.18
10 10 1 B |24.6 42.46 55.7 73.29 61.2 82.80 62.1 84.12 98.0 83.78
20 1 B |28.8 31.28 91.0 51.74| 149.1 60.55 | 160.4 61.13 198.8 60.08
50 1 B |[30.5 32.59|100.0 45.48 | 192.6 54.40 | 194.1 53.39 214.5 54.65
100 1 B |[30.4 32.62|102.6 46.52|197.1 54.13 | 185.4 53.18 206.7 54.19
10 1 I |20.6 38.43 62.2 71.23 74.8 80.21 74.7 81.23 115.9 80.16
20 1 I |21.7 28.71 87.4 57.48 | 145.8 68.55 | 143.3 68.61 184.0 70.02
50 1 I ]19.2 26.97 88.3 46.20 | 184.6 61.12 | 184.8 58.64 201.6 60.96
100 1 I |21.1 28.98 98.4 51.84 | 191.7 60.43 | 184.9 60.35 204.5 61.82
10 1 U|14.2 58.53 32.9 91.43 35.8 95.98 36.4 95.91 49.9 96.27
20 1 U|[12.8 68.65 39.6 95.33 37.1 99.76 24.7 100.00 39.1 100.00
50 1 U 9.1 89.69 13.9 95.55 19.1 96.52 21.0 95.99 20.2 96.52
100 1 U 7.3 89.50 10.8 99.33 7.6 100.00 6.4 100.00 8.0 100.00
50 2 B|49.2 12.32|133.8 16.04 | 288.7 18.92 | 340.3 19.55 330.7 19.04
50 3 B|61.4 5.02 | 153.1 6.14 | 345.1 7.85 | 423.2 8.61 404.1 7.95
50 4 B|T71.8 2.27 | 179.3 2.87 | 383.5 3.43 | 455.0 3.93 463.6 3.47
50 2 U |386.5 21.70 | 124.7 35.30 | 281.5 42.25 | 326.5 42.71 318.8 43.02
50 3 U|51.0 10.41 | 144.0 15.45 | 336.5 17.93 | 416.7 19.23 394.2 18.24
50 4 U |62.3 5.77 | 168.3 7.39 | 379.0 9.53 | 453.6 10.12 451.9 9.55

just report the ¢-LLL results for further comparisons, although we performed
the computation with both, confirming that the results are very similar.

Concerning the type of instances, we can observe that the gaps closed
for unbounded integer instances are larger than those for bounded integer
instances, which are in turn larger than those for binary ones. Unfortunately, as
the number of rows increases from 1 to 4, the gaps closed decrease significantly,
while, on the bright side, increasing the number of rounds up to 10 gives non-
trivial improvements. Finally, GMIs very marginally improve on ¢-LLL, which
somehow demonstrates that the strength of ¢-cuts shown by this experiment

does not only depend on the number of cuts generated.

DS4DM-2018-003
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5.2 Comparing k-cuts and ¢-cuts

In this section, we compare the behaviour of /-cuts and k-cuts. More precisely,
we separate k-cuts in the following two possible ways. For each tableau row,
with basic variable, say, z;, we

1. multiply the row by an integer value £ = 1,...,10 and we thereby generate
10 possibly different k-cuts,

2. multiply the row by an integer w;;, i = 1,...,n—m, and we generate n—m
possibly different k-cuts.

In other words, we either use “trivial” values for k, or we use individual k’s
from the reduced basis LLL. Note that, for the latter, k-cuts and ¢-cuts are
identical for the special case of R =1 and m = 1, see Section 4.1.

Table 2 reports on the results of the comparisons among: GMIs from the
optimal LP tableau, denoted by GMI, k-cuts of type 1 above, denoted by
k — 10, k-cuts of type 2 above, denoted by k-LLL, a combination of GMIs and
k-cuts, denoted by GMI + k-LLL, ¢-cuts from LLL-reduced bases, denoted as
before by ¢-LLL, and a combination of GMIs and ¢-LLL, denoted by GMI+/¢-
LLL. (Note that columns GMI, ¢-LLL and GMI+¢-LLL are the same as in
Table 1.)

The results in Table 2 clearly show that for R > 1 the gap closed by /-
LLL is significantly larger than that closed by k-LLL and with far fewer cuts.
Recall that the entries for k-LLL and ¢-LLL are necessarily identical for R = 1
and m = 1. Moreover, the gap closed by k-LLL is slightly larger than that of
k — 10, but with more cuts in general. Finally, the improvement of GMIs +
k-LLL with respect to k-LLL is much more significant than that of GMIs +
¢-LLL with respect to ¢-LLL.

