
  

 

 

 

  

PARTIALLY-RANKED CHOICE MODELS 

FOR DATA-DRIVEN ASSORTMENT 

OPTIMIZATION 

 

 

Sanjay Dominik Jena 

Andrea Lodi  

Hugo Palmer 

  

 
 

 

 

 

September 2017 

DS4DM-2017-011 

 

 

 

 

POLYTECHNIQUE MONTRÉAL  

DÉPARTEMENT DE MATHÉMATIQUES ET GÉNIE INDUSTRIEL  

Pavillon André-Aisenstadt  
Succursale Centre-Ville C.P. 6079 
Montréal  - Québec 
H3C 3A7 - Canada 
Téléphone: 514-340-5121 # 3314  

 



Partially-Ranked Choice Models for Data-Driven
Assortment Optimization

Sanjay Dominik Jena
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Abstract

The assortment of products carried by a store has a crucial impact on its success. However,

finding the right mix of products to attract a large portion of the customers is a challenging

task. Several mathematical models have been proposed to optimize assortments. In particu-

lar, rank-based choice models have been acknowledged for representing well high-dimensional

product substitution effects, and therefore reflect customer preferences in a reasonably realis-

tic manner. In this work, we extend the concept of (strictly) fully-ranked choice models to

models with partial ranking that additionally allow for indifference among subsets of products,

i.e., on which the customer does not have a strict preference. We show that partially-ranked

choice models are theoretically equivalent to fully-ranked choice models, but a partially-ranked

preference sequence would require a factorial number of fully-ranked sequences to represent

the same buying behavior. We then show how partially-ranked choice models can be learned

efficiently from historical transaction and assortment data. The embedded column generation

procedure involves subproblems that can be efficiently solved by using a growing decision tree

that represents partially-ranked preferences, enabling us to learn preferences and optimize as-

sortments for thousands of products. Computational experiments on artificially generated data

and case studies on real industrial retail data suggest a significant potential to increase profits

when performing data-driven assortment optimization and provide useful insights on customer

segmentations to the decision makers, in our real case, the store managers. When comparing to

existing algorithms, our method increases by one order of magnitude the scale of problems that

can be learned by non-parametric choice models.
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1 Introduction

Assortment planning denotes the process of identifying the set of products that should be offered to

the customers. The planning problem is of paramount importance in operations and revenue man-

agement, since the choice of the assortment directly impacts the success of the business. However,

from a managerial perspective, identifying the ideal assortment is a difficult challenge. While offer-

ing more products to the customer may eventually increase the number of sold items (also referred

to as conversion), it is well known that an assortment that is too large may jeopardize the total

sales. Of course, limitations of space and capacity may naturally limit the number of products the

client will be exposed to. However, one may still observe that the presence of a certain product may

decrease the sales of another, also known as cannibalization effect. In the same way, the absence

of a product may encourage the customer to substitute to another (potentially more profitable)

product, which illustrates the complexity of synergies among the products in an assortment.

The problem of finding the optimal assortment is crucial in several different domains. In par-

ticular, it is omnipresent in online advertisement on the internet, where it is necessary to decide

for the limited number of advertisements that can be shown to a specific user profile in order to

maximize the likelihood of conversion. In brick-and-mortar retail, assortment decisions are even

more impactful, since the assortments are exposed to several different customer profiles and cannot

be personalized to each customer type. Furthermore, changes in those assortments can be longsome

and costly, given that products will have to be physically removed from the store and inventory

and typically be liquidated at a far lower price. Mathematical models to help finding the “optimal”

assortment are therefore finding increased popularity.

Defining a customer choice model that explains the market buying behavior sufficiently well is

an essential step to optimize an assortment. Among the vast variety of choice models, rank-based

choice models are rapidly gaining popularity. Rank-based choice models represent customer types

via ranked preference lists on the available products. Those models hold a few important advan-

tages. They can be easily interpreted by store managers and allow for insights regarding customer

segmentation. Furthermore, they can be estimated in a purely data-driven manner without any

assumptions on the market structure. In most of the application domains (such as online stores and

even retail outlets), collecting transaction and assortment data has become a standard, therefore

making such data sufficiently available. Data-driven models that automatically make assortment

recommendations based on historical data and with limited user input are likely to dominate the

operational planning of the retail industry in future. However, in practice, those models suffer from

several challenges. On the computational side, rank-based choice models are hard to estimate. On

the managerial side, even though preference lists (representing different customer types) provide

store managers with certain insights, those lists typically contain unnecessarily large numbers (if

not all) of products, which limits the usefulness of those lists to understand customer segmentation.

In this paper, we introduce a new representation for rank-based choice models. We argue that,

next to strictly ranked products, customers may also be indifferent to a subset of the products and

therefore buy any of those products with equal probability if their strictly preferred products are
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unavailable. We show how we can learn this choice model efficiently by iteratively expanding a

decision tree, in which each node implicitly represents a partially-ranked customer behavior. This

approach is attractive from the computational point of view, since it converges quickly and allows

to estimate choice models for large numbers of products within short computing times. At the same

time, the method is appealing to store managers. The generated choice models are composed of

a reasonably small number of different customer types. Moreover, the customer behaviors contain

a significantly smaller list of ranked products that are necessary to explain the sales. Given that

the final assortment is optimized via a mixed-integer programming (MIP) model, the modeler can

easily integrate side-constraints such as capacities and requirements for different product categories

(such as product subset or precedence constraints).

1.1 Relevant Literature

The essential foundation of practically effective assortment optimization is an appropriate choice

model, which represents the buying behavior of the customers when faced with an assortment.

Research on choice models dates back several decades. They have been applied to several domains

such as transportation, marketing, and revenue management. The variety of different choice models

is vast. While we will here focus on those that are most relevant in the context of our work, we

refer the reader interested in broad overviews on assortment planning and choice models to surveys

such as those of Mahajan and van Ryzin (1999) and Kök et al. (2008).

