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A decentralized framework for the optimal
coordination of distributed energy resources

Miguel F. Anjos, Member, IEEE, Andrea Lodi, and Mathieu Tanneau

Abstract—Demand-response aggregators are faced with the
challenge of how to best manage numerous and heterogeneous
Distributed Energy Resources (DERs). This paper proposes a
decentralized methodology for optimal coordination of DERs.
The proposed approach is based on Dantzig-Wolfe decomposition
and column generation, thus allowing to integrate any type of re-
source whose operation can be formulated within a mixed-integer
linear program. We show that the proposed framework offers
the same performance guarantees as a centralized formulation,
with the added benefits of distributed computation. The practical
efficiency of the algorithm is demonstrated through extensive
computational experiments, on a set of 1120 instances generated
using data from Ontario energy markets. The proposed approach
was able to solve all test instances to proven optimality, while
achieving significant speed-ups over a centralized formulation
solved by state-of-the-art optimization software.

Index Terms—Column generation, Dantzig-Wolfe decomposi-
tion, demand response aggregation, distributed energy resources,
mixed-integer linear programming, smart grid

I. INTRODUCTION

SMART grids hold the promise of more reliable and sus-
tainable power grids, through the integration of commu-

nication technologies, advanced computation and intelligent
controls. Among smart grid-enabled paradigms, Demand Re-
sponse (DR) programs [1] enable end-users to dynamically ad-
just their electricity consumption, in response to price signals
or incentives. The present work focuses on the DR potential of
Distributed Energy Resources (DERs), which include flexible
loads, distributed generation, and distributed energy storage.

Because of their small size, individual resources have a
negligible marginal impact at the grid level. This has motivated
the introduction of aggregators [2], that act as intermediaries
between the grid and resources, thus enabling the latters to
participate in traditional energy markets. Therefore, aggrega-
tors must address the challenges associated with coordinating
numerous and heterogeneous resources, whose operation may
involve discrete decisions. To that end, various coordination
mechanisms have been investigated in the literature [3]–[5].
Among them, pricing strategies [5] rely on each resource
optimizing its own individual objective, in response to price
signals such as Time-of-Use rates. However, it was pointed
out in [6] that pricing strategies may lead to unstable market
behaviours. Conversely, the approach considered in this paper
seeks to jointly coordinate the operation of all resources, so
as to optimize a global objective.

The authors are with École Polytechnique de Montréal, Department of
Mathematics and Industrial Engineering, Montréal, QC H3T 1J4, Canada,
& Groupe d’études et de recherche en analyse des décisions (GERAD),
Montréal, QC H3T 1J4, Canada (e-mail: miguel-f.anjos@polymtl.ca).

Such a global approach can be formulated as a centralized
optimization problem, as was explored in [7]–[10], wherein a
central controller manages each individual resource. Although
a centralized formulation offers the strongest optimality guar-
antees, it quickly becomes intractable when the number of
resources increases. Moreover, the disclosure of private infor-
mation by the resources raises privacy concerns, and puts addi-
tional burden on communication requirements. Decentralized
methods, on the other hand, distribute the computational effort
among resources by leveraging local computing power. This
typically results in better scalability, reduced communication
overheads, and improved privacy. Several distributed heuristics
were proposed, for example in [11]–[14], but provide weaker
performance guarantees. Nevertheless, classical decomposition
techniques allow to solve the centralized problem in a dis-
tributed way, thus offering the same performance guarantees,
with the added benefit of decentralized computation.

A large body of literature has focused on dual decom-
position and Lagrangian-based methods. Dual decomposition
yields a separable structure, which in turn enables distributed
implementations. The related works [15]–[20] thus differ
mainly in which algorithm is used to optimize the dual
Lagrangian. In [15], [16], the authors consider an augmented
Lagrangian-based relaxation, which is formulated as a consen-
sus problem and solved with the Alternating Direction Method
of Multipliers (ADMM). However, ADMM does not handle
discrete variables, that are used to model on-off constraints.
In a similar fashion, standard Lagrangian relaxation is used in
[17]–[20]. A classical sub-gradient algorithm is investigated
in [17] and cutting-planes methods are studied in [18], but
discrete variables were not considered.