5.3 Comparing rank and row aggregation

In this section, we compare the use of f-cuts in multiple rounds, as in the
previous tables, i.e., by using for separation the row aggregation provided by
the simplex algorithm, with the case in which we optimize over the aggregation
by solving an LP but we stay at rank 1, i.e., we only use the original constraints
and the W-matrix. The latter procedure, if iterated, allows to compute the
approximated strengthened ¢-LLL closure, by adapting the algorithm proposed
by Bonami [8] for the strengthened lift-and-project closure. More precisely,

— The strengthened lift-and-project closure of a mixed integer linear program
is the polyhedron obtained by intersecting all strengthened lift-and-project
cuts [5,18] obtained from its initial formulation, or equivalently all GMIs
read from all tableaus corresponding to feasible and infeasible bases of the
LP relaxation. An approximation of this closure is computed by iteratively
generating lift-and-project cuts and strengthening them by integer lifting,
see [8].
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Table 2 Comparing k-cuts and ¢-cuts

GMI k — 10 k-LLL GMI + k-LLL £-LLL GMI + ¢-LLL

R n m T |cuts %gap cuts  Y%gap cuts Yogap cuts Yogap cuts Y%gap cuts Y%gap
1 10 1 B 1.0 18.61 10.0 34.46 9.0 50.86 9.9 51.17 9.0 50.86 9.9 51.17
20 1 B 1.0 9.75 10.0 23.74 14.7 34.83 15.5 34.88 14.7 34.83 15.5 34.88
50 1 B 1.0 12.41 10.0 26.83 15.1 34.40 15.4 34.46 15.1 34.40 15.4 34.46
100 1 B 1.0 10.66 10.0 29.40 15.3 31.00 15.4 31.00 15.3 31.00 15.4 31.00
10 1 1 1.0 15.67 10.0 30.16 8.9 55.10 9.9 55.23 8.9 55.10 9.9 55.23
20 11 1.0 13.36 10.0 30.92 14.4 39.88 15.4 40.45 14.4 39.88 15.4 40.45
50 11 1.0 11.59 10.0 24.08 15.5 35.22 15.6 35.22 15.5 35.22 15.6 35.22
100 11 1.0 13.83 10.0 31.55 15.9 34.71 16.1 34.71 15.9 34.71 16.1 34.71
10 1 U 1.0 37.27 9.8 66.25 7.8 76.65 8.6 76.65 7.8 76.65 8.6 76.65
20 1 U 1.0 34.88 9.7 74.18 10.4 77.52 10.9 77.96 10.4 77.52 10.9 77.96
50 1 U 1.0 62.36 7.4 87.95 7.5 92.13 7.6 92.13 7.5 92.13 7.6 92.13
100 1 U 1.0 64.07 5.6 98.71 5.1 98.59 5.3 98.59 5.1 98.59 5.3 98.59
50 2 B 2.0 5.31 19.7 10.11 50.0 12.87 50.9 12.87 26.6 12.03 27.6 12.13
50 3 B 3.0 2.55 30.0 4.22 92.5 5.54 94.5 5.61 32.5 5.10 34.7 5.19
50 4 B 4.0 1.17 40.0 2.17 139.7 2.51 142.9 2.53 37.0 2.06 40.4 2.14
50 2 U 2.0 13.02 20.0 24.49 42.7 33.06 43.5 33.14 26.6 32.14 27.7 32.50
50 3 U 3.0 5.48 30.0 11.20 87.9 13.41 89.9 13.58 32.5 12.26 34.9 12.68
50 4 U 4.0 3.48 40.0 6.32 137.2 8.50 139.9 8.50 37.2 6.95 40.4 6.99
5 10 1 B 9.0 35.29|127.6 47.98 105.7 54.14 126.1 62.70 36.6 79.98 51.8 81.23
20 1 B|10.4 25.32|156.1 33.03 235.8 37.52 266.2 45.44 75.3 57.27 96.1 57.04
50 1 B|10.5 28.08|157.8 38.24 283.1 41.54 300.0 42.91 91.7 51.77 | 100.4 52.06
100 1 B|10.1 28.91 | 164.0 40.02 261.0 40.92 270.3 41.71 95.0 50.46 99.5 50.58
10 1 1 8.3 31.12 | 122.9 42.23 140.5 56.14 145.2 64.05 40.3 77.55 57.9 77.55
20 1 1 8.0 25.27 | 135.1 36.05 234.9 43.39 256.6 49.93 74.0 65.32 91.9 67.32
50 1 1 7.7 22.17 | 132.9 32.33 236.3 42.28 243.4 44.61 88.8 57.70 95.2 57.73
