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In this paper, we propose a general modeling framework for a large class of binary quadratic programs

subject to variable partitioning constraints. This problem has a wide range of applications as many of the

binary quadratic programs with linear constraints can be represented in this form. By exploiting the prob-

lems’ structure, we propose mixed-integer nonlinear program (MINLP) and mixed-integer linear program

(MILP) reformulations and show the relationship between the two models in terms of the relaxation strength.

Our methodology relies on a convex reformulation of the proposed MINLP and a branch-and-cut algorithm

based on outer approximation cuts where the cuts are generated on the fly by efficiently solving separa-

tion subproblems. Our experimental results on various quadratic combinatorial optimization problems show

that our approach outperforms the state-of-the-art solver applied to different MILP reformulations of the

corresponding problems.

Key words : binary quadratic program, convex reformulation, outer approximation, variable partitioning

constraint

1. Introduction

The binary quadratic program with linear constraints (BQP) is a general class of optimization

problems which is known to be very difficult due to the nonconvexity and the integrality of the

variables. However, it is ubiquitous, among others, in management, engineering, logistics and net-

work design. Let n,m be positive integers, B = {0,1}, R denote the set of reals, Q ∈ Rn×n and

A∈Rm×n be real symmetric and real matrices, respectively, and c∈Rn and b∈Rm be real vectors.

The BQP is a problem of the following form:

BQP: min cTx+xTQx

s.t. x∈X ∩Bn,
(1)

where X is described as

X = {0≤ x≤ 1 : Ax= b}. (2)

1
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In this paper we propose a unifying model and solution method for a large class of binary

quadratic programs, which we call “Partitioning” BQP . More formally, consider problem (1) and

suppose N = {1,2, . . . , n} represents the index set of the variables and E = {(i, j)| i, j ∈N} denotes

the index set of pairs (i, j) corresponding to the product terms xixj in the objective function.

Moreover, let I1, I2, . . . , IK define a partition of N with index set K = {1,2, . . . ,K} such that for

each k ∈K, Ik ⊂N and for each pair k, `∈K, Ik ∩ I` = ∅. We consider the following problem:

BQPP : min cTx+xTQx

s.t. x∈X ∩P ∩Bn,

where constrains defining P restrict the number of variables in each subset Ik, k ∈ K to be one,

i.e.,

P = {x|
∑

i∈Ik
xi = 1 k ∈K}. (3)

Although BQPP is a particular case of the BQP, it can be shown that several BQP problems

can be represented as BQPP . The quadratic semi-assignment problem, graph partitioning problem,

single allocation hub location problem, multi-processor scheduling with communication delays, and

test assignment problem are among the known BQPP problems that can be represented as BQPP

(see Section 4 for more details).

We introduce a new non-convex MINLP formulation of the BQPP and show how to transform

it into a convex one. We then apply an outer approximation scheme and develop a branch-and-cut

algorithm. We finally perform computational experiences on three classes of problems. Results show

the superiority of our approach with respect to the best performing algorithms in the literature.

1.1. Literature Review

A known solution approach for the BQP, and hence the BQPP , is to use an initial linearization to

transform the problem into an equivalent MILP. However, dealing with linear programming (LP)

based reformulations, two different issues must be considered: the increasing size of the problem

in terms of the number of variables and constraints, and also the tightness of the obtained lower

bounds. The standard strategy to linearize the quadratic terms xixj for all i, j = 1,2, . . . , n is to

introduce new binary variables yij = xixj that satisfying the following set of constraints:

yij ≤ xi, yij ≤ xj, and yij ≥ xi +xj − 1.

The new formulation requires O(n2) additional variables and constraints and it is well known

in the literature (see Glover and Woolsey 1974, Hansen 1979). To reduce the size of the linearized

model, Glover (1975) proposed a new strategy to linearize the quadratic terms xixj through the

introduction of n unrestricted continuous variables and 4n linear inequalities. Adams and Forrester
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(2005), Adams et al. (2004), Chaovalitwongse et al. (2004), and Sherali and Smith (2007) provided

different O(n) linearization approaches.

The reformulation-linearization technique (RLT) is an alternative and successful approach to

linearize the BQP (see Adams and Sherali 1986, Sherali and Adams 2013). The RLT generates

an n-level hierarchy of polyhedral representations for linear and polynomial 0-1 programming

problems with the n-th level providing an explicit algebraic characterization of the convex hull of

feasible solutions. The level of the hierarchy directly corresponds to the degree of the polynomial

terms produced during the reformulation stage. Hence, in the reformulation phase, given a value

of the level d ∈ {1, . . . , n} the RLT constructs various polynomial factors of degree d obtained as

the product of some d binary variables xj or their complements (1 − xj). The RLT essentially

consists of two steps: (i) a reformulation step, in which nonlinear valid inequalities are generated by

combining constraints of the original problem, and (ii) a linearization step in which each product

term is replaced by a single continuous variable. Applying RLT to the special cases of the BQP

leads to tight linear relaxations (see, for instance, Adams and Johnson 1994, Adams et al. 2007,

Hahn et al. 2012, Rostami and Malucelli 2014, 2015).

Another relevant track of research on the BQP is to study the polyhedral structure of the set

of feasible solutions to strengthen the LP-based reformulation bounds. One way to construct such

polyhedral relaxation is to generate some valid inequalities dynamically by using cutting-plane

methods. Padberg (1989) proposed a polytope, called boolean quadric polytope, associated with a

linearized integer programming formulation of the unconstrained quadratic 0-1 programming and

introduced three families of valid and facet-defining inequalities for it. There are several papers

devoted to studying the polyhedral structure of the special cases of the BQP (see, for instance,

Jünger and Kaibel 2001, Saito et al. 2009, Helmberg et al. 2000, Fischer and Helmberg 2013, Fischer

2014).

Semidefinite programming (SDP) is another popular approach to generate strong relaxations of

the BQP. The SDP can be viewed as an extension of linear programming where the nonnegativity

constraints are replaced by positive semidefinite constraints on matrix variables. More precisely

for any vector x ∈ Bn of decision variables, we first introduce the new matrix Y = xxT , which

transforms the quadratic function of x into a linear function of Y , and then impose a “rank one”

non-convex constraint Y = xxT to the problem. Because of the non-convexity of the rank one

constraint, a relaxation of this constraint is considered such that the resulting problem is an SDP.

Applications of SDP for different types of BQP problems can be found in Fujie and Kojima (1997),

Helmberg et al. (2000), Oustry (2001), Poljak et al. (1995), Rendl (1999).

Quadratic reformulations are alternative approaches that transform the BQP into an equivalent

one with either convex or non-convex objective function. The idea is to perturb the objective
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function with some specific multipliers in such a way that the resulting lower bound is tighter.

Carraresi and Malucelli (1994, 1992) proposed a reformulation scheme and lower bounds for the

quadratic assignment problem by shifting the quadratic cost coefficients to the linear part. This

approach recently has been extended to some quadratic combinatorial optimization problems (see,

for instance, Rostami and Malucelli 2015, Rostami et al. 2015, 2018). Billionnet et al. (2009)

proposed alternative reformulation to the BQP that convert the non-convex quadratic objective

function to an equivalent convex quadratic function. The authors show that the optimal multipliers

for the new convex program could be found by solving an SDP.