Although the works in [19], [20] do consider mixed-integer
variables, they rely on recovery heuristics to obtain feasible
solutions. A bundle method is used in [19], while a double
smoothing of the dual Lagrangian is applied in [20], allowing
the use of a more efficient gradient-based algorithm. Overall,
the main drawback of Lagrangian-based approaches is the
recovery of feasible solutions when strong duality does not
hold, which is generally the case for mixed-integer problems.

Alternatively, a primal approach, namely Dantzig-Wolfe
(DW) decomposition, was investigated in [21]–[23]. In [21],
[22], DW decomposition is applied to demand-response prob-
lems that arise from peak-load management applications.
However, only a few types of devices were considered, with no
discrete variables involved. Furthermore, a column-generation
heuristic is used in [23] to schedule residential heating sys-
tems. Nevertheless, this heuristic approach does not provide a
guarantee of optimality.
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Our contribution is twofold. On one hand, we propose a col-
umn generation-based decentralized methodology, to optimally
coordinate DERs whose operation may involve mixed-integer
variables. This methodology is motivated by DR aggregation
of residential customers. On the other hand, we demonstrate
the practical efficiency of the proposed algorithm through ex-
tensive computational experiments, on a set of 1120 instances
generated using data from Ontario energy markets.

The rest of the paper is organised as follows. In section II,
we present operational models for devices and households,
and formulate the aggregation problem. In section III, we
present a column-generation algorithm to solve the aggregation
problem in a distributed fashion. Finally, computational results
are reported in section IV.

Unless specified otherwise, durations are expressed in hours
(h), power and energy quantities in kilowatt (kW) and kilowatt-
hour (kWh) respectively, and temperatures in degrees Celsius.
Energy prices are given in dollars per kilowatt-hour ($/kWh).

II. PROBLEM FORMULATION

We consider a set R = {1, ..., R} of households. Each
household r contains a set of devices Dr = {1, ..., Dr}, whose
operation is scheduled over a time horizon T = {0, ..., T−1},
with ∆τ the duration of each time step. Households interact
with an aggregator a, in order to minimize the total cost of
purchasing electricity from the grid. The aggregator and house-
holds are assumed to behave rationally, and households dot not
interact directly with each others. Finally, the environment is
assumed to be deterministic.

A. Device constraints

In what follows, pd,t denotes the algebraic power consumed
by a device d during time step t. A negative consumption
indicates the device generates power. The sequence pd =
(pd,0, · · · , pd,T−1) is called the device’s load profile. Follow-
ing the classification in [24], devices are grouped into six
classes: uncontrollable loads, curtailable loads, uninterruptible
loads, deferrable loads, thermal loads, and energy storage.

Uncontrollable loads include devices whose operation can-
not be altered. Such a device d consumes a deterministic
amount of power (P̃d,0, ..., P̃d,T−1). Therefore, its load profile
is simply

pd,t = P̃d,t. ∀t ∈ T (1)

Curtailable loads refer to devices whose operation at a
given time t can be altered, independently of past and future
operations. The operation of a curtailable load d is modelled
as

pd,t − ud,tP̃d,t = 0, ∀t ∈ T (2)
ud ∈ B, (3)

where (P̃d,0, ..., P̃d,T−1) is the device’s load profile in the
absence of curtailment. An on-off constraint is modelled
through binary variables ud,t. When the device is off, the
binary variable ud,t takes value 0, which forces pd,t = 0.
If the device is on, then ud,t = 1 and pd,t = P̃d,t. Continuous

curtailment is modelled by relaxing the integrality constraint
on ud. This model can be further extended by considering
several operation modes, each with minimum and maximum
power levels.

Uninterruptible loads are comprised of devices such as
dishwashers and clothes dryers, whose operation is typically
composed of a finite number of cycles. A cycle’s start-up
time is flexible but, once started, it cannot be interrupted. For
simplicity, we consider a single cycle of duration Ld ≤ T , with
power requirement (P̃d,0, ..., P̃d,L−1). The device’s operation
is then defined by

pd,t −
L−1∑
l=0

vd,t−lP̃d,l = 0, ∀t ∈ T (4)

T−L∑
t=0

vd,t = 1, (5)

vd ∈ B, (6)

where vd,t takes value 1 if the cycle is started at time t, and
0 otherwise. The device’s load profile is given by (4), while
(5) ensures the cycle is started exactly once. For readability,
we use the convention vd,t = 0,∀t < 0. This framework
naturally extends to several cycles with precedence constraints
as proposed in [25].