100 11 7.9 25.27 | 138.9 39.05 254.2 42.27 262.0 43.13 93.3 57.45 97.7 59.02
10 1 U 6.6 53.44 88.9 73.83 68.2 79.29 68.2 83.30 22.2 95.12 30.5 95.58
20 1 U 5.7 57.01 77.8 84.04 98.7 81.13 103.0 87.07 29.5 97.82 35.0 98.65
50 1 U 4.5 84.83 30.9 91.36 43.9 94.87 45.0 94.88 16.6 95.73 17.6 95.73
100 1 U 4.1 81.91 12.8 100.00 16.2 100.00 15.9 100.00 7.6 100.00 8.0 100.00
50 2 B|19.1 11.20 | 244.3 13.47 675.0 15.27 711.1 15.98 | 141.8 18.09 | 158.8 18.36
50 3 B|25.5 4.66 | 320.6 5.80 | 1072.4 6.43 | 1104.2 6.79 | 170.4 7.59 | 196.4 7.61
50 4 B |31.1 2.08 | 372.8 2.79 | 1439.8 2.74 | 1472.2 2.97 | 189.8 3.30 | 224.8 3.36
50 2 U|[15.9 19.87 | 225.0 28.63 654.0 36.15 663.0 36.99 | 139.9 40.10 | 156.2 41.17
50 3 U|21.9 9.75 | 314.9 13.29 | 1032.3 14.76 | 1031.1 15.97 | 166.9 17.14 | 192.9 17.63
50 4 U |28.2 5.45 | 358.6 7.39 | 1432.1 8.93 | 1495.8 9.51 | 188.7 9.11 | 222.0 9.18
10 10 1 B|24.6 42.46 | 301.9 52.21 223.9 54.93 300.7 65.92 61.2 82.80 98.0 83.78
20 1 B|28.8 31.28]359.9 37.12 510.0 38.10 645.3 47.84 | 149.1 60.55 | 198.8 60.08
50 1 B |30.5 32.59|397.3 40.99 637.5 43.25 688.2 45.17 | 192.6 54.40 | 214.5 54.65
100 1 B|30.4 32.62|398.8 42.82 600.7 44.02 624.3 44.82 | 197.1 54.13 | 206.7 54.19
10 1 I |20.6 38.43|269.6 44.70 285.8 56.77 318.5 65.69 74.8 80.21 | 115.9 80.16
20 1 I |21.7 28.71 | 308.3 37.71 499.9 44.22 551.8 52.77 | 145.8 68.55 | 184.0 70.02
50 1 I |19.2 26.97 | 320.5 34.75 515.2 43.31 532.9 46.65 | 184.6 61.12 | 201.6 60.96
100 1 I |21.1 28.98| 326.8 43.72 536.0 43.22 541.4 45.74 | 191.7 60.43 | 204.5 61.82
10 1 U|14.2 58.53 | 183.3 76.06 143.6 80.54 143.3 85.03 35.8 95.98 49.9 96.27
20 1 U|12.8 68.65| 158.7 87.45 212.3 82.67 212.2 89.62 37.1 99.76 39.1 100.00
50 1 U 9.1 89.69 63.3 92.12 77.9 94.98 75.7 95.04 19.1 96.52 20.2 96.52
100 1 U 7.3  89.50 12.8 100.00 16.2 100.00 15.9 100.00 7.6 100.00 8.0 100.00
50 2 B|49.2 12.32|573.2 14.08 | 1486.7 15.69 | 1580.3 16.62 | 288.7 18.92 | 330.7 19.04
50 3 B|61.4 5.02 | 726.6 6.05 | 2227.4 6.64 | 2318.9 6.98 | 345.1 7.85 | 404.1 7.95
50 4 B|71.8 2.27 | 847.6 2.90 | 2895.1 2.84 | 3035.1 3.07 | 383.5 3.43 | 463.6 3.47
50 2 U |[36.5 21.70|486.8 29.71 | 1323.9 36.65 | 1360.1 38.22 | 281.5 42.25 | 318.8 43.02
50 3 U |[51.0 10.41|672.9 13.75 | 2102.6 14.95 | 2118.5 16.26 | 336.5 17.93 | 394.2 18.24
50 4 U |62.3 5.77 | 760.1 7.64 | 2812.4 9.00 | 2960.1 9.65 | 379.0 9.53 | 451.9 9.55

— Analogously, given a reduced W-matrix to generate rank-1 ¢-cuts, the ap-
proximated strengthened ¢-LLL closure is computed as follows. If x* is
the optimal LP solution and w'z* ¢ Z, one generates an intersection cut
[5] on the disjunction, w'z < |w'z*| and wiz > [w'z*], which is then
strengthened. This is repeated for each row i of W at each iteration until
no more violated cuts are found.

In terms of closures, the comparison is completed by reporting on the results for
the split closure. Exploiting the result reported [17] that shows the equivalence
between the split closure and the Mixed-Integer Rounding (MIR) closure, the
split closure is computed by iteratively separating violated MIR cuts through
the solution of a mixed-integer program as in [17].