Decomposition methods provide a different approach to address the BQP. Chardaire and Sut-

ter (1995) introduced a decomposition method for unconstrained quadratic 0-1 programming that

can be viewed as a more general Lagrangian decomposition where several copies of each variable

are added. Chaillou et al. (1989), Billionnet et al. (1999), Billionnet and Soutif (2004) applied

Lagrangian decomposition methods to the quadratic knapsack problem. Mauri and Lorena (2011)

introduced a Lagrangian decomposition method for the unconstrained BQP based on a graph parti-

tioning. Mauri and Lorena (2012) proposed an alternative approach based on column generation to

the Lagrangian decomposition method reported by Mauri and Lorena (2011) to find lower bounds

and feasible approximate solutions of the BQP. Chen et al. (2017) developed a Lagrangian decom-

position based heuristic method for the BQP with linear constraints where additional quadratic

constraints are introduced to ensure the identity between each original decision variable and its

copies.

1.2. Our contributions

Our main scientific contributions are summarized as follows.

• We propose a unifying model for a large class of binary quadratic programs which include

a variety of important problems in management science, computer science, transportation, and

logistics.

• We exploit the structure of the proposed model to reformulate the BQPP as a non-convex

MINLP and show how to transform it into a convex one. This problem possesses a special structure

which naturally lends itself to decomposition techniques. We show that one can find an alternative

MILP reformulation of the BQPP by applying the RLT to constraints (3). Moreover, we analyze

the relationship between the two formulations in terms of relaxation strength.

• We apply an outer approximation approach to reformulate the proposed convex MINLP as

a MILP. However, due to the size of the resulting MILP, it is not practical to solve it directly

using the state-of-the-art solver. Instead, we develop a branch-and-cut algorithm, where the outer

approximation cuts are generated on the fly by efficiently solving separation subproblems. Besides,
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we use some algorithmic features such as multiple outer approximation cuts and a stabilized cut

generation scheme to speed up the basic implementation.

• We consider three classes of problems in the literature and show how to represent each as a

BQPP . To evaluate the robustness and efficiency of our solution methods, we perform extensive

computational experiments on instances of the quadratic semi-assignment problem, single alloca-

tion hub location problem, and test assignment problem. Moreover, for each problem, we compare

our results with the results obtained from the commercial solver applied to the original BQPP , to

the RLT-based model, and to the best-known MILP model in the literature. The results indicate

a significant superiority of our solution method.

The remainder of the paper is organized as follows. In Section 2, we present the MINLP, the

MILP reformulations and the relationship between their continuous relaxations. In Section 3, we

describe the outer approximation based solution method and present some acceleration strategies

that improve the convergence and efficiency of the algorithm. The results of extensive computa-

tional experiments performed on different problem types are presented in Section 4. Finally, our

concluding remarks and possible future works are presented in Section 5.

2. Mixed-integer nonlinear and RLT-based reformulations

In this section, we propose two alternative reformulations for the BQPP . In Subsection 2.1, we

present a MINLP reformulation, while in Subsection 2.2 we give a MILP reformulation based on

an application of the level-1 RLT. In Subsection 2.3, we analyze the relationship between the two

reformulations in terms of the quality of the lower bounds provided.

2.1. A mixed-integer nonlinear programming reformulation

Let us consider the BQPP . By using (3), we first rewrite the objective function in the following

extended form:

cTx+xTQx=
∑
i∈N

cixi +
∑

(i,j)∈E

qijxixj =
∑
k∈K

∑
i∈Ik

cixi +
∑
k,`∈K
k 6=`

∑
i∈Ik

∑
j∈I`

qijxixj. (4)

Notice that for each pairs i, j ∈ Ik, the quadratic expression xixj = 0 due to (3). Therefore, the

quadratic part of the objective function can be expressed in terms of partitions’ interaction costs

rather than the individuals variables quadratic costs. To this end, let us define new continuous

variables yik` for any k, `∈K, k 6= `, and any given i∈ Ik, representing the interaction cost between

i ∈ Ik and the partition I`. Accordingly, the quadratic cost between each two partitions k, ` ∈ K,

k 6= ` is computed as ∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj. (5)
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Given the fact that in any feasible solution we only select one variable x from each partition,

there must exist ik ∈ Ik and j` ∈ I` with xik = xj` = 1. Therefore, the quadratic cost between each

two partitions k, `∈K, k 6= ` is reduced to the quadratic costs between ik ∈ Ik and j` ∈ I`, i.e.,∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj = y
ik
k` + y

j`
`k if xik = xj` = 1. (6)

We then propose the following MINLP reformulation for the BQPP :

MINLP1: min
∑
k∈K

∑
i∈Ik

cixi +
∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
s.t. yik` + yj`k ≥ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I` (7)

y unrestricted (8)

x∈X ∩P ∩Bn.

Theorem 1. Problem MINLP1 is a reformulation of BQPP

Proof. We have to prove that for any feasible solution x of BQPP , there exists y such that

(x, y) is feasible for MINLP1 with the same objective value. Conversely, for any feasible solution

(x, y) of MINLP1, the corresponding x is feasible for BQPP with the same objective value.

Consider a feasible solution to the BQPP . For each k, `∈K, k 6= `, there exist ik ∈ Ik and j` ∈ I`
such that xik = xj` = 1. Therefore, the value of the objective function is given by∑

k∈K

cikxik +
∑
k,`∈K
k 6=`

qikj`xikxj` (9)

For each k, ` ∈ K, k 6= `, if we set y
ik
k` + y

j`
`k = qikj` , then (x, y) would be feasible for MINLP1

with the same objective value as computed in (9). Conversely, consider a feasible solution (x, y) of

MINLP1 where the inequalities (7) are tight. Indeed, because of the sign of the objective function,

for any feasible solution x there exists a feasible solution y for which the inequalities are tight. In

this case x is also feasible solution for BQPP . Using the same argument, it is easy to verify that

the objective values are also identical.

�

Notice that the reformulation MINLP1 is only possible because of constraints (3). Moreover, we

can project the MINLP1 on the space defined by x variables to obtain the following convex MINLP

reformulation:

MINLP2: min
x

∑
k∈K

∑
i∈Ik

cixi + min
y

{ ∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
: (7), (8)

}

s.t. x∈X ∩P ∩Bn,

(10)

where the convexity of the problem follows from the fact that, for any given value of x∈X∩P ∩Bn,

the inner minimization in (10) is linear program.
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2.2. A mixed-integer linear programming reformulation

In this section, we present a MILP formulation for the BQPP based on applying the level-1 RLT

to constraints defining P in (3). First, multiply each equation of P in (3) by each variable xj with

j ∈ I`, and `∈K to form equations∑
i∈Ik

xixj = xj k, `∈K, k 6= `, j ∈ I`, (11)

and add them to the problem constraints. Then, for each k, ` ∈ K, k 6= `, i ∈ Ik, j ∈ I` replace the

product xixj throughout the objective function and constraints with a single nonnegative and

continuous variable wij. Finally, impose wij =wji to result in the following MILP formulation:

RLTP : min
∑
k∈K

∑
i∈Ik

cixi +
∑
k,`∈K
k 6=`

∑
i∈Ik

∑
j∈I`

qijwij

s.t. x∈X ∩P ∩Bn∑
i∈Ik

wij = xj k, `∈K, k 6= `, j ∈ I` (12)

wij =wji k, `∈K, k < `, i∈ Ik, j ∈ I` (13)

wij ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I`. (14)

Theorem 2. RLTP is a reformulation of BQPP .