Deferrable loads include devices such as an electric ve-
hicle’s (EV) charger, whose operation may be interrupted
and resumed later. However, contrarily to curtailable loads,
consumption may be shifted to an earlier or later period of
time. Deferrable loads are modelled as follows:

etot
d = ∆τ

∑
t∈T

pd,t, (7)

Emin
d ≤ etot

d ≤ Emax
d , (8)

ud,tP
min
d ≤ pd,t ≤ ud,tPmax

d , ∀t ∈ T (9)
ud ∈ B. (10)

The device’s total energy consumption etot
d is given by (7) and

must be between minimum and maximum levels as stated in
(8). On-off constraints are modelled by (9)-(10).

Thermal loads encompass devices like space heaters and
air conditioners, that aim at keeping a system’s (e.g., a room)
temperature within a certain range. Their operation is modelled
by

Θmin
d ≤ Θd,t ≤ Θmax

d , ∀t ∈ T (11)
µ

c
(Θext

d,t −Θd,t) +
η

c
pd,t =

Θd,t+1 −Θd,t

∆τ
, ∀t ∈ T (12)

ud,tP
min
d ≤ pd,t ≤ ud,tPmax

d , ∀t ∈ T (13)
ud ∈ B. (14)

The system’s temperature Θd,t must be kept within an ac-
ceptable range as stated in (11). Its evolution is given by the
first-order approximation in (12) of a thermodynamic model,
where µ is a conduction coefficient, η is the device’s thermal
efficiency, and c is the system’s heat capacity. Finally, the
device’s on-off constraints are modelled in (13)-(14). This
simple model may be extended to include, for example, time-
varying temperature requirements.
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Energy storage devices can store energy and release it later.
For simplicity, we consider the case of batteries, for which an
operational model is

Emin
d ≤ ed,t ≤ Emax

d , ∀t ∈ T (15)

pd,t − pch
d,t + pdis

d,t = 0, ∀t ∈ T (16)

∆τ

(
ηch
d p

ch
d,t −

1

ηdis
d

pdis
d,t

)
= ed,t − ed,t−1, ∀t ∈ T (17)

uch
d,tP

ch, min
d ≤ pch

d,t ≤ uch
d,tP

ch, max
d , ∀t ∈ T (18)

udis
t P

dis, min
d ≤ pdis

d,t ≤ udis
d,tP

dis, max
d , ∀t ∈ T (19)

uch
d,t + udis

d,t ≤ 1, ∀t ∈ T (20)

uch
d , u

dis
d ∈ B. (21)

The battery’s state of charge is denoted ed,t, while pch
d,t and

pdis
d,t denote charging and discharging power, respectively. The

internal dynamics of the battery are captured by (17), where
ηch
d and ηdis

d are charging and discharging efficiencies. Finally,
on-off constraints (18)-(21) ensure that the battery cannot be
simultaneously charged and discharged.

Finally, renewable generation can be modelled as a negative
load. Depending on systems’ specifications, it may be either
uncontrollable or curtailable.

B. Household and aggregator constraints

We now consider a given household r ∈ R and denote pr,t
its net load at time t. Additional constraints at the household
level are formulated as

Pmin
r ≤ pr,t ≤ Pmax

r , ∀t ∈ T (22)

pr,t =
∑
d∈Dr

pd,t. ∀t ∈ T (23)

Constraints (22) state that the household’s net load pr,t, as
defined in (23), is bounded below and above. This is most
typically related to a circuit breaker’s operating range.

Similarly, the aggregator must ensure that the aggregated
load pa,t remains within physical limitations

Pmin
a ≤ pa,t ≤ Pmax

a , ∀t ∈ T (24)

pa,t =
∑
r∈R

pr,t. ∀t ∈ T (25)

If households were operated independently, i.e., without inter-
acting with the aggregator, constraints (24) may be violated. In
practice, this could result in equipment damage, or localised
blackouts.