In the context of assortment optimization, two families of choice models (see, e.g. Jagabathula,

2011) have found predominant popularity in the literature and have been successfully applied in

the aforementioned domains. The first family is that of (parametric) random utility maximization

models. Among its most prominent members is the Multinomial Logit (MNL) choice model, which

attributes an utility value to each of the available options. As in most of the choice models in

revenue management, customers may also choose to abandon the buying process (e.g., if they are

not willing to buy any of the available options), which is typically modelled as a dummy no-purchase

options. The probability that a customer will then select a certain option increases with its utility

relative to the sum of utilities of all options in the assortment. Even though these models are

analytically and computationally tractable, they have several shortfalls. In particular, the MNL

assumes the Independence of Irrelevant Alternatives (IIA) property (Arrow, 1951), due to which

substitution effects among products (such as cannabilization) cannot be captured. Nested logit

models, pioneered by Ben-Akiva (1973) for the modeling of travel demand, capture certain cases of

substitution, but are still subject to the IIA property within each nest. Further extensions, such as

Mixed Multinomial Logit (MMNL) models overcome those shortfalls and can capture quite general

customer behaviors. Unfortunately, these models are computationally challenging for practical

assortment optimization, given that they are typically non-linear and non-convex, in addition to

the fact of involving discrete variables. Most importantly, parametric choice models generally rely

on a good knowledge of the market structure and do strongly depend on the application context

(see, e.g., Jagabathula, 2011), which makes them sensitive to issues of under- and over-fitting.

2
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A second family of choice models has thus surged: non-parametric exponential models. Among

them, rank-based models are quickly gaining popularity in the literature. Rank-based choice models

generally assume that a customer behavior can be represented by a sorted preference list σ of the

available options. The probability that a random customer follows the buying behavior according to

a certain σ is given by a distribution over all possible preference sequences. The customer will then

select the option that is ranked highest in her preference list and available in the assortment. Rank-

based choice models have been acknowledged to offer manifold advantages. They implicitly capture

high-dimensional substitution effects and therefore complex synergies among products. They are

market uninformed and therefore not subject to over- or under-fitting, as it may be the case for

parametric models. Further, their distribution can, theoretically, be derived from historical data.

Such a purely data-driven approach is attractive from the manager perspective, as it requires little

application-specific user input (often none at all) and is therefore easy to apply and to maintain.

Having identified the relevant preference sequences may also give managers valuable insights about

the customer segmentation.

Unfortunately, learning those choice-models over the space of different preference sequences,

which is factorially large in the number of products N , is a major challenge. Both the identification

of relevant customer behaviors and computing the underlying probability distribution that would

explain the observed transactions are therefore computationally difficult. Some authors restrict

the search space by relying on assumptions on the market structure. For example, Honhon et al.

(2012) consider a special case that captures one level of substitution and therefore limits the search

space to the order of N2 customer behaviors. Recently, Vulcano and Van Ryzin (2017) provided

efficient estimation methods when the number of different customer sequences is limited and known

beforehand. However, in many settings, those assumptions may be overly restrictive, in particular

when the customer market is not well known. In this regard, Jagabathula (2011) and Farias

et al. (2013) strongly advanced research by circumventing the need for searching in factorially

large space, without the requirement of a preinformed market structure. These authors consider

only those models that minimize the revenue for a given assortment, therefore enabling the use

of the dual problem and resulting in the choice model for worst-case prediction. An important

feature of this approach is that it allows to identify the sparsest model, i.e., the choice model that

is coherent with the observed transaction and requires the smallest number of different customer

behaviors that have non-zero probability. From the managerial perspective, sparsity is strongly

attractive, as it aims at explaining the customer market in the most condensed way possible.

However, while the approach proposed by these authors may yield a good estimate of the worst-

case revenue, it may not be ideal for managers, given that the assortment planning based on a

worst-case choice model is likely to have a suboptimal performance on average. Bertsimas and

Mǐsic (2016) proposed an algorithm to identify the preference sequences that best explain the sales

out of the entire search space. The customer behaviors are identified via column generation and

are then, together with their estimated probabilities, used in a mixed-integer programming model

to provide an optimal assortment. Recently, the approach in Bertsimas and Mǐsic (2016) has been
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further explored and improved by the same authors, see Bertsimas and Mǐsic (2017), to speed up the

exact solution to the assortment optimization problem when the customer behaviors are given. Even

though the assortment optimization scales fairly well, the computational complexity of identifying

relevant customer behaviors is rather high. The entire process from choice model estimation (via

transaction data) to the optimized assortment is therefore limited to rather small numbers of

products. Ho-Nguyen and Kilinc-Karzan (2017) recently provided a uniform view of the methods

discussed above. They provide a solution methodology to estimate rank-based choice models based

on saddle point duality that particularly focuses on the context of dynamic learning, when choice

models are updated with new data along time. Even though the authors provide a theoretical

convergence guarantee for their algorithms, they do not present any numerical experiments.

We close this section by noting that, from a managerial perspective, one may also be interested

in choice models that facilitate insights into the market segmentation and preferences. Again,

sparsity is crucial, since it allows for separating the market into a smaller number of costumer

types. However, this criterion is not considered in the approach of Bertsimas and Mǐsic (2016).

Further, it is easy to see that products with low ranks have a marginally low probability of being

selected. However, a customer behavior that consists of all possible products makes it difficult

to understand which of those products are relevant in the sense that they actually contribute to

explain sales. Therefore, another practically desired property is to generate preference lists that

are as short as possible. We will denote this property as concision. In this work, we will introduce

a new choice-model representation with the aim of efficiently estimating the choice models and

provide assortment recommendations in a context where large numbers of products are available.

At the same time, we aim at providing an approach that is attractive from a managerial perspective

by providing choice models that are both sparse and concise.

1.2 Contributions

Our objective is to provide an operationally efficient methodology to estimate rank-based choice

models without any assumptions on the market structure. Our contributions can be summarized

as follows:

• Partially-ranked choice model : We introduce a new choice model representation, which con-

ceptually generalizes the models of Farias et al. (2013) and Bertsimas and Mǐsic (2016). In

addition to strictly ranked products, our model may additionally include indifference sets,

which represent subsets of products that are selected by the customer with equal probability.

It turns out that partially-ranked choice models can be seen as compact representations of

fully-ranked choice models. We prove that both choice models are identical in the sense that,

for any of those two choice models, one can identify an instance of the other choice model that

represents an equivalent buying behavior. However, one partially-ranked customer behavior

translates into a set of fully-ranked preference lists, which is of factorial size in the number

of products in its indifference sets. The proposed choice model is therefore theoretically at

least as sparse (i.e., it requires at most the same number of customer behaviors to explain
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the sales) as the one used by Bertsimas and Mǐsic (2016). In computational experiments on

synthetic instances, the partially-ranked choice models are on average about 4 times sparser.