Proof. We have to prove that for any feasible solution (x̂, ŵ) of RLTP

ŵij = x̂ix̂j ∀ k, `∈K, i∈ Ik, j ∈ I`. (15)

First, note that feasibility of x̂ for RLTP implies that
∑

i∈Ik
x̂i = 1 for each k ∈K. Now, consider

any ŵij for k, ` ∈ K, i ∈ Ik, j ∈ I`. Constraints (12), together with the nonnegativity restrictions

ŵij ≥ 0 (14), enforce that ŵij ≤ x̂j. Rewriting constraints (12) for each k, ` ∈ K, j ∈ I` and using

(13) we have ŵij ≤ x̂i. Thus,

ŵij ≤ min {x̂i, x̂j} ∀ k, `∈K, i∈ Ik, j ∈ I`, (16)

hence ŵij = 0 if either x̂i = 0 or x̂j = 0. In addition, if we subtract constraint
∑

i∈Ik
x̂i = 1 from

equation (12) we obtain ∑
i∈Ik

(ŵij − x̂i) = x̂j − 1. (17)

By (16), we have ŵij − x̂i ≤ 0, so that (17) implies

ŵij ≥ x̂i + x̂j − 1,

giving us that ŵij = 1 if x̂i = x̂j = 1.

�
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2.3. A comparison between relaxations strength

We now turn our attention to compare the strength of the LP relaxation of RLTP with the

continuous relaxation of MINLP2. The following theorem formally shows the relationship between

these two relaxations.

Theorem 3. Let CRLTP and CMINLP2 represent the continuous relaxations of problems RLTP

and MINLP2, respectively. Then, CRLTP and CMINLP2 are equivalent.

Proof. We first show that CRLTP provides a lower bound on the BQPP at least as large as

the one provided by CMINLP2. To this end, we consider CRLTP and write its dual problem as

follows:

DCRLTP : max
(α,π,λ,µ)

∑
k∈K

πk +
m∑
r=1

αrbr

s.t. cj −
m∑
r=1

αr arj +
∑

`∈K:`6=k

λjk`−πk ≥ 0 k ∈K, j ∈ Ik (18)

qij −λikl−µ
ij
kl ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I` (19)

µij`k =−µjik` k, `∈K, k < `, i∈ Ik, j ∈ I`, (20)

where (α,π,λ,µ) are the dual variables corresponding to (2), (3), (12), and (13), respectively. Notice

that µijk` is defined for k < `, and may be negative. For convenience, we have defined µij`k =−µijk` for

all k, `∈K with k < `, and i∈ Ik, j ∈ I`.

To solve DCRLTP , we apply Lagrangian relaxation to constraints (18) using dual variables x to

obtain the following Lagrangian function:

L(x) = max
(α,π,λ,µ)

∑
k∈K

∑
j∈Ik

cjxj +
m∑
r=1

αr(br−
∑
k∈K

∑
j∈Ik

arjxj)

+
∑
k∈K

πk(1−
∑
j∈Ik

xj) +
∑
k,`∈K
k 6=`

∑
i∈Ik

λik` xi

s.t. qij −λikl−µ
ij
kl ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I`

µij`k =−µjik` k, `∈K, k < `, i∈ Ik, j ∈ I`.

Then, the Lagrangian dual problem reads as

min
x≥0

L(x) =
∑
k∈K

∑
j∈Ik

cjxj + g(x) + f(x) +h(x),

where

LPα : g(x) = max
α

m∑
r=1

αr(br−
∑
k∈K

∑
j∈Ik

arjxj),
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LPπ : f(x) = max
π

∑
k∈K

πk(1−
∑
j∈Ik

xj),

LPµλ : h(x) = max
λ,µ

∑
k,`∈K
k 6=`

∑
i∈Ik

λik` xi

s.t. qij −λikl−µ
ij
kl ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I`

µij`k =−µjik` k, `∈K, k < `, i∈ Ik, j ∈ I`.

The optimal objective value of the Lagrangian dual problem gives the optimal value of the LP

relaxation of RLTP . Since the original problem is bounded, LPα and LPπ have optimal objective

values equal to zero. More precisely, for the latter subproblem, if 1−
∑

j∈Ik
xj 6= 0, for each k ∈K,

then the variables π can get very large positive or negative values, which in turn, means that the

Lagrangian dual problem would be unbounded. Using the same argument br−
∑

k∈K
∑

j∈Ik
arjxj = 0

for all r = 1, . . . ,m. Therefore, x must belong to the set X ∩P . Accordingly, the Lagrangian dual

is reduced to the following problem:

min L(x) =
∑
k∈K

∑
i∈Ik

cixi +h(x)

s.t. x∈X ∩P.

Now, let us consider MINLP2. One can change the sign of the inner minimization in (10) from

the minimization to maximization and replace constraints (7) by

yik` + yj`k ≤ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`. (21)

Since the y variables are unrestricted in sign, this modification does not change the objective

value of the inner minimization in (10). We denote by LPy the new inner maximization and

represent its objective value by h′(x) for any value of x∈X ∩P ∩Bn. Indeed, h′(x) is always equal

to
∑

k,`∈K
k 6=`

qikj` =
∑

k,`∈K
k 6=`

(y
ik
k` + y

j`
`k), where xik = 1 for all k ∈K.

Now, we show that h(x)≥ h′(x) for all x∈X ∩P . To this end, for a given feasible solution ȳ of

problem LPy we construct a feasible solution for the LPµλ as follows:

λ̄ik` = ȳik` k, `∈K, k 6= `, i∈ Ik

µ̄ijk` =

{
ȳj`k k, `∈K, k < `, i∈ Ik, j ∈ I`
−ȳj`k k, `∈K, k > `, i∈ Ik, j ∈ I`.

It can be seen that (λ̄, µ̄) is a feasible solution for LPµλ.

To complete the proof, we need to show that for any given x ∈ X ∩ P there exists a feasible

solution ȳ for LPy with h(x) = h′(x). To this end, let us consider LPµλ and suppose that (λ̄, µ̄) is

its optimal solution. Since x≥ 0, it can be verified that

λ̄ik` = qij∗
`
− µ̄ij

∗
`

k` k, `∈K, k 6= `, i∈ Ik,
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where

j∗` = arg min
j∈I`

{
qij − µ̄ijk` | k, `∈K, k 6= `, i∈ Ik

}
.

Hence, given the fact that µij`k =−µjik` for all k, `∈K, k < `, we have

h(x) =
∑
k,`∈K
k<`

∑
i∈Ik

(qij∗
`
− µ̄ij

∗
`

k` )xi +
∑
k,`∈K
k>`

∑
i∈Ik

(qij∗
`
− µ̄ij

∗
`

k` )xi =
∑
k,`∈K
k 6=`

∑
i∈Ik

qij∗
`
xi. (22)

If we define

ȳikl = 1/2λ̄ik` for all k 6= `, i∈ Ik. (23)

then, ȳ satisfies constrains (21), i.e.,

ȳik` + ȳj`k = 1/2(qij∗ − µ̄ij
∗

k` ) + 1/2(qji∗ − µ̄ji
∗

`k )≤ 1/2(qij − µ̄ijk`) + 1/2(qji− µ̄ji`k)≤ qij. (24)

It can be seen that objective value of LPy at ȳ is also equal to
∑

k,`∈K
k 6=`

∑
i∈Ik

qij∗
`
xi, and this

completes the proof.