Table 3 reports on the results on the comparisons between:
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— 10 rounds of: (a) ¢-LLL cuts, (b) a combination of GMIs and ¢-LLL cuts,
denoted by GMI+/-LLL, and

— the approximated closures of: (c) strengthened lift-and-project cuts, de-
noted by “str. L&P”, (d) strengthened ¢-LLL cuts, denoted by “str. -LLL”,
(e) split cuts, denoted by “split”.

In contrast to the cases of strengthened L&P and ¢-LLL closures, the term
“approximated” for the split closure refers to the fact that the computation
is stopped after a time limit of 5 hours. Such a time limit affects only the

multi-row instances with binary variables and this is indicated in the table by
Wk

Table 3 Comparing higher rank cuts with rank-1 closures

10 rounds “approximated” closures
¢-LLL GMI + ¢-LLL str. L&P str. -LLL split

n m T cuts %gap cuts %gap | cuts  %gap cuts  %gap cuts Y%gap

10 1 B 61.2 82.80 98.0 83.78 4.1  29.87 41.6  99.73 62.3  100.00

20 1 B | 149.1 60.55 | 198.8 60.08 4.0 18.56 71.4 61.93 | 1484 84.11

50 1 B 192.6 54.40 | 214.5 54.65 4.1 22.32 48.0 50.84 | 174.7 88.29
100 1 B 197.1 54.13 | 206.7 54.19 4.4 21.38 42.8 46.81 | 162.3 89.72

10 1 I 74.8 80.21 | 115.9 80.16 1.3 16.89 14.3  63.87 48.3 88.97

20 1 I 145.8 68.55 | 184.0 70.02 1.3 13.68 21.2 47.42 53.9 81.90

50 1 I 184.6 61.12 | 201.6 60.96 1.2 12.26 21.1 42.02 61.6 82.28
100 1 I 191.7 60.43 | 204.5 61.82 1.3 14.94 20.2 42.28 57.0 85.22

10 1 U 35.8 95.98 49.9 96.27 1.0 37.27 8.8 79.31 25.9 97.58

20 1 U 37.1 99.76 39.1 100.00 1.0 34.88 104 77.52 27.0 92.57

50 1 U 19.1 96.52 20.2 96.52 1.0 62.36 7.5 92.13 38.1 99.97
100 1 U 7.6 100.00 8.0  100.00 1.0 64.07 5.1  98.59 35.9 98.70

50 2 B | 288.7 18.92 | 330.7 19.04 | 10.1 9.95 84.4  18.96 | 460.8 41.24  %*
50 3 B | 345.1 7.85 | 404.1 7.95 | 15.8 4.23 99.7 8.09 | 519.0 18.95 *
50 4 B | 3835 3.43 | 463.6 3.47 | 20.7 1.99 | 140.5 4.05 | 518.6 8.49 *
50 2 U | 2815 42.25 | 318.8 43.02 2.0 13.02 26.7 32.28 | 178.6 71.87

50 3 U | 336.5 17.93 | 394.2 18.24 3.3 5.57 34.7 12.81 | 3424 42.08

50 4 U | 379.0 9.53 | 451.9 9.55 4.7 3.76 40.9 7.49 | 372.8 22.41

The results in Table 3 clearly show that growing the rank of the f-cuts
gives generally better results than optimizing over the approximate closure
of the disjunctions in the W-matrix although there is no domination. Nev-
ertheless, it is confirmed that the approximated strengthened ¢-LLL closure
is way stronger than the approximated strengthened L&P closure. In other
words, elementary disjunctions in the reformulated space are stronger than el-
ementary disjunctions in the original space. With few exceptions, neither the
strengthened ¢-LLL closure nor the strengthened L&P closure provide a good
approximation of the rank-1 split closure. Finally, separating both ¢-LLL and
L&P cuts together does not significantly improve over ¢-LLL alone, although
the results are not explicitly reported in the table.
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6 Concluding remarks

Our /f-cuts are generated based on general disjunctions originating from in-
formation on the lattice structure of the underlying problem. For the test in-
stances, which are similar to the instances used by [14] in their computational
study of k-cuts, we observe that the lattice structure gives useful informa-
tion to obtain cuts that improve on standard GMI/Split cuts and k-cuts. For
single-row problems, a large percentage of the integrality gap is closed. For
multi-row problems the results are not as good, and it remains a challenge
to identify cuts that can be generated within reasonable computing time and
that work well on multi-row problems.

We observe that the better the quality of the basis generating the lattice,
the better the quality of the resulting ¢-cuts. We have, however, only tried one
lattice reformulation [1], and given the partial success of the approach it would
be useful to investigate other reformulations, in particular a reformulation
that captures multi-row problems better. Also, extending our approach to the
mixed-integer case would be interesting.
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