C. Aggregation problem

The aggregation problem consists here in minimizing the
total cost of purchasing energy from the grid, while satisfying

all operational constraints. It is formulated as the following
Mixed-Integer Linear Program (MILP):

min
∑
t∈T

Πt∆τpa,t (26)

s.t. Pmin
a ≤ pa,t ≤ Pmax

a ∀t (27)

pa,t =
∑
r∈R

pr,t ∀t (28)

Pmin
r ≤ pr,t ≤ Pmax

r ∀r, t (29)

pr,t =
∑
d∈Dr

pd,t ∀r, t (30)

· · · ∀r, ∀d ∈ Dr (31)

with Πt being the price of electricity at time t. For ease
of reading, we do not explicitly re-write device-specific con-
straints in (31).

We now discuss how to write the aggregation problem (26)-
(31) in a more general form. For each household r, let xr
be the vector obtained by concatenating all decision variables
specific to that household. Here, xr would be composed of
a household’s net load, plus the decision variables of each
device in that household. In what follows, we refer to xr as the
operational schedule of household r. Operational constraints
for household r and its devices, corresponding to (29)-(31), are
then written Drxr = er without loss of generality. Integrality
requirements are written xr ∈ Xr. Finally, a household’s
operating cost is written cTr xr for a given cost vector cr.

Similarly, let y denote the vector of decision variables
that are specific to the aggregator. For the case at hand,
y corresponds to the aggregated load pa,t. The aggregator’s
operating cost is written qT y, while constraints (27)-(28) are
written

My +
∑
r

Arxr = b.

The aggregation problem can therefore be written in the
general compact form

min
y,x1,...,xR

qT y +
∑
r∈R

cTr xr (32)

s.t. My +
∑
r∈R

Arxr = b (33)

Brxr = er ∀r (34)
xr ∈ Xr. ∀r (35)

Constraints (33) induce a coupling between the households,
and are thus referred to as linking constraints. Conversely, con-
straints (34)-(35) are separable by household, and are referred
to as local constraints. This formulation is not restricted to
the aforementioned use case, but allows to integrate any type
of distributed resource r, whose operation can be formulated
within a MILP. Likewise, more elaborate constraints and
objective may be considered for the aggregator.

Mixed-integer linear programs such as (32)-(35) can be
solved to proven optimality using standard optimization soft-
ware. Although MILPs are NP-hard in general, practical
instances can often be solved efficiently. Indeed, several of our
test instances, with up to hundreds of thousands of variables,
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were solved to optimality in a few minutes with a state-of-the
art solver. Nevertheless, a centralized formulation obviously
becomes intractable when dealing with large systems, both
due to memory requirements and the eventual curse of dimen-
sionality.

III. DISTRIBUTED COLUMN-GENERATION FRAMEWORK

We now present a decentralized framework, to solve the
aggregation problem to global optimality. To underline the
generality of the proposed methodology, we use the notation
introduced in II-C.

A. Dantzig-Wolfe decomposition
For each resource r ∈ R, define the set of its feasible

operational schedules as

Xr := {xr|Brxr = er, xr ∈ Xr} . (36)

For simplicity, we assume Xr is bounded. Consequently, its
convex hull conv(Xr) is a polytope, whose finite set of extreme
points is denoted by Ωr. The Minkowski-Weil theorem then
allows to express xr as a convex combination of these extreme
points

xr =
∑
ω∈Ωr

θr,ωω, (37)

where the weights θr,ω are non-negative and sum to 1.
This change of variable leads to the following extended

formulation:

min
y,θ

qT y +
∑

r∈R,ω∈Ωr

cr,ωθr,ω (38)

s.t. My +
∑

r∈R,ω∈Ωr

θr,ωar,ω = b (39)∑
ω∈Ωr

θr,ω = 1 ∀r (40)

θ ≥ 0 (41)∑
ω∈Ωr

θr,ωω = xr ∀r (42)

xr ∈ Xr, ∀r (43)

with the notation cr,ω = cTr ω and ar,ω = Arω. The objective
(38) and linking constraints (39) are simply re-writing of
(32) and (33), respectively. Thereby, each extreme point ω
of conv(Xr) is associated to a variable θr,ω , and a column
ar,ω which corresponds to a load schedule for resource r.
The local operation constraints (34) in the original formulation
are now implicit, through the definition of each Ωr and the
convexity constraints (40), (41). Finally, integrality constraints
(43) are formulated on the original variables xr, so that
the equivalence with the compact formulation (32)-(35) is
preserved. In what follows however, integrality constraints are
relaxed, and the resulting problem (38)-(41) is referred to as
the master problem.