�

3. Solution approach

In this section, we discuss our approach to solve the reformulation MINLP2. In Section 3.1, we

develop an outer approximation algorithm to solve MINLP2. Next, we analyze two ways to improve

the convergence and stability of the proposed algorithm in Sections 3.2 and 3.3, respectively.

3.1. An outer approximation algorithm

Let us consider problem MINLP2. By introducing an auxiliary variable η, we rewrite MINLP2 as

follows:

MINLP3: min
∑
k∈K

∑
i∈Ik

cixi + η

s.t. η≥Φ(x)

x∈X ∩P ∩Bn.

where

PS: Φ(x) =min
∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
(25)

s.t. yik` + yj`k ≥ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I` (26)

y unrestricted. (27)

Note that constraints defining x are enough to ensure feasibility, the value Φ(x) is bounded.

Moreover, if (x,η) is an optimal solution of MINLP3, then x is optimal for BQPP . Because of
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the convexity of Φ(x), and the fact that the objective function of MINLP3 is linear, the optimal

solution of the problem always lies on the boundary of the convex hull of the feasible set and

therefore allows us to use cutting-plane techniques to solve the problem. More precisely, for a given

x̄∈X ∩P ∩Bn, since Φ(x) is convex, it can be underestimated by a supporting hayperplane in x̄.

Let s̄∈ ∂Φ(x̄) be a subgradient of Φ(x) at x̄. Then, following the generalized Benders decomposition

of Geoffrion (1972) and outer approximation of Duran and Grossmann (1986) for convex MINLP

we can linearize around x̄ the convex function Φ(x) to obtain the following master problem:

MP : min
∑
k∈K

∑
i∈Ik

cixi + η

s.t. η≥Φ(x̄) + s̄(x− x̄) x̄∈X ∩P ∩Bn (28)

x∈X ∩P ∩Bn,

where (28) for any x̄∈X ∩P ∩Bn is an outer approximation of the feasible set of the MINLP3.

It is not practical to solve MP because one would have first to enumerate all feasible solutions

x̄ ∈ X ∩ P ∩ Bn and find the corresponding subgradients s̄ ∈ ∂Φ(x̄). Instead, we solve MP as a

MILP by a branch-and-cut algorithm, where (28) are generated on the fly as described below. For a

given solution x̄ of MP , we solve subproblem PS with x= x̄. Let ȳ be an optimal solution and ū be

the optimal dual variables corresponding to constraints (26). The Lagrangian function in (x̄, ȳ, ū)

is ∑
k,`∈K
k 6=`

(∑
i∈Ik

ȳik` x̄i +
∑
j∈I`

ȳj`kx̄j +
∑
i∈Ik

∑
j∈I`

ūk`ij(qij − ȳik`− ȳ
j
`k)
)
.

Hence, the subgradient for each i∈N is given by

s̄i =
∑
k,`∈K
k 6=`

(ȳik` + ȳi` k),

and the subgradient cut can be written as

η≥Φ(x̄) +
∑
i∈N

s̄i(xi− x̄i). (29)

The subgradient cut (29) is added to the master problem as it is identified along the branch-

and-cut tree. Theorem 4 shows that the subgradient cut (29) found at a fractional solution is also

valid for the original master problem MP .

Theorem 4. Let (x̄, η̄) be the optimal solution of the LP relaxation of the master problem solved

at a node of the search tree and s̄ be the corresponding subgradient of Φ(x) at x̄. Then, the subgra-

dient cut

η≥Φ(x̄) + s̄(x− x̄). (30)

is valid for the original master problem MP .
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Proof. Let us assume that (x∗, η∗) is the optimal solution of MP and s∗ = (y∗, z∗) is the cor-

responding subgradient of Φ(x) at x∗. Since s̄ and s∗ are subgradients of Φ(x) and also s∗ is the

optimal one, we have

Φ(x∗)≥
∑
k,`∈K
k 6=`

(∑
i∈Ik

ȳik`x
∗
i +
∑
j∈I`

ȳj` kx
∗
j

)
= s̄x∗.

Hence,

η∗ ≥Φ(x∗)≥Φ(x̄) + s̄(x∗− x̄),

and this completes the proof.

�

Starting with an empty set of subgradient cuts at the root node, the linear programming relax-

ation of MP with x̄∈X ⊂X ∩P is solved at each node of the search tree, and the subgradient cut

(29) is added if it is violated. Otherwise, the algorithm proceeds by branching on binary variables

with non-binary values.

3.2. A revised multicut reformulation

Given that function Φ(x) defined in (25) to (27) is a separable convex function, we can rewrite it

as the sum of the compositions of convex functions φkl(x) for each k, `∈K, k 6= ` where

φk`(x) = min
∑
i∈Ik

yik` xi +
∑
j∈I`

yj`kxj

s.t. yik` + yj`k ≥ qij i∈ Ik, j ∈ I`

y unrestricted.

(31)

Let ȳ be the optimal solution of the above problem and s̄k` =
∑

i∈Ik
(ȳik` + ȳi`k) be a subgradient

of φk`(x) for each k, `∈K, k 6= `. Then, for each x̄∈X ∩P ∩Bn, the subgradient cut (28) is replaced

by

ηk` ≥ φk`(x̄) + s̄k`(x− x̄) k, `∈K, k 6= `. (32)

Although the number of the new subgradient cuts are much larger than those in MP , our

computational experiments indicate that the overall computational time needed by the branch-

and-cut algorithm to solve an instance of the problem is significantly shorter.

3.2.1. Solving the subproblems For each k, ` ∈ K, k 6= ` and for any x ∈X ∩ P , the sub-

problem (31) is a linear program, and hence can be solved efficiently by the state-of-the-art solvers.

However, we can exploit the structure of the subproblem (31) to obtain an optimal solution ȳ

more efficiently than by using an LP solver. Following theorem formally give an optimal solution

of subproblem (31).

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2018-002



13

Theorem 5. Given a solution x̄∈X∩P , for each k, `∈K, k 6= `, a primal solution of subproblem

(31) can be obtained by setting

ȳik` =
∑
j∈I`

qijx̄j i∈ Ik (33)

ȳj`k = max
i∈Ik

{
qij − ȳik`

}
j ∈ I`. (34)

Proof. According to (33) and (34), we can see that ȳik` + ȳj`k ≥ qij for all k, ` ∈ K, k 6= ` and

i∈ Ik, j ∈ I`. Therefore, ȳ is a feasible solution of subproblem (31).

Now, let us consider the dual of problem (31) with variables u. we can show that ūij = x̄ix̄j for

all k, `∈K, k 6= ` and i∈ Ik, j ∈ I`, is a feasible solution for the dual problem.

To proof the optimality, it is enough to show that the objective value of the primal problem at

ȳ is equal to the dual objective value at ū. i.e.,

∑
i∈Ik

ȳik` x̄i +
∑
j∈I`

ȳj`kx̄j

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j +
∑
j∈I`

(qa(j)j −
∑
j∈I`

qa(j)jx̄j)x̄j

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j +
∑
j∈I`

qa(j)jx̄j(1−
∑
j∈I`

x̄j)

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j =
∑
i∈Ik

∑
j∈I`

qijūij,

where

a(j) = arg max
i∈Ik

{
qij − ȳik`

}
j ∈ I`.

�

3.3. A stabilized cutting plane

In the branch-and-cut algorithm proposed in Section 3.1, at each node of the search tree and at

each cut loop iteration, we generate one or more cuts that are violated by the current solution x̄,

add them to the current relaxation, reoptimizes it, and get a new optimal solution x̄ to be cut

at the next iteration. The efficiency of the algorithm depends mainly on the number of iterations

required. To decrease the number of iteration, we generate stronger cuts via a stabilized approach.