• Efficient estimation procedure: We provide a novel efficient way to generate relevant customer

behaviors by iteratively expanding a decision tree, in which each of the nodes represents a

customer behavior. Finding new customer behaviors then amounts to expanding the tree,

which can be done using column generation. While finding new columns with negative reduced

costs can be generally costly, in our case, new columns can be found trivially thanks to the

proposed tree structure.

• Numerical results via simulation: We provide numerical results on synthetic data that indicate

the efficiency of our proposed methods. We further provide numerical results via simulations

that explore the conditions for revenue increases, as well as the sparsity of the choice model

and the concision of consumer behaviors.

• Empirical study : We report on a case study with real-world data from a major North-

American fashion retail chain, provided by our industrial partner JDA Labs (JDA Labs,

2017).

1.3 Organization of the paper

The remainder of the paper is organized as follows. Section 2 introduces the new choice model and

the procedure to efficiently identify relevant customer behaviors and the underlying distribution.

Section 3 provides a mixed-integer programming model to provide an optimized assortment based

on our choice model. Section 4 reports on numerical experiments from a simulation study on

artifically generated data, and for real-world data from the retail industry. We conclude in Section

5.

2 A Partially-Ranked Choice Model

In this section, we will introduce a new representation for rank-based choice models that allows for

strict preference on a subset of the products. This representation allows us to efficiently represent

and construct relevant customer preferences using a decision tree. In the following, we will first

introduce the new choice model and its representation as a tree. Then, a column generation will

be used to grow the decision-tree and generate customer preferences. Finally, we will show how to

use those developed customer preferences in the framework of an assortment optimization model.

Notation. We generally use bold faced characters such as xxx ∈ RN and AAA ∈ RM×N to represent

vectors and matrices. We use xi to denote the i-th element of vector xxx.

5
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2.1 The Choice Model

Rank-based choice models, such as the one introduced by Farias et al. (2013), assume that the

market buying behavior is classified into different customer behaviors. Each customer behavior is

represented by an ordered list that establishes a strict preference among all products. Preferred

products are said to have high ranks, while less preferred products are said to have low ranks. The

customer, following a specific behavior, buys exactly one product, which is the one that is highest

ranked in her preference list and available in the presented assortment. Consider the set of products

N = {1, 2, . . . , N} and assume further that the customer always has the choice of selecting option

0, the no-purchase option, which would make her leave the store without any purchase. Following

the notation used by Farias et al. (2013), we denote a customer behavior by σ and the rank of

product i by σ(i) ≥ 0. Consider a specific customer behavior σ with a list of preferred options

P (σ). A fully-ranked customer behavior can be defined as follows.

Definition 1 Fully-ranked customer behavior: A customer behavior σ with a fully-ranked

preference sequence may be written as a permutation of all N + 1 items in N ∪ {0}.

As an example, consider 6 available products. The fully-ranked customer behavior (3, 4, 1, 2, 5, 0, 6)

indicates that the preferred product is 3, the second preferred product is 4, etc. A customer with

such a preference will buy the highest ranked product that is available in the assortment. Note

that product 6 will never be bought, since it is ranked after the no-purchase option 0.

A rank-based choice model (σσσ,λλλ) is then defined as a set K = {σ1, . . . , σK} of customer be-

haviors, together with a probability mass function λλλ ∈ RK that represents the corresponding

probabilities that a random customer entering the store follows the specific behavior.

Rank-based choice models have several desirable properties, e.g., they allow for representing

high-dimensional substitution effects. Recently, fully-ranked customer behaviors have also been

used to perform subsequent optimization of the assortments (Bertsimas and Mǐsic, 2016). Despite

their advantages, they are prone to some disadvantages. Generating fully-ranked customer pref-

erences is computationally costly. Furthermore, from a management perspective, a fully-ranked

sequence allows for little insights regarding customer segmentation. This is due to the fact that

in reasonably large assortments, the probability that a product at, say, rank 10 will be selected, is

rather low (see Proposition 1 further below). Most of the ranked products therefore explain only

marginal portions of the sales (or none at all) and prevent store managers from identifying those

products that actually have high impact (and explain sales).

More importantly, fully-ranked customer preferences may not be efficiently representing certain

customer behaviors. In fact, it is hard to imagine that a customer has a strict preference order in

mind that is defined on all products. Instead, she may rather have a strict preference order for a few

of those products, but if none of those is available, she would choose any product from a subset of

the available products with similar characteristics. As an example, consider a customer which has

a specific sport shoes model in mind. If this model is not available in the exposed assortment, the

customer may choose any other sport shoes model that has similar characteristics and is available
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in the assortment. Clearly, only a subset of the products available in the assortment complies with

these characteristics.

In the following, we will introduce a new representation for rank-based choice models that allows

for a direct representation for subsets with equal sales probability. As we will see, this representation

not only allows for a more efficient description of customer behaviors, but also allows for exploiting

its structure and efficiently learning the description of the customer behaviors that are important

to explain the sales.

Partially-ranked customer behaviors. The choice model proposed here assumes that cus-

tomer preference lists do not necessarily have to impose a strict order on all products (which may

be in the order of hundreds or thousands). Instead, a customer may have a strict preference on

a subset of those products, e.g., 3, 4 and 1. If those products are absent in the assortment, the

customer may buy any similar and available product, e.g., 2, 5 and 6. We may represent such

a choice behavior as σ = (P (σ), I(σ)) = (3, 4, 1, {2, 5, 6}, 0), where P (σ) = (3, 4, 1) ⊆ N ∪ {0}
is a strictly ranked list of preferred products and I(σ) = {2, 5, 6} ⊆ N ∪ {0}\P (σ) is the subset

of indifferent products that will be chosen with uniform probability. There may be more than 6

products, but, assuming that product 0 is either in P (σ), in I(σ) or after I(σ), those products will

never be selected.

Definition 2 Simple partially-ranked customer behavior: A simple customer behavior σ

contains a strictly ranked preference lists P (σ) and an indifference set I(σ), where P (σ) ⊆ N ∪{0}
and I(σ) ⊆ N ∪ {0}\P (σ) are mutually exclusive subsets of N ∪ {0}. If 0 ∈ P (σ) ∪ I(σ), then the

behavior can be written as σ = (P (σ), I(σ)); otherwise, σ = (P (σ), I(σ), 0). Given an assortment S,

the customer will select the product that is ranked highest in P (σ) and available in S. If P (σ)∩S =

∅, the customer will select any of the products in I(σ) ∩ S (which may include 0) with uniform

probability. If I(σ) ∩ S = ∅ and 0 /∈ I(σ), the customer will leave the store.