Unlike in to a centralized formulation, the structure of the
master problem is now independent of the nature of the re-
sources. Indeed, the linking constraints only involve variables
corresponding to a resource’s net load. Therefore, using DW
decomposition yields a technology-agnostic formulation.

B. Distributed column generation

Compared to the compact formulation, the master problem
contains fewer constraints, but an exponentially large number
of variables. Column generation is an iterative method wherein
only a limited subset of variables is considered in a restricted
master problem. Additional variables are generated at each
iteration by solving an auxiliary pricing sub-problem. We
focus here on the methodology’s core structure, and refer to
[26] for more advanced considerations on column generation
and branch-and-price algorithms, as well as their relation to
Lagrangian relaxation.

First consider the Restricted Master Problem (RMP)

min
y,θ

qT y +
∑

r∈R,ω∈Ω̄r

cr,ωθr,ω (44)

s.t. My +
∑

r∈R,ω∈Ω̄r

θr,ωar,ω = b (45)

∑
ω∈Ω̄r

θr,ω = 1 ∀r (46)

θ ≥ 0, (47)

where Ω̄r ⊂ Ωr denotes, for each resource r, the subset of
columns that are currently considered. The RMP is initialized
with a small number of columns, some of which may be
artificial to ensure feasibility.

At the beginning of each iteration, the RMP is solved to
optimality. Let π denote the vector of dual variables associated
to linking constraints (45), and σr the dual variable associated
to convexity constraint (46) for resource r. For given r and
ω ∈ Ωr, the reduced cost of θr,ω is then

c̄r,ω = cTr ω − πTArω − σr. (48)

Therefore, a variable θr,ω∗ with smallest reduced cost is given
by the pricing step

ω∗ ∈ arg min
ω∈Ωr

(
cTr ω − πTArω − σr

)
. (49)

However, explicitly iterating over all Ωr is prohibitively ex-
pensive. Nevertheless, since each ω ∈ Ωr is an extreme point
of conv(Xr), performing the pricing step (49) is equivalent to
solving

ω∗ ∈ arg min
xr

(cTr − πTAr)xr − σr (50)

s.t. Brxr = er (51)
xr ∈ Xr. (52)

The pricing sub-problem (50)-(52) is a small MILP, which we
assume can be solved efficiently. If the identified variable θr,ω∗

has negative reduced cost, it is added to the RMP. Otherwise,
all variables θr,ω, ω ∈ Ωr have non-negative reduced cost.
Optimality in the master problem is reached when this is the
case for all resources, i.e., all variables in the master problem
have non-negative reduced cost.

Moreover, since all sub-problems are independent of each
other, they can be solved in parallel, thus yielding a distributed
algorithm. At each iteration, the aggregator solves the RMP
and broadcasts the dual variables to the resources. Each
resource then computes a vector ω∗r with smallest reduced

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-014



5

Table I
DEVICES CLASSIFICATION AND OWNERSHIP RATES

Device Classification Own. rate (%)

Dishwasher Uninterruptible load 65
Clothes washer Uninterruptible load 90
Clothes dryer Uninterruptible load 75
Electric heating Thermal load 60
Electric vehicle Deferrable load ξdep

Home battery Energy storage ξdep

Rooftop solar Curtailable load ξdep

Others Uncontrollable load 100

cost, and columns with negative reduced cost are added to the
RMP.

Finally, a branch-and-price algorithm is generally used to
solve the extended formulation (38)-(43), with the master
problem being the root node of the branching tree. Neverthe-
less, we implemented a heuristic procedure to recover feasible
solutions from the root solution, similar to a depth-first strat-
egy. At each step, a small, random subset of the resources is
selected, and the associated integer variables are rounded. The
corresponding relaxation is then solved by column-generation,
and the procedure is repeated until all integer variables are
fixed. This recovery heuristic was found to obtain optimal
integer solutions for all test instances. Therefore, we did not
formally implement a full branch-and-price scheme.

IV. COMPUTATIONAL RESULTS

We now report computational results for the proposed
column-generation algorithm (CG), using the centralized for-
mulation (MILP) as a baseline. Tests are carried out on a
set of 1120 instances, generated using data from Ontario
energy markets. We first describe our test methodology in
IV-A and IV-B. Numerical results are analysed in IV-C, and
the robustness of the formulation is further assessed in IV-D.