This approach uses an interior point of the feasible region of the master problem in contrast to

Kelley’s cutting plane method, where the solution provided by the master problem is an extreme

point (see Kelley 1960). In the spirit of the works Ben-Ameur and Neto (2007), Fischetti et al.

(2016), here we use two points x̄ and x̊ to generate a stabilized solution x̃= α x̄+ (1−α)̊x, where

x̄ is the current solution of the relaxed master problem, x̊ is a point that belongs to the relative
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interior of the convex hull x∈X ∩P ∩Bn and 0<α≤ 1. When the new point x̃ is used instead of

x̄ in the subproblem, the following subgradient cut is added to the current LP

η≥Φ(x̄) +
∑
i∈N

s̃i(xi− x̄i), (35)

where s̃ is the subgradient of Φ(x) at x̃. In our implementation, x̊ is set to a relative interior of the

convex hull x ∈X ∩P ∩Bn at the beginning, it is updated using x̊new = 1/2(x̄+ x̊old) at each cut

loop iteration, and it is reset to x̄ if the LP bound does not improve.

4. Applications and computational study

As we mentioned in Section 1, many quadratic binary programming problems can be represented

as BQPP . In this section, we provide an extensive experimental evaluation of our solution approach

on a large class of test instances from three practical binary quadratic programming problems:

quadratic semi-assignment problem (QSAP), single allocation hub location problem (SAHLP), and

test assignment problem (TAP). In each application, we compare our outer approximation based

branch-and-cut algorithm (OABC) to both the RLT-based model and the most effective MILP

formulation proposed in the literature. It is worth noting that we also tried to solve the BQPP

directly using the state-of-the-art solvers CPLEX and Gurobi. However, their overall performances

were much worse than their performances on the corresponding MILP models. Hence, we do not

report them here.

We implemented our algorithm in C++ with the use of the Gurobi 6.5 solver as a subroutine.

The experiments were performed on a machine running Linux Intel Xeon(R) CPU E3-1270 (2

quad-core CPUs with 3.60 GHz) with 64 gigabytes of RAM. The time limit was set to two hours.

In the following, for each problem we provide a brief description, a short literature review, as

well as details about the adopted benchmark instances and results.

4.1. Test-assignment

Consider the problem of assigning the test variants of a written exam to the desks of a classroom

in such a way that desks that are close-by receive different variants. This problem is a generalized

version of the vertex coloring problem (see Malaguti and Toth (2010)) and is defined as follows. We

are given an undirected graph G= (V,A) with a set of nodes V and set of edges A with positive

weights w associated with edges, and a set of available colors H. For each pair of colors i, j ∈H, we

have a positive weight fij that represents the similarity of the two colors. If node k receives color

i and node ` receives color j, the vicinity of the edge-color assignment is wk`fij. In general, the

students will not completely fill the classroom, and there will be p empty desks, thus only |V | − p
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nodes of G must be colored. By defining binary variables xik taking value 1 if node k gets color i

and 0 otherwise, the problem is formulated as the following BQP:

TAP: min
∑

(k,`)∈A

∑
i,j∈H

wk`fijxikxj`

s.t.
∑

i∈H xik ≤ 1 (k ∈ V ) (36)∑
k∈V

∑
i∈H xik = |V | − p (37)

xik ∈ {0,1} (i∈ V,k ∈H),

where constraints (36) restrict each vertex to receive at most one color, and constraint (37) states

that |V |−p vertices must be colored (i.e., |V |−p students must be seated). Following Duives et al.

(2013), we can define a dummy color 0 given to the p uncolored nodes with f0i = 0, i ∈H, and

replace constraints (36) and (37) by the following constraints:

∑
i∈H xik = 1 (k ∈ V ) (38)∑
i∈V xi0 = p.

Duives et al. (2013) apply a general-purpose solver to some convex reformulations of the prob-

lem and develop a Tabu Search algorithm to find feasible solutions. To find a convex BQP, the

authors use the smallest eigenvalue technique (see, for instance, Hammer and Rubin 1970) and

the Quadratic Convex Reformulation (QCR) method of Billionnet et al. (2009).

To represent the TAP as the BQPP , we define

N =M ×V, K = V, and,

Ik = {(i, k) | i∈M} k ∈ V.

Because of constraints (38), the results of Theorem 1 and our solution method can be used to

solve the problem.

4.1.1. Results To evaluate our proposed method, we used the test instances introduced in

Duives et al. (2013). We selected instances derived from 2 real classrooms, with 20 and 49 desks,

used for written exams in the Engineering Faculty of the University of Bologna. A graph G= (V,A)

is associated with each classroom where the node set V represents the desks, and A is the set of

links between the desks. For every graph, in addition to the dummy color (0), three sets of available

colors with sizes 2,3 and 4 are considered. The number of empty desks (nodes that must receive

color 0) is selected from the sets {0,5,10} and {0,10,20} for the classrooms with 20 and 49 desks,

respectively.
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Table 1 Comparing the RLT-based model with the OABC algorithm on real-life TAP instances presented in

Duives et al. (2013)

Instance Gurobi + RLT OABC algorithm

|V | nc nuc BSV glp(%) Ub g(%) nodes time(s) Ub g(%) nodes time(s) t(G/O)

20 2 0 20.90 21.5 20.90 0.0 184 0.1 20.90 0.0 117 0.1 1.0
20 2 5 7.95 20.7 7.95 0.0 782 1.8 7.95 0.0 2261 0.5 3.6
20 2 10 1.85 100.0 1.85 0.0 144 0.9 1.85 0.0 1126 0.1 9.0

20 3 0 15.15 30.7 15.15 0.0 1223 1.1 15.15 0.0 1046 0.1 11.0
20 3 5 5.58 25.6 5.58 0.0 2030 4.8 5.58 0.0 2182 0.9 5.3
20 3 10 1.22 100.0 1.22∗ 0.0 147 1.0 1.22∗ 0.0 406 0.1 10.0

20 4 0 11.95 31.3 11.95 0.0 2659 8.1 11.95 0.0 3095 3.0 2.7
20 4 5 3.98 20.8 3.98∗ 0.0 3762 8.5 3.98∗ 0.0 4474 2.5 3.4
20 4 10 0.93 100.0 0.93∗ 0.0 147 1.3 0.93∗ 0.0 1102 0.3 4.3

47 2 0 72.60 24.5 72.60 0.0 382219 335.4 72.60 0.0 67506 30.2 11.1
47 2 10 35.45 27.0 35.45 0.0 49738 1554.4 35.45 0.0 3638811 1294.2 1.2
47 2 20 12.65 54.7 12.65 0.0 63917 1493.1 12.65 0.0 94384 74.6 20.0

47 3 0 53.72 32.7 53.83 26.5 117888 7200.0 53.72∗ 0.0 3106567 1482.1 > 4.9
47 3 10 24.84 31.2 24.85 9.7 35973 7200.0 24.84 3.6 2247011 7200.0 1.0
47 3 20 8.52 60.2 8.55 10.7 40265 7200.0 8.52∗ 0.0 564665 532.9 > 13.5

47 4 0 43.88 37.5 43.98 20.4 36751 7200.0 43.93 13.9 900948 7200.0 1.0
47 4 10 19.05 32.1 19.63 25.8 29888 7200.0 19.37 17.4 1119366 7200.0 1.0
47 4 20 6.38 59.4 6.38 15.5 19707 7200.0 6.33∗ 0.0 1847924 1741.1 > 4.1

* Previously unsolved TAP instances in Duives et al. (2013) proven to be optimal solutions by our
solution approaches.