Again, note that it is not required to list all N products in P (σ) or I(σ), meaning that P (σ)∪I(σ) ⊆
N ∪ {0} and the inclusion can be strict. Each product from N can be part of only one between

the strictly ranked list or indifference set, but the no-purchase option 0 has to be in either the list

or the set, or at the end.

Even though the partially-ranked choice model seems to be more general than fully-ranked choice

models, the underlying preference behaviors are essentially equivalent. Consider a simple partially-

ranked customer behavior (3, {2, 5, 6}, 0). The same choice model can be represented by a set of

fully-ranked preferences, requiring one complete (fully-ranked) list for each of the permutations of

the products in the indifference set: (3, 2, 5, 6, 0), (3, 2, 6, 5, 0), (3, 5, 2, 6, 0), (3, 5, 6, 2, 0), (3, 6, 2, 5, 0)

and (3, 6, 5, 2, 0). This transformation holds for any simple partially-ranked preference list.

Lemma 1 Consider a partially-ranked preference list as by Definition 2, containing one list of

strictly ranked products and one indifference set, and occurring with probability λc. We can generate

from σc a set with |I(σc)|! fully-ranked preference lists and define the corresponding probabilities
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such that given the same assortment S, the final probability that product i is bought is the same in

both cases.

Proof: Let S be a given assortment, F = |I(σc)| and G = |S ∩ I(σc)|. We generate F ! different

fully-ranked preference lists, each containing the items in P (σc) followed by a different permutation

of the elements in I(σc). For each of those fully-ranked lists, we define an equal probability (λc/F !).

If i /∈ S, the sales probability of i is 0 in both cases. If i ∈ S and i ∈ P (σc), then i will be

bought with equal probabilities in both cases, since both the partially- and the fully-ranked lists

start with the same sequence of products P (σc).

For the case where i ∈ S and i ∈ I(σ) we need to show that the probabilities that i is bought

given S are equal for the two cases (the partial preference list and the set of fully-ranked lists).

For the partially-ranked list, the probability that product i is selected is defined as λc/G, i.e., the

original probability divided by the number of products that are both in the indifference set and in

the assortment. Recall that each of the generated fully-ranked lists has a probability of (λc/F !).

To compute the probability that i is selected, we multiply this probability by the number of fully-

ranked lists in which i ranks highest in assortment S. The latter can be obtained in two steps. First,

consider only the G items that are both in the assortment and in the indifference set and compute

the number of permutations where i is ranked highest. It can be shown (e.g., via induction) that

there are (G − 1)! permutations in which item i is at first rank (note that i has to be at the first

rank to be selected, since all other G− 1 items are also in the assortment). Then, for each of those

(G−1)! permutations, we compute the number of possibilities how to insert the remaining (F −G)

items (which are not in S) into the sub-list with G items. This can be computed by dividing the

number of all permutations of the F items (those in I(σc)) by the number of permutations of the

G already ordered items (which are in the assortment), i.e., F !/G!. The final probability that item

i is selected given assortment S therefore amounts to (λc/F !) · (G− 1)! · (F !/G!) = λc/G.

More general than the simple partially-ranked customer behavior defined above, we may consider

a customer behavior with q lists of preferred products P `(σ) (` = 1, . . . , q) and q indifferent sets

I`(σ), defined as follows.

Definition 3 General partially-ranked customer behavior: A general customer behavior σ

has an ordered list of several strictly ranked preference lists

P 1(σ), . . . , P q(σ) and indifference sets I1(σ), . . . , Iq(σ), all of which are mutually exclusive sub-

sets of N ∪{0}. If 0 ∈
⋃

`=1,...,q

P `(σ)∪ I`(σ), then the behavior can be written as σ = (P 1(σ), I1(σ),

P 2(σ), I2(σ), . . . , P q(σ), Iq(σ)); otherwise, σ = (P 1(σ), I1(σ), P 2(σ), I2(σ), . . . , P q(σ), Iq(σ), 0).

Again, each product from N can be part of only one strictly ranked list or indifference set, and the

no-purchase option has to be in one of the lists or sets, or at the end. Here, the customer would

prefer to buy a preferred product within sequence P 1(σ). If none of these products is available, the

customer will choose any product with similar characteristics defined in I1(σ) and available in the

assortment with uniform probability. If none of those products is available, further lists of preferred
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products and sets of indifferent products may follow until the no-purchase option 0 indicates that

no purchase is made. Recall the previous example of a simple partially-ranked customer behavior

σ = (P (σ), I(σ)) = (3, 4, 1, {2, 5, 6}, 0) with one strictly ranked product list and one indifference

set. In the case that the customer does not find any of the indifferent products 2, 5 or 6 in

the assortment, she may have further strict preferences (e.g., on a different product type), given

by another strictly ranked product list, say (7, 10, 9). If those products are also not available in

the assortment, the customer may be indifferent on products 8 and 11. In the absence of those

products, she may want to leave the store. This more complex behavior is represented by σ =

(3, 4, 1, {2, 5, 6}, 7, 10, 9, {8, 11}, 0), having two strictly ranked products lists and two indifference

sets.

While fully-ranked customer preferences require a hierarchy among all products such that σ(i) <

σ(j) whenever product i is preferred to j, partially-ranked choice models also allow for relations

of the form σ(i) = σ(j), indicating that products i and j are equally preferred and therefore part

of the same indifference set. The product ranks in the example above are as follows: σ(3) = 0,

σ(4) = 1, σ(1) = 2, σ(2) = σ(5) = σ(6) = 3, σ(7) = 4, σ(10) = 5, σ(9) = 6, σ(8) = σ(11) = 7 and

σ(0) = 8.

Based on Lemma 1, we now show that both the general partially-ranked choice model and the

fully-ranked choice model can represent equivalent buying behaviors.