A. Numerical instantiation

For all simulations, the time-horizon begins at 5am Monday,
January 18th 2016, and its length T ranges from 24h to 96h.
The duration of a time-step is ∆τ = 1h. The number of
considered households, R, varies between 1024 and 8192.
Ontario’s provincial load, production and pricing data are
obtained from [27].

The set of considered devices and their ownership rates are
given in Table I (adapted from [24]). The ownership rate of
a device is interpreted as the probability that that device be
present in a given household. Devices that are not explicitly
considered in this work are aggregated into one uncontrollable
load for each household. In addition, we consider correlation
among devices. It is assumed that only households with a
clothes washer own a clothes dryer. Because available data
regarding the penetration of EVs, batteries and rooftop so-
lar in Ontario is very scarce, we assumed that households
own either none or the three of them. Several deployment
scenarios are considered, corresponding to ownership rates
ξdep = 0%, 33%, 66% and 100%.

Dishwashers, clothes washers and clothes dryers are mod-
elled as uninterruptible loads. Each appliance’s operation
consists of one cycle per day, which consumes a constant
power P̃ = 1. Cycles’ durations are 2h for dishwashers, 2h
for clothes washers, and 3h for clothes dryers.

For electric heating systems, the outside temperature Θext

is obtained by perturbing a reference profile Θref that consists
of hourly readings from a weather station in the Toronto area
[28]

Θext
d,t = Θref

t + 0.5× εd,t, ∀t ∈ T

with ε ∼ N (0, 1). Numerical parameters for the thermody-
namics model are identical among households: η = 1, µ = 0.2,
c = 3, and Pmin = 0, Pmax = 10. The inside temperature must
be kept in the range [Θmin

d ,Θmax
d ] = [18, 22].

The charging of electric vehicles is modelled as a deferrable
load with a daily energy requirement of Emin

d , Emax
d = 10 as

reported in [24]. Charging must happen between 8pm and 5am,
and charger limitations are Pmin

d = 1.1, Pmax
d = 7.7.

Battery specifications are based on the Tesla powerwall
[29]. Energy capacity is Emax

d = 13.5, with minimum state
of charge Emin

d = 0. Charging and discharging limitations are
P ch, min
d , P dis, min

d = 0 and P ch, max
d , P dis, max

d = 5. Efficiencies
are ηch

d , η
dis
d = 0.95, yielding a 90% round-trip efficiency.

Rooftop solar is modelled as a (negative) curtailable load.
The output of a PV system d is given by

P̃ PV
d,t = γr × Q̃PV

t × ζd,t, ∀t ∈ T

where the normalized output Q̃PV
t is Ontario’s hourly PV

output QPV
t , divided by its average value over the considered

time period. The household-specific scaling factor γr is drawn
from a uniform distribution U(0.5, 1.5), and ζ ∼ U(0, 1) is a
random noise.

For each household r, the corresponding uncontrollable load
d has the following load profile:

P̃d,t = γr ×max
(

0, Q̃Ont
t + 0.05× εd,t

)
, ∀t ∈ T

where Q̃Ont is the normalized Ontario hourly provincial load,
and ε ∼ N (0, 1) is a white noise.

Finally, we set Pmin
r = 0, Pmax

r = 10 for the households’
net load constraints. Similarly, the total aggregated load is
bounded by Pmin

a = 0 and Pmax
a = 7.5 × R. The price of

electricity Πt is the Hourly Ontario Energy Price (HOEP).

B. Implementation details

Experiments were performed on a 2×Xeon E5-2650V4
2.2Ghz, 254 GB RAM computer running Linux. Our imple-
mentation was coded in Python 2.7, with CPLEX 12.7 as the
linear solver. All CPLEX runs used default parameters and a
single thread. Accordingly, an instance is considered solved
to optimality when the reported optimality gap is smaller than
10−4, which is the default threshold for CPLEX.

In order to smooth out performance variations, we generated
ten different instances for each tuple (R, T, ξdep). This resulted
in a testbed of 1120 instances, and we compare the results
obtained by the proposed method (CG), and the centralized
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formulation (MILP). For the MILP, we used CPLEX with
default parameters, a single thread and a time limit of one
hour. All instances were found to be feasible. Due to lim-
ited computing resources, the column-generation sub-problems
were solved serially rather than in parallel. Nevertheless, the
duration of each iteration in the distributed setting is given
by the RMP computing time, plus the maximum solving time
among sub-problems, plus computation overheads. In practice,
each sub-problem would indeed be solved locally by the
corresponding household.