Table 1 compares the OABC algorithm with the RLT-based model. The first four columns give,

for each instance, the number of desks (|V |), the number of colors (nc), the number of empty desks

(nuc), and the best-known solution value (BSV) from Duives et al. (2013). Columns five to nine

present the results of Gurobi applied to the RLT-based model, while columns ten to thirteen give

the results of our OABC algorithm. For each algorithm, we present the best feasible solution value

(Ub), the total number of nodes enumerated in the search tree (nodes), the total required time,

in seconds, to solve the problem (time), and the final percentage optimality gap (g(%)). For the

RLT-based model, and for each instance, we also report the percentage LP relaxation gap (glp(%)).

In the last column, we report the corresponding ratios (t(G/O)) between the running times of

Gurobi applied to the RLT-based model and the OABC algorithm where a value greater than one

means an improvement in terms of computing time. We used the time limit as running time for

non-solved instances.
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As we can observe from the table, the OABC algorithm is able to solve 15 out of 18 instances,

whereas Gurobi applied to the RLT-based model can solve 12 instances. When both approaches can

solve an instance to optimality within the time limit, the OABC is about 7 times faster. Instances

marked by asterisks are previously unsolved instances which we could solve to optimality within

the two hours time limit. Note that, the OABC algorithm is the only approach that can solve all

the six unsolved instances to optimality while, the Gurobi applied to the RLT-based model can

only solve three instances with |V |= 20.

4.2. Single Allocation p-Hub Median Problem

Hub location problems are strategic planning problems that have been studied for almost 30 years

O’Kelly (1987), Alumur and Kara (2008), Campbell and O’Kelly (2012). The problem consists of

organizing the mutual exchange of flows among a broad set of depots by choosing a set of hubs out

of the set of possible locations and assigning each flow to a path from source to sink being processed

at a small number of hubs in between. Hub nodes are used to sort, consolidate, and redistribute

flows and their main purpose is to realize economies of scale: while the construction and operation

of hubs and the resulting detours lead to extra costs, the bundling of flows decreases costs. The

economies of scale are usually modeled as being proportional to the transport volume, defined

by multiplication with a discount factor α ∈ [0,1]. The resulting trade-off has to be optimized.

Typical applications of hub-based networks arise in airline, postal, cargo, telecommunication, and

public transportation services (see, for instance, Jaillet et al. 1996, Ernst and Krishnamoorthy

1996, Taylor et al. 1995, Klincewicz 1998, Nickel et al. 2001).

Consider a complete directed graph G = (V,A), where V is a set of nodes (representing the

origins, destinations, and possible hub locations), and A is the edge set. Let wk` be the amount of

flow to be transported from node k to node `. We denote by Ok =
∑

`∈V wk` and Dk =
∑

`∈V w`k the

total outgoing flow from node k and the total incoming flow to node k, respectively. For each i∈ V ,

let fi represent the fixed set-up cost of a hub located at node i. The cost per unit of flow for

each path k − i− j − ` from an origin node k to a destination node ` that passes hubs i and j

respectively, is χdki +αdij + δdj`, where χ, α, and δ are the nonnegative collection, transfer, and

distribution costs respectively, and dk` represents the distance between nodes k and `. The Single

Allocation p-Hub Median Problem (SApHMP) consists of selecting p nodes as hubs and assigning

the remaining nodes to these hubs such that each non-hub node is assigned to exactly one hub

node with the minimum overall cost.

O’Kelly (1987) proposed the first quadratic integer programming formulation for the SApHMP.

Since then, many exact and heuristic algorithms have been proposed in the literature, dealing with

locating both a fixed and a variable number of hubs (e.g., Campbell 1994, Ernst and Krishnamoor-

thy 1996, Skorin-Kapov et al. 1996, Ilić et al. 2010, Rostami et al. 2016).
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To model the problem, we define binary variables xik indicating whether a source/sink k ∈ V is

allocated to a hub located at i ∈ V . In particular, the variables xii are used to indicate whether i

becomes a hub. For ease of presentation, we set

cik := dki (χOk + δDk)

qikj` = αwk` dij.

The SApHMP can then be formulated as follows:

min
∑
i,k∈V

cikxik +
∑
i,j

∑
k,`

qikj` xikxj`

s.t.
∑

i∈V xik = 1 (k ∈ V ) (39)

xik ≤ xii (i, k ∈ V ) (40)∑
k∈V xii = p (41)

xik ∈ {0,1} (i, k ∈ V ),

where the objective function measures the total transportation costs consisting of the collection

and distribution costs of nonhub-hub and hub-nonhub connections, the hub-hub transfer costs.

Constraints (39) force every node to be allocated to precisely one hub node. Constraints (40) state

that k can only be allocated to node i if node i is chosen as a hub. Constraint (41) enforces the

number of open hubs to be p.

Due to the quadratic nature of the problem, many attempts have been made in the literature

to linearize the objective function. Skorin-Kapov et al. (1996) and Ernst and Krishnamoorthy

(1996) proposed two main MILP formulations for the problem that are based on a path and a

flow representation, respectively. The path-based formulation of Skorin-Kapov et al. (1996), which

can also be obtained by applying the RLT to constraints (39), has O(|V |4) variables and O(|V |3)
constraints and its LP relaxation provides tight lower bounds for some well-known test instances

in the literature. However, due to a large number of variables and constraints, it is only able to

solve instances with small to medium sizes. The flow-based formulation (F-MILP) use O(|V |3)
and O(|V |2) additional variables and constraints, respectively, to linearize the original formulation.

Among the existing formulations for the SApHMP, the F-MILP is the one that is often considered

the most effective in the literature.

In order to use the outer approximation our approach described in Section 3, it is enough to

define

N = V ×V, K = V, and,

Ik = {(i, k)|i∈ V } k ∈ V.
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Because of the single allocation constraints (39), we have Ik ∩ I` = ∅ for all k, ` ∈K with k 6= `.

Therefore, the results of Theorem 1 and the developed solution method can be used to solve the

problem.

Table 2 Comparing the RLT-based and the flow-based models with our OABC algorithm on small to medium

size instances of the AP dataset for SApHMP proposed in Ernst and Krishnamoorthy (1996)

Instance Gurobi + RLT Gurobi + F-MILP OABC algorithm t(G/O)

|V | p Opt. glp(%) nodes g(%) time(s) nodes g(%) time(s) nodes g(%) time(s) RLT F-MILP

25 2 175542 0.0 0 0.0 9.2 0 0.0 0.8 2 0.0 0.7 13.1 1.1
25 3 155256 0.0 0 0.0 9.2 1 0.0 4.2 7 0.0 0.8 12.3 5.7
25 4 139197 0.0 0 0.0 11.5 29 0.0 3.5 5 0.0 0.9 12.2 3.7
25 5 123574 0.0 0 0.0 7.5 5 0.0 3.7 7 0.0 0.9 8.2 4.0

40 2 177472 0.0 0 0.0 108 0 0.0 4.6 3 0.0 2.8 39.3 1.7
40 3 158831 0.0 0 0.0 103.4 4 0.0 16.2 8 0.0 7.8 13.3 2.1
40 4 143969 0.0 0 0.0 89.5 70 0.0 60.9 29 0.0 11.2 8.0 5.4
40 5 134265 0.0 0 0.0 93.9 36 0.0 50.0 26 0.0 13.8 6.8 3.6