Theorem 2 Equivalence between fully-ranked and partially-ranked choice models: Any

choice model (σσσC ,λλλC) that contains fully-ranked customer behaviors (see Definition 1) can be rep-

resented by a choice model (σσσP ,λλλP ) that contains only partially-ranked customer behaviors (see

Definition 3). Further, any choice model (σσσP ,λλλP ) that contains only partially-ranked customer

behaviors can be transformed into an equivalent choice model (σσσC ,λλλC) exclusively composed of

fully-ranked customer behaviors.

Proof: To proof the first part, consider any preference list σc ∈ σσσC . We may trivially derive an

equivalent σp from σc by defining a corresponding partially-ranked customer behavior σp with the

following parameters: q = 1, P 1(σp) = P (σc), I
1(σ) = ∅ and λp = λc. We may do this for all behav-

iors in σσσC to derive the new choice model. To derive from (σσσP ,λλλP ) an equivalent choice model com-

posed of fully-ranked consumer behaviors, consider any σp ∈ σσσP . It can be verified that the trans-

formation of a simple partially-ranked customer behavior with one set of strictly ranked products

and one indifference set in Lemma 1 can be generalized to a general partially-ranked customer be-

havior (P 1(σ), I1(σ), P 2(σ), I2(σ), . . . , P q(σ), Iq(σ), 0) with several sets of strictly ranked products

and several indifference sets. As in Lemma 1, we generate one fully-ranked list for each of the per-

mutations of the products in the indifference sets, resulting in a total of |I1(σ)|! · |I2(σ)|! · . . . · |Iq(σ)|!
fully-ranked lists. Consider a product i and define r such that product i is either in P r(σ) or in

Ir(σ). The equivalence of the probability that i is selected is then proven in the same way as in

Lemma 1 using P r(σ) and Ir(σ).

We may conclude from Theorem 2 that both, fully and partially-ranked choice models can
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essentially reflect the same set of customer behaviors, but the latter can have a sparser rep-

resentation. Choice models with full ranks can reflect preference indifference on products, but

it will have to explicitly enumerate a number of fully-ranked lists that is factorial in the num-

ber of products in each of the indifferent sets. As outlined above, a general customer behavior

(P 1(σ), I1(σ), P 2(σ), I2(σ), . . . , Iq(σ), 0) therefore requires
∏q
q′=1 |I

q′(σP )|! fully-ranked sequences

to represent an equivalent choice model. It is therefore desirable to find a more efficient represen-

tation for such customer behaviors that may significantly improve the tractability of training those

models and performing subsequent optimization of future assortments. Partially-ranked behaviors

are a promising candidate, in particular since low ranked products tend to have little impact in

explaining sales, as stated below.

Proposition 1 Irrelevance of low ranked products: The relevance of low ranked products

can be negligibly small, both statistically and in practice. Consider a non-empty assortment S,

let r = |S|
N ∈]0, 1] be the assortment density of S and assume that the probability that a certain

product is part of S is uniform (i.e., it is equal to |S|N ). Then, the relevance of a product decreases

exponentially fast with its rank. Further, the greater the ratio r, the smaller the importance of low

ranked products.

Proof: The probability that the product at kth rank is selected by the customer equals (1−r)k−1 ·r,
where (1− r)k−1 is the probability that none of the k− 1 highest ranked products are selected and

r is the probability that product k is subsequently selected. The result follows, as for any k > 2,

the probability (1− r)k−1 · r reduces as r increases, and the decrease is exponential in k.

With a ratio of r = 0.1, this probability is about 3.87% for rank k = 10, but only about

0.05% for k = 50. With higher ratios, lower ranks quickly become insignificant. For example,

with r = 0.5, the probability for k = 10 is as low as 0.05%. While the above examples assume a

uniform popularity in the customer priorities and in the assortments, in practice, it is likely that

popular products are both highly ranked and are part of the assortment. We therefore argue that,

in practice, the above stated probability tends to be a pessimistic (upper) bound on the importance

of low ranked products. In other words, we expect that the probability that low ranked products

are relevant decreases even more in practice. Further, an analysis of the industrial data used on

10 stores (see Section 4.2) showed that the total number of sold products is 192. It is reasonable

to assume that stores carry assortments with at least 20 of those products, yielding a ratio r of

at least 0.1. Our proposed methodology therefore explicitly focuses on the impact of the products

at high ranks (i.e., those that are ranked as more preferred), reducing computational efforts, while

preserving the accuracy of the choice models.

Before we introduce the method for estimating the proposed partially-ranked choice model, we

will introduce a special case of the simple partially-ranked choice model (see Definition 2), where

the indifference set contains all products that are not strictly ranked, i.e., I(σ) = N ∪ {0}\P (σ).
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Definition 4 Partially-ranked customer behavior with complementary indifference set:

A partially-ranked customer behavior σ with complementary indifference set is defined as a simple

partially-ranked customer behavior (see Definition 2), and imposing that I(σ) = N ∪ {0}\P (σ).

While all further developments also carry over to the choice models composed by the most general

partially-ranked customer behaviors as specified by Definition 3, we will restrict our attention from

now on mostly to the simplified case given by Definition 4. The use of this simplified case will

facilitate the comprehension of the proposed algorithms and is further justified by several other

reasons. Even though using an indifference set that is composed of all non-ranked products may

seem unrealistic in practice, one needs to keep in mind that such a consumer behavior can be

transformed into an equivalent set of fully-ranked consumer behaviors (see Theorem 2). Further,

this type of indifference set holds two important advantages. First, it allows for a very efficient

computation of the reduced costs within the column generation scheme, which will be shown in the

next section. Second, given that each partially-ranked list with an indifference set is equivalent to

a large (in fact, factorially large in the size of the indifference set) number of fully-ranked lists, the

products in the indifference set provide a quite direct, both granular and aggregated, explanation

of sales when estimating the choice model (see Section 2.2). The products in the indifference

set therefore hold a certain explanatory power, which can be computed exactly in an average

assortment, as stated in the following proposition.

Proposition 2 Explanatory power of the indifference set: Consider a consumer behavior

σk = (P (σk), I(σk)) with estimated market probability λk and an assortment S with products density

r. The contribution of σk to the explanation of the overall sales of product i /∈ P (σk) in S amounts

to (1− r)|P (σk)| λk
|I(σk)| .