Finally, the RMP is initialized by computing, for each
resource, the column corresponding to a minimum-peak load
schedule. In order to ensure feasibility in the master, slack
and surplus variables are added to linking constraints. These
artificial variables have sufficiently large cost, and are thus
automatically set to zero once a feasible solution is found.
Furthermore, we used a partial pricing strategy that consists in
adding at most 0.1×R columns to the master at each iteration.
The 0.1 ratio was found to achieve good performance across a
wide range of instances. Similarly, for the recovery heuristic,
a random 10% of the resources are selected at each step.

C. Results analysis

Performance statistics are presented for MILP and CG in
Tables II and III respectively. Since both methods behaved
consistently across the different values of ξdep, we only report
results for the case ξdep = 0.66. For the MILP formulation,
Table II reports the number of binary and continuous variables
(Bin. and Cont. respectively, in millions) of the problem, the
proportion of solved instances, total and root computing times
(in seconds), the number of nodes in the branch-and-bound
tree, and the root gap (in %). For the CG method, Table III
reports the number of columns generated (Col., in thousands),
the total number of CG iterations to reach optimality (Iter.), the
proportion of instances solved to proven optimality, computing
times (in seconds), and the root gap (in %). Root gaps are
given by

gap =
|z∗ − z|
|z∗|

,

where z∗ is the value of the best known integer solution found
by either algorithm, and z is the value of the root relaxation.
Finally, all reported averages are geometric means, except for
the proportion of solved instances.

As expected, CPLEX solved the MILP formulation for
smaller instances, but systematically reached the time limit
for the larger ones. More specifically, CPLEX failed to find
a feasible solution for 162 instances, roughly corresponding
to the instances with more than two million binary variables.
Note that the quality of the lower bound for MILP is not an
issue here. On the opposite, the solver’s capability of exploring
the branch-and-bound nodes in a reasonable amount of time,
in order to provide good feasible solutions, is affected by the
problem’s size. In comparison, CG was able to solve all 1120
instances to proven optimality. Furthermore, computing times
for both methods are displayed in Figure 1. For all values
of T , CG exhibits a more scalable behaviour than MILP, and

Table II
MILP STATISTICS FOR T = 24, ξDEP = 0.66

R Variables (M) Solved Time (s) B&B Root
Bin. Cont. (%) Root Total nodes % gap

1024 0.13 0.19 100 9.6 40.1 1.5 0.00

1536 0.19 0.29 100 20.6 132.9 11.5 0.00

2048 0.26 0.39 100 30.2 291.0 108.1 0.00

3072 0.39 0.57 100 65.4 649.8 394.4 0.00

4096 0.52 0.77 100 147.3 1263.7 562.8 0.00

6144 0.78 1.15 70 314.8 2907.1 550.1 0.00

8192 1.04 1.54 60 534.6 2937.4 664.3 0.00

Table III
CG STATISTICS FOR T = 24, ξDEP = 0.66

R Col. Iter. Solved Time (s) Root
(k) (%) Master Pricing Total % gap

1024 5.3 45.7 100 0.6 1.7 3.8 0.00

1536 8.0 46.0 100 1.1 1.7 5.1 0.00

2048 10.6 46.1 100 1.8 1.8 6.8 0.00

3072 16.2 46.6 100 3.8 1.9 10.6 0.00

4096 21.6 47.2 100 6.4 2.0 15.0 0.00

6144 31.7 46.3 100 13.5 2.0 25.2 0.00

8192 43.4 47.6 100 25.1 2.1 40.6 0.00
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Figure 1. Average computing times for CG and MILP formulations, with
ξdep = 0.66. The horizontal dotted line depicts the one-hour time limit for
MILP.

achieves speed-ups of up to two orders of magnitude. These
results confirm that, even if it may be tractable for small-size
systems, a centralized approach fails to handle large numbers
of resources.