50 2 178484 0.0 0 0.0 433.2 1 0.0 17.3 3 0.0 7.6 56.7 2.3
50 3 158570 0.0 0 0.0 366.1 0 0.0 23.6 4 0.0 8.1 45.1 2.9
50 4 143378 0.0 0 0.0 295.8 0 0.0 24.6 7 0.0 9 33.1 2.7
50 5 132367 0.0 0 0.0 277.9 3 0.0 30.3 41 0.0 8 34.6 3.8

60 2 179920 0.0 0 0.0 1454.2 0 0.0 47.6 3 0.0 15 96.8 3.2
60 3 160339 0.0 0 0.0 1232.2 4 0.0 101.3 16 0.0 36.4 33.9 2.8
60 4 144720 0.0 0 0.0 1129.4 17 0.0 148.2 12 0.0 23.4 48.2 6.3
60 5 132850 0.0 0 0.0 902.4 73 0.0 222.7 68 0.0 35.6 25.3 6.3

70 2 180093 0.0 0 0.0 3371.8 0 0.0 105.3 3 0.0 20.5 164.8 5.2
70 3 160933 0.0 0 0.0 3130.6 11 0.0 380.8 5 0.0 32.1 97.7 11.9
70 4 145620 0.0 0 0.0 2477.4 19 0.0 328.6 9 0.0 39.3 63.1 8.4
70 5 135835 0.0 0 0.0 2913.6 63 0.0 706.4 22 0.0 86.8 33.6 8.1

75 2 180119 0.0 0 0.0 5156.9 0 0.0 183.3 3 0.0 26.6 193.9 6.9
75 3 161057 0.0 0 0.0 4715.5 4 0.0 355.6 5 0.0 44.7 105.5 8.0
75 4 145734 0.0 0 0.0 4231.7 21 0.0 367.9 11 0.0 56.5 74.9 6.5
75 5 136011 0.0 0 0.0 4892.7 98 0.0 667.5 36 0.0 167.8 29.2 4.0

4.2.1. Results In this section, we provide an extensive experimental evaluation of our

approach based on some well-know benchmark instances. We compare our algorithm computation-

ally to Gurobi applied to both the RLT-based and the F-MILP formulations. For numerical tests,

we used the well-known Australian Post (AP) set of instances which is the most commonly used in

hub location literature. It consists of postal flow and Euclidean distances between 200 districts in

an Australian city. The AP dataset was introduced by Ernst and Krishnamoorthy (1996) and it is

available in the OR library (see, Beasley (1990).) We have selected small to medium size instances

with |V |= 25,40,50,60,70,75 and medium to large size instances with |V |= 90,100,125, and 150

nodes. The transportation cost parameters are chosen as usual: α= 0.75, χ= 3.0, and δ= 2.0.
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Table 3 Comparing the flow-based models with our OABC algorithm on medium to large size instances of the

AP dataset for SApHMP proposed in Ernst and Krishnamoorthy (1996)

Instance Gurobi + F-MILP OABC algorithm

|V | p Opt. Ub nodes g(%) time(s) nodes g(%) time(s) t(G/O)

90 2 179822 179822 0 0.0 629.3 3 0.0 76.6 8.2
90 3 160437 160437 0 0.0 799.3 12 0.0 143.5 5.6
90 4 145134 145134 25 0.0 862.5 21 0.0 215.6 4.0
90 5 135808 135808 152 0.4 7200.0 27 0.0 268.4 > 26.8

100 2 180224 180224 5 0.0 884.8 3 0.0 103.6 8.5
100 3 160847 160847 5 0.0 1381.7 13 0.0 283.9 4.9
100 4 145897 145897 27 0.0 1822.0 9 0.0 191.4 9.5
100 5 136929 136929 200 0.1 7200.0 27 0.0 386.7 > 18.6

125 2 180372 180372 0 0.0 4472.1 3 0.0 220.6 20.3
125 3 161117 161117 0 0.0 5317.2 10 0.0 460.8 11.5
125 4 146173 148355 1 1.7 7200.0 13 0.0 431.2 > 16.7
125 5 137176 141563 0 4.6 7200.0 27 0.0 933.1 > 7.7

150 2 180899 - 0 - 7200.0 4 0.0 487.5 > 14.8
150 3 161490 - 0 - 7200.0 11 0.0 1578.4 > 4.6
150 4 146521 - 0 - 7200.0 15 0.0 1191.8 > 6.0
150 5 137426 - 0 - 7200.0 41 0.0 3345.5 > 2.2

* Not that even the LP relaxation of the RLT-based model couldn’t be solved
within the time limit.

Tables 2 and 3 report the results. In each table, the first three columns give, for each instance, the

number of nodes (|V |), the number of hubs (p), and the optimal objective value (Opt.). The next

columns present the results of Gurobi applied to RLT-based and the flow-based models, respectively,

and our OABC algorithm. For each algorithm, we present the total number of nodes enumerated

in the search tree (nodes), the total required time, in seconds, to solve the problem (time), and the

final percentage optimality gap (g(%)). For the RLT-based model, we also report the percentage LP

relaxation gap (glp(%)). In the last column, we report the corresponding ratios (t(G/O)) between

the running times of Gurobi applied to the RLT-based model or the flow-based model and the

OABC algorithm. A value greater than one means an improvement in terms of computing time.

We used the time limit as running time for non-solved instances. Since the RLT-based model on

medium to large size instances could not be solved in the time limit of two hours, in Table 3, we

only report the results of Gurobi applied to the flow-based models and our OABC algorithm. Note

that, on the medium to large size instances even the LP relaxation of the RLT-based model could

not be solved within the time limit.
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Tables 2 and 3 reveal several interesting facts. All the algorithms could solve the small to medium

size instances within the time limit. Inspecting the column glp(%) of the RLT-based model, we

can observe the tightness of the LP relaxation of the RLT-based model, i.e., glp = 0 for all the

instances. Regarding the computational times, the flow-based model is solved much faster than

the RLT-based model. However, by inspecting the last two columns of the table, we can see the

superiority of our OABC algorithm over the other two approaches. The OABC algorithm is on

average 52 and 5 times faster than the RLT-based and the flow-based models, respectively. The

performance of our OABC algorithm on the medium to large size instances is very promising.

When both the flow-based and the OABC algorithm can solve an instance to optimality within

the time limit, our OABC algorithm is about 9 times faster. Moreover, our algorithm can solve to

optimality all instances whereas Gurobi applied to the flow-based model, solves only 8 instances

out of 16. Note that for the largest instances, even the LP relaxation of the flow-based model could

not be solved within the time limit.

4.3. Quadratic semi-assignment problem

We are given two sets V = {1, . . . , p} and M = {1, . . . ,m} of p objects and m locations, respectively.

Let cik represent the cost of assigning object k ∈ V to location i ∈M and qijk` denote the cost of

assigning object k to location i and object l to location j, simultaneously. The quadratic semi-

assignment problem seeks to assign each object to exactly one location with minimum overall cost.

Here, we define the binary variable xik equals 1 if object k ∈ V is assigned to location i ∈M , and

0 otherwise to obtain the following binary quadratic formulation:

QSAP: min
∑
k∈V

∑
i∈M

cikxik +
∑
k,`∈V

∑
i,j∈M

qijk` xikxj`

s.t.
∑

i∈M xik = 1 (k ∈ V ) (42)

xik ∈ {0,1} (i∈M,k ∈ V ).