Proof: There are |S|− |P (σk)| products in the indifference set I(σk). If none of the strictly ranked

products is part of the assortment, the contribution to explaining the sales of one of the products

in I(σk) is λk
|I(σk)| . Further, the probability that none of the strictly ranked products is part of the

assortment is, on average, (1 − r)|P (σk)| (compare Proposition 1). The total average contribution

of σk to a product i ∈ I(σk) follows as the product of the previous two terms.

As a consequence, one can easily verify the average explanatory impact on products that are

not strictly ranked in a partially-ranked consumer behavior. For example, if N = 100, |S| = 50

(thus, r = 0.5), 5 products are strictly ranked (i.e., |P (σk)| = 5, |I(σk)| = N − |P (σk)| = 95) and

λk = 0.05, σk explains only 0.0016% (= (1− 0.5)5 · 0.0595 ) of the sales of any product i ∈ I(σk). The

impact of using such an indifference set on explaining the overall sales, for this example, amounts

to 3.12% (= (1− 0.5)5). Therefore, exposing the decision maker to such a concise list of 5 products

is practically sufficient, i.e., exhibiting the 5 products that explain 96.78% of sales caused by this

consumer type.
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2.2 Learning Consumer Preferences

Before we can optimize future assortments, we need to estimate the probability P(i|S) that a

product i is sold given that a random customer is exposed to assortment S. We may compute

this probability, once our choice model (σσσ,λλλ) is estimated. Given that there is factorial number of

different customer behaviors, a major challenge is to identify the set σσσ that is relevant for explaining

the sales, as well as their corresponding probabilities λλλ. In this section, we focus on how to efficiently

learn those parameters that are consistent with the observed sales.

Assume that historical data is available including a total of M assortments, given by set M =

{S1,S2, . . . ,SM}, as well as sales transaction data for each of them. Those sales are given in a vector

vvv ∈ R(N+1)·M consisting of all pairs (i,m), with i ∈ N∪{0}, m ∈M, which represent the customers

that have chosen option i when being presented assortment Sm. Note that it is assumed that such

sales data also includes the no-purchase option 0, e.g., if it is accurately collected by the store or

estimated by the store manager. We are then concerned with learning a choice model (σσσ,λλλ) that

is consistent with sales probabilities vvv. Assume that one has identified a set of relevant customer

behaviors K. One may then compute a matrix AAA ∈ R((N+1)·M)×K , in which an entry Ak(i,m) is

set to 1 if customer k would choose product i from assortment Sm ∪ {0}. As a consequence,

∀(k,m) :
∑

iA
k
(i,m) = 1.

Similar to Bertsimas and Mǐsic (2016), we will minimize the L1 error between vvv and AAAλλλ =∑
k A

k
(i,m)λk, the probability that a random customer chooses option i from assortment m. To

avoid dependence from the number of assortments, we further propose to normalize the error, and

therefore minimize:

εTr =
1

2|M |
∑
(i,m)

|AAAλλλ− vvv|i,m.

Consider a given set of potentially relevant customer behaviors {σ1, σ2, ..., σK}, one may use a

simple linear program to find the corresponding probability distribution (λ1, λ2, ..., λK) that results

in the smallest error as follows:

min
λλλ,εεε+,εεε−

111Tεεε+ + 111Tεεε− (1a)

s.t. AAAλλλ+ εεε+ − εεε− = vvv (1b)

111Tλλλ = 1 (1c)

λλλ,εεε+, εεε− ≥ 0. (1d)

Setting the Choice Matrix A. Bertsimas and Mǐsic (2016) propose to set the choice matrix AAA

for fully-ranked customer behaviors such that AAAλλλ = vvv by using entry 1 if customer k would choose

product i from Sm∪0. This notion does not hold in the context of our more general representation

which may include indifference sets. For reasons of simplicity and without loss of generality, let us

consider the slightly simpler case (P (σ), I(σ), 0) in which the customer behavior σ consists only of

a single list P (σ) of preferred and strictly ranked products, followed by an indifference set I(σ).

12

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-011



We assume that the indifference set I(σ) (in the more general case, we have I1(σ), . . . , Iq(σ))

is externally given, for instance by a marketing department. Alternatively, it can be learned or

estimated in a previous step by identifying products with similar characteristics. We may then

define the ranking entries of a customer behavior σ as follows:

σ(i) =


rank of preference of i if i ∈ P (σ)

|P (σ)| if i ∈ I(σ)

+∞ otherwise.

The preferred products are ranked from 0 to |P (σ)| − 1, whereas all products in the indifference

set have equivalent rank |P (σ)|. In the general case with several indifference sets, those ranks will

be computed as the rank of the previous preferred product plus 1. The rank of a product that is

neither in a P (σ) nor in I(σ) is set to +∞.

Setting the choice matrix AAA for a partially-ranked choice model has to respect ∀(k,m) :∑
iA

k
i,m = 1, which we can achieve by a uniform distribution on the indifference set:

Aki,m =


1 if i ∈ Sm and ∀j ∈ Sm\{i} : σk(i) < σk(j),

1

|I(σ) ∩ Sm|
if i ∈ Sm : and ∀j ∈ Sm, σk(j) = |P (σ)| or σk(j) = +∞,

0 otherwise.

(2)

The choice matrix AAA can therefore be efficiently computed taking into consideration any general

customer behavior σ that is consistent with Definition 3.

Learning Consumer Behaviors based on a Decision Tree. As noted by Bertsimas and Mǐsic

(2016), the linear program (1) is not tractable, given the factorial number of customer behaviors

here considered, causing AAA and λλλ to be exponentially large. The authors therefore propose a

column generation algorithm, which initializes problem (1) as Master problem with a small subset

of promising columns (i.e., preference sequences). The algorithm then iteratively identifies possibly

relevant columns and adds them to the Master problem. Let ααα and ν be the dual values of

constraints (1b) and (1c) after solving problem (1). To find columns with minimal reduced cost,

the authors further propose the following mixed-integer program:

min
z,a

αααTaaa− ν (3a)

s.t. ai,m ≤ zij ∀m ∈ {1, ...,M}, i, j ∈ Sm ∪ {0}, i 6= j (3b)

zij + zji = 1 ∀i, j ∈ {0, 1, ..., N}, i 6= j (3c)

zij + zj` − 1 ≤ zi` ∀i, j, ` ∈ {0, 1, ..., N} i 6= j, i 6= `, j 6= ` (3d)

zzz ∈ {0, 1}, aaa ∈ {0, 1}.
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The MIP (3) minimizes the total reduced costs of the corresponding product sequence defined by the

zzz variables. Constraints (3b) ensure that ai,m can take a positive value only if product i is preferred

to all other products in assortment m. The set of constraints (3c) and (3d) represent non-reflexivity

and transitivity, respectively, in order to establish a strict order among all products. Unfortunately,

system (3) is costly to solve, and one needs to find alternatives for practical purposes. The authors

therefore use a local-search heuristic to find new columns with reduced costs. Both the heuristic

and the exact model (3) generate fully-ranked customer behaviors, which may not be necessary

in practice (see Proposition 1). We therefore propose to focus on products with high ranks (i.e.,

those that are considered more preferred) and to explicitly take advantage of the structure of the

proposed choice model.