To further analyse the scalability of CG, Figure 2 shows the
number of CG iterations to reach convergence, corresponding
to the number of times the RMP is solved. Here, the number
of iterations is more relevant than raw computation times,
since the latter depends on machine specifications and on the
solver’s performance. On one hand, an increase in the length
of the time-horizon T leads, as expected, to an increase in the
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Figure 2. Average number of CG iterations, including the recovery heuristic.
ξdep = 0.66.

number of iterations. On the other hand, as was hinted at in
Table III, the number of iterations appears to be independent
of the number of households. This remarkable behaviour is
due to similarities between sub-problems. This explanation
is corroborated by the fact that larger values of ξdep, which
only affects the distribution of households, and thus of sub-
problems, resulted in more iterations. Overall, CG is sensitive
to the distribution of resources, rather than their number.

Finally, the proportions of time spent solving the master
problem and sub-problems, respectively, are displayed in Fig-
ure 3. Computation overheads can be significant, but they
are highly dependent on the implementation. Therefore, were
factored them out of the plots. Clearly, as the number of
resources increases, most of the time is spent solving the RMP.
Indeed, since sub-problems are solved in parallel, the number
of resources has little influence on the duration of the pricing
step. This is consistent with computing times reported in Table
III. Conversely, the size of the RMP is given by the number
of columns generated. Therefore, as R increases, so does
the size of the RMP and the associated computational cost.
Consequently, solving the RMP is a computation bottleneck
for CG, and currently constitutes the main limitation to the
algorithm’s scalability.

D. Further discussion

As shown in Tables II and III, root gaps for CG and
MILP were often found to be lower than 10−4, meaning
both formulations have essentially zero integrality gap. This
observation carries over to the rest of the dataset: for MILP,
root gaps were always less than 0.02%, and smaller than
0.01% in 843 instances out of 1120. For CG, the largest
recorded root gap was 0.008%. Moreover, root gaps tended
to be smaller as the number of resources increased.

We now assess whether low integrality gaps reflect intrinsic
properties of the problem at hand, or arise from our numerical
data. More specifically, we increased the batteries’ minimum
power ratios P ch, min/P ch, max ( resp. P dis, min/P dis, max) from 0,
as in our initial tests, to 90%. This is done by setting the value
of P ch, min (resp. P dis, min) accordingly. Figure 4 displays the
resulting evolution of computing time (left axis) and integrality
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Figure 3. Time spent solving the master problem and pricing sub-problems,
as a fraction of total computing time. ξdep = 0.66.
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Figure 4. Average computing time (gray, left-hand axis scale) and root gap
(black, right-hand axis scale) with respect to minimum charging power ratio.
The dotted horizontal lines respectively denote the MILP time limit (in gray)
and the 10−4 threshold for gaps (in black). Results obtained with R = 1024,
T = 24 and ξdep = 0.66.

gap (right axis). Results are reported for R = 1024, T = 24
and ξdep = 0.66, and similar behaviour were observed for
other settings. Figure 4 shows that the MILP integrality gaps
increases considerably, from 0.005% to over 2%. This resulted
in an increase in the number of branching nodes, which we
do not report for lack of space, and in computing time. On
the other hand, although the CG gap increased, it remained
below 0.01%. Moreover, the increase in computing time for
CG is caused only by longer solving times for sub-problems.
The number of CG iterations did not increase, nor did solving
time for the RMP. Overall, CG appears to be more robust than
MILP. This robustness is explained by the fact that changes
in the resources’ operation only affect sub-problems for CG
while, for MILP, the entire problem structure may be affected.

V. CONCLUSION

We have considered the problem of coordinating the opera-
tion of multiple households, for demand response applications
in smart-grids. In particular, we focused on the challenges
raised by discrete decisions in households’ operation, such as
on-off constraints. The resulting problem can be formulated as
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a centralized MILP, however this approach is intractable for
large systems.

In this work, we proposed an exact, distributed column-
generation algorithm, for optimally coordinating households
in a decentralized fashion. We showed that this framework is
not restricted to households, but allows to integrate any type
of resource whose operation can be written within a MILP.
We demonstrated the practical efficiency and scalability of the
proposed approach through extensive computational experi-
ments, and provided mathematical insight on the algorithm’s
behaviour.
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His main research interests are in Mixed-Integer Linear and Nonlinear
Programming and Data Science and his work has received several recog-
nitions including the IBM and Google faculty awards. He has been network
coordinator and principal investigator of two large EU projects/networks, and,
since 2006, consultant of the IBM CPLEX research and development team.
He is the co-principal investigator of the project “Data Serving Canadians:
Deep Learning and Optimization for the Knowledge Revolution” and scientific
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