This problem is NP-hard as shown in Sahni and Gonzalez (1976) and has many applications

in clustering and partitioning problems (Hansen and Lih 1992), equipartition problems (Simeone

1986), schedule synchronization problems (Malucelli 1996), and some scheduling problems (see,

for instance, Chrétienne 1989). Malucelli and Pretolani (1994, 1995) propose lower bounds for the

QSAP by decomposing it into reducible graphs within a Lagrangian dual framework. The RLT is

a well-known approach used to solve the problem in the literature. Schüle et al. (2009) investigate

different levels of RLT to obtain the convex hull of feasible solutions. Billionnet and Elloumi

(2001) show that the best reduction of the QSAP using a quadratic pseudo-boolean function with

nonnegative coefficients is the level-1 RLT. Saito (2006) computationally demonstrates that the
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level-1 RLT formulation gives integer optimal solutions on many instances derived from the AP

dataset for hub location problem.

In order to use our approach described in Section 3, we define

N =M ×V, K = V and,

Ik = {(i, k)|i∈M} k ∈K.

Because of constraints (42) it is easy to see that Ik ∩ I` = ∅ for all k, `∈K with k 6= `. Therefore,

Theorem 1 can be applied to reformulate the problem and hence our solution method can be used

to solve it.

Table 4 Comparing the RLT-based model with our OABC algorithm on a set of randomly generated QSAP

instances

Instance Gurobi + RLT OABC algorithm

|V | |M | Class Opt. glp(%) nodes g(%) time(s) nodes g(%) time(s) t(G/O)

35 15 C50 85032.4 2.1 27 0.0 33.8 27 0.0 6.9 4.9
35 15 C25 68581.2 2.5 23 0.0 49.3 69 0.0 18.3 2.7
35 15 C10 56101.4 3.1 17 0.0 53.6 20 0.0 12.7 4.2
35 15 C01 48225.7 3.7 7 0.0 28.6 36 0.0 13.3 2.2

53 22 C50 88213.3 4.5 11 0.0 69.1 34 0.0 22.9 3.0
53 22 C25 66455.8 3.8 55 0.0 119.2 32 0.0 22.5 5.3
53 22 C10 51874.3 4.8 31 0.0 156.4 29 0.0 23.4 6.7
53 22 C01 42645.2 5.5 7 0.0 143.9 17 0.0 21.8 6.6

70 30 C50 103917.0 6.8 0 0.0 79.1 16 0.0 31.6 2.5
70 30 C25 80506.7 5.6 0 0.0 162.6 34 0.0 88.3 1.8
70 30 C10 63440.6 12.9 16 0.0 569.4 50 0.0 141.7 4.0
70 30 C01 50218.7 18.1 18 0.0 1023.2 37 0.0 140.9 7.3

88 37 C50 107483.0 5.1 45 0.0 769.6 61 0.0 143.7 5.4
88 37 C25 80387.2 2.6 49 0.0 2550.1 48 0.0 276.9 9.2
88 37 C10 59100.0 7.1 42 0.0 3779.4 60 0.0 320.2 11.8
88 37 C01 43671.2 8.3 38 0.0 2468.9 41 0.0 433.6 5.7

105 45 C50 107260.0 2.4 0 0.0 2768.2 31 0.0 205.6 13.5
105 45 C25 75695.8 2.7 44 0.0 6858.7 97 0.0 730.0 9.4
105 45 C10 50548.7 2.8 17 0.0 6673.3 65 0.0 1077.2 6.2
105 45 C01 32950.1 3.8 38 2.9 7200.0 30 0.0 913.5 > 7.9

4.3.1. Results As we mentions earlier, the RLT-based model is considered the most effective

model for the QSAP in the literature. Therefore, in this section, we compare the results of Gurobi

applied to the RLT-based model and the OABC algorithm. To evaluate the performance of the
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algorithms, following Saito (2006), we first considered the AP dataset of hub location problems.

However, it turned out that these are very easy instances for both the RLT model and the OABC

algorithm; both methods could solve all instances with |V |= 200 in less than one minute though

the OABC faster. Therefore, to find challenging instances, we randomly generated instances with

different number of objects and locations. We considered complete graphs with size ranging from

n = 50 to n = 150 nodes (generated randomly in a 100× 100 square) and partitioned the node

set of each graph into two subsets V and M with |V | = 0.7n and |M | = n− |V |. For each two

items k, ` ∈ V and each two locations i, j ∈M , we set qijk` = Fk`Dij, where F and D are the flow

and distance matrices associated with each graph.The flow matrix, F , is generated uniformly at

random from {l, . . . ,100}, where l ∈ {1,10,25,50}, while the distance matrix, D, is the Euclidean

distance matrix. In the spirit of the works Malucelli and Pretolani (1994, 1995), we defined Djj

for j ∈M , to be the 50 percent of the average graph distance to prevent assigning all the objects

to the same location. The linear cost cik for each object k ∈ V and location i∈M is set to δikDik,

where δik is generated uniformly at random from {l, . . . ,100}. We considered four different values

for l ∈ {1,10,25,50} to vary the contribution of the linear costs, which in turn, resulted in four

different classes of instances, i.e., C01,C10,C25, and C100.

Table 4 reports the results. The first four columns give, for each instance, the number of nodes

(|V |), the number of locations (|M |), the instance’s class name (Class), and the optimal objective

value (Opt.) obtained by the OABC algorithm. Columns five to nine present the results of Gurobi

applied to the RLT-based model, while columns ten to twelves give the results of our OABC algo-

rithm. For each algorithm, we present the total number of nodes enumerated in the search tree

(nodes), the total required time, in seconds, to solve the problem (time), and the final percentage

optimality gap (g(%)). For the RLT-based model, and for each instance, we also report the percent-

age LP relaxation gap (glp(%)). In the last column, we report the corresponding ratios (t(G/O))

between the running times of Gurobi applied to the RLT-based model and the OABC algorithm

where a value greater than one means an improvement in terms of computing time. We used the

time limit as running time for non-solved instances.

As we can observe from the table, the OABC algorithm outperforms the solver significantly in

terms of overall computing time; when both approaches can solve an instance to optimality within

the time limit, the OABC algorithm is about six times faster. Moreover, the OABC algorithm can

solve all instances to optimality, while for the largest instances of the class C01, Gurobi reaches

the time limit of two hours with optimality gap of 2.9 %.

5. Conclusions

In this paper, we have studied a class of binary quadratic programming problems that arise in

many real-life optimization problems. We have proposed a convex mixed-integer nonlinear program
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reformulation as well as a mixed-integer linear programming reformulation and analyzed their

relaxation strength. Moreover, we have developed a branch-and-cut algorithm to solve the convex

mixed-integer nonlinear reformulation, where at each node of the search tree, efficiently solvable

subproblems are considered to generate some outer approximation cuts. To evaluate the robust-

ness and efficiency of our solution method, we performed extensive computational experiments on

different types of problems from the literature. In particular, we applied our solution approach on

instances of quadratic semi-assignment problem, single allocation hub location problem, and test

assignment problem and compare our results with the results obtained from commercial solvers

applied to RLT-based models as well as to some well-known MILP formulations from the literature.

The overall results indicate a significant superiority of our solution method.
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