The partially-ranked customer behaviors with indifference subsets can be efficiently represented

by a decision tree, in which explicitly listed nodes refer to strictly ranked products. In the general

case (see Definition 3) with several indifferent sets that are strict subsets of N , each indifferent set

can be represented by a node that includes several products. However, selecting those sets may be

context specific and require input from store managers on how to cluster those products. While

the presented methods also apply to the general case of partially-ranked customer behaviors (see

Definition 3), we will focus, without loss of generality, on the simpler case of σ = (P (σ), I(σ)) as

specified in Definition 4. Here, the indifference set contains all nodes that are not strictly ranked,

i.e., I(σ) = N\P (σ), and therefore does not need to be explicitly listed in the tree. Figure 1

illustrates a small example with 3 products and the no-purchase option 0. In this example, a total

of |K| = 8 customer behaviors has been generated. For instance, customer behavior σ7, associated

with node λ7, refers to a customer that prioritizes product 2, if present; if not, she is willing to buy

product 1. If none of those products is available, the customer will buy any available product or

leave the store with equal (i.e., uniform) probability. In contrast, customer behavior σ6, associated

to node λ6, refers to a customer that will buy product 2, if available, and leave the store without

purchase otherwise (indicated by the no-purchase option 0).

0 1 2 3

0 0 1 2

root

λ1 λ2

λ7λ6

λ4

λ8

λ3

λ5

Figure 1: Example of Growing Decision Tree choice model for N = 3 products

It becomes immediate that such a tree structure is a quite intuitive representation for store

managers who may want to understand customer segmentation. It tends to generate a smaller

number of customer behaviors and focuses on the products that are important to explain sales:

those that are ranked early in a customer preference sequence. Further, the search for new customer

behaviors in the tree structure may drastically speed up computation if one succeeds to limit the
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search to a significantly smaller space. This is the case if we focus on high ranks first and then

gradually expand the tree by not more than one level of depth at each branch and iteration. Due

to the gradual expansion of the tree, we will refer to it as the Growing Decision Tree (GDT).

We define σj to be a sub-behavior of σi if P (σj) = (P (σi), `), where ` ∈ I(σi). In words, a

sub-behavior σj inherits the strict preference list from its parent σi and adds to it one product

(including, potentially, the no-purchase option) that is not part of σi’s preference list. Let K be the

set of behaviors enumerated in the GDT. Our algorithm iteratively searches for new sub-behaviors

in the GDT, expands the tree and solves problem (1) to find the corresponding probabilities λλλ.

When looking for new promising columns (i.e., new sub-behaviors), we may restrict the search to

the sub-behaviors of all σ ∈ K. The reduced costs of each of the sub-behaviors can be computed

as rc(σ) = −αααaaa − ν, where ααα and ν are the dual values of constraints (1b) and (1c) in problem

(1), and a is defined according to equality (2). The sub-behaviors with the lowest reduced cost

are then added to the set of customer behaviors K, and problem (1) is resolved. The pricing step

is exemplified in Figure 2, in which the reduced cost for all sub-behaviors (indicated in blue) of

behaviors σ ∈ K are computed, unless the last product in the preference list of σ is option 0.

This would indicate that the customer would leave the store and the sub-behaviors are irrelevant.

The process is performed iteratively until the L1 error is sufficiently small or a defined maximum

number of iterations is performed.

0 1 2 3

0 2 3 0 1 3 0 1 2

0 3 0 1

root

λ1 λ2

λ7λ6

λ4

λ8

λ3

λ5
rc1 rc2

rc3 rc4

rc5 rc6 rc7

rc8 rc9

Figure 2: Computing reduced costs in the Growing Decision Tree choice model

Note that computing the reduced cost of a fully-ranked preference list has a computational

complexity of O(N), even if the reduced cost of a “similar” fully-ranked preference list is known.

Therefore, finding new columns with negative reduced costs can become costly when using fully-

ranked preference lists. In contrast, using partially-ranked preference lists and the GDT holds the

remarkable advantage that, once the reduced cost of a partially-ranked list is known, the reduced

cost of any of its sub-behaviors can be computed in constant time. The reduced cost of the sub-

behavior is similar to the one of the current column, given that the sub-behavior ranks exactly one

more product (adding the corresponding dual value α to the reduced cost) and therefore has one

item less in the indifference set (subtracting from the reduced cost the corresponding dual value α

divided by the number of elements in the previous indifference set). This makes the exploration of

the search space for negative reduced cost columns extremely efficient.

Algorithm 1 outlines the complete column generation procedure to build the GDT. At each
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Algorithm 1: GDT-based column generation algorithm

Input data :
• Sales probability vector vvv, training set of assortments S1,. . . ,SM .

• Maximum number of column generation iterations iterCGMAX .

• Optimality training criteria εTrMIN .

• Maximum number of sub-behaviors δ that are added at each iteration.

• Maximum depth d to find sub-behaviors with negative reduced cost

Output data:

• A set K = {σ0, . . . , σK−1} of K customer behaviors, where σk = (P (σk), I(σk), 0).

1 begin
2 Initialize set K with N + 1 sub-behaviors σk, k = 0, . . . , N , defined with P (σk) = (k) and

I(σk) = N\{k}.
3 Set iter to 0.
4 Solve restricted Master Problem (1) to obtain λλλ, εεε+, εεε− and dual values ααα and ν.
5 while (iter ≤ iterCGMAX) and (111Tεεε+ + 111Tεεε− > εTrMIN ) do
6 Set iter ←− iter + 1
7 Set depth←− 0
8 Set CP ←− K
9 Set CN ←− ∅

10 Set D ←− ∅
11 while (D = ∅) and (depth ≤ d) do
12 Set depth←− depth+ 1
13 for ∀σk ∈ CP do
14 if P (σk)|P (σk)| 6= 0 (i.e., if last element in P (σk) is not 0) then

15 compute the reduced costs for all new sub-behaviors of σk
16 Add each new sub-behavior with negative reduced cost to CN

17 if (CN = ∅) then
18 Set C′ ←− ∅
19 for ∀σk ∈ CP do
20 Add all sub-behaviors of σk to C′

21 Set CP ←− C′

22 else
23 Add to D up to δ sub-behaviors σk ∈ CN that have the lowest reduced costs

24 if (D = ∅) then
25 Solve MIP (3) to find σk with smallest reduced cost
26 if (σk’s reduced cost is negative) then
27 Add σk to D
28 else
29 Return K

30 Set K = K ∪D and all sub-behaviors ∈ D as new columns to matrix AAA
31 Solve restricted Master Problem (1) to obtain λλλ, εεε+, εεε− and dual values ααα and ν

32 return K ;
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iteration, the algorithm first explores the sub-behaviors of the behaviors in CP , which represents all

behaviors that have positive reduced costs at the current iteration. If sub-behaviors with negative

reduced costs are found, they are added to the set of columns with negative reduced costs CN .

If none of the explored sub-behaviors has reduced cost, the algorithm replaces all behaviors in

CP by their respective sub-behaviors and therefore continues the search for columns with negative

reduced costs on a deeper level of the tree. The algorithm continues until either a maximum depth

d has been reached or at least one column of negative reduced cost has been found. If, after

having explored depth d no new column with negative reduced cost has been found, MIP (3) can

be employed to find the most negative reduced cost column. If this cost is positive, optimality has

been proven and the algorithm terminates. Otherwise, the column is added and the procedure is

continued.

The column generation procedure, as outlined in Algorithm 1, explores the sub-behaviors of all

σk ∈ CP (see code lines 13 and 19). In practice, exploring all nodes may be unnecessarily time

consuming. Instead, we may randomly select up to γ behaviors for which the sub-behaviors should

be explored. Lines 13 to 21 then have to be iteratively performed until a maximum number of

those iterations is explored and the algorithm proceeds to the next depth. In our computational

experiments, we set the maximum depth d = 1. We also set γ = 5 and select those behaviors

randomly, weighted by their probabilities λk.

Contrary to using MIP (4) to identify the customer behavior with the lowest reduced cost, the

GDT allows for controlling which type of customer behaviors to consider. For example, if indifferent

sets are not at all desired by the modeler, one only needs to consider the sub-behaviors that end

in the no-purchase option 0 and set matrix A accordingly. The GDT would then only generate

strictly ranked customer behaviors, but most likely converge much faster than when using the MIP

(4) or a local search.

3 Assortment optimization

In the previous sections, we have presented a new representation for rank-based choice models and

an efficient methodology to identify a set K of relevant customer behaviors σk ∈ K, as well as

their corresponding probabilities λk. We now focus on how to identify optimal assortments that

are coherent with the learned choice model. Aouad et al. (2015) recently showed that assortment

optimization based on a given choice model is generally NP-hard. For ranked-based models, an

early MIP formulation has been introduced by Belloni et al. (2008), which was limited to small

problem instances. Nevertheless, some recent works have proposed optimization models that scale

reasonably well (see Bertsimas and Mǐsic, 2016, 2017; Farias et al., 2013).

We suppose that a revenue ri is associated with each product i. The no-purchase option 0 yields

a revenue of 0. Bertsimas and Mǐsic (2016, 2017) propose a mixed-integer programming model that

uses variables xi that take value 1 if product i is included in the assortment, and 0 otherwise.

It further uses variables yki that take value 1 if product i is within the assortment and is chosen
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according to behavior σk. The optimization problem writes as

max
x,y

K∑
k=1

N∑
i=1

riλ
kyki (4a)

s.t.

N∑
i=0

yki = 1 ∀k ∈ {1, ...,K} (4b)

yki ≤ xi ∀k ∈ {1, ...,K}, ∀i ∈ {1, ..., N} (4c)∑
j:σk(j)>σk(i)

ykj ≤ 1− xi ∀k ∈ {1, ...,K}, ∀i ∈ {1, ..., N} (4d)

∑
j:σk(j)>σk(0)

ykj = 0 ∀k ∈ {1, ...,K} (4e)

xxx ∈ {0, 1}, yyy ≥ 0.

The optimization problem (4) maximizes the expected revenue. Constraints (4b) select exactly

one product for each customer type k. Constraints (4c) say that a product can be selected only if

it is part of the assortment. Constraints (4d) guarantee that the product in the assortment that

is ranked highest also has the highest yki value. Finally, constraints (4e) ensure that all products

ranked lower than the no-purchase option 0 are not selected.

Problem (4) is highly tractable. In particular, even though defined as continuous variables, vari-

ables yyy will only take binary values due to the structure of the problem. Bertsimas and Mǐsic (2017)

explicitly showed that the formulation yields stronger linear programming relaxation bounds than

the formulation initially proposed by Belloni et al. (2008). Unfortunately, the formulation requires

fully-ranked customer behaviors, which are not explicitly given by a choice model with partially-

ranked behaviors as generated by the GDT column generation algorithm. To adapt partially-

ranked behaviors to the MIP stated above and obtain an exact approach, we could transform the

partially-ranked choice model into a fully-ranked choice model. However, the number of necessary

fully-ranked preference lists is factorially large (see Theorem 2), which would make the resulting

MIP intractably large. As an heuristic approximation, one may replace the indifference sets by

a random sequence of those products that are not strictly ranked. Generating several random

sub-behaviors for each partially-ranked customer’s behavior, generally known as boosting, may be

computationally tractable while improving the performance of the final assortments. However, it

may be quite instance specific how many of those random sequences to generate, and the models

may become too large anyhow, without mentioning the heuristic nature of the method.

We are therefore interested in finding an optimization model that directly operates on partially

ordered ranks, i.e., those that use a strict ranking on a subset of products and indifference on the

remaining products. To directly operate on customer behaviors with indifference sets, we may add

the following constraints, which enforce that y variables for products i and j have equal values if

18

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-011



both products are part of the assortment and have equivalent rank in behavior k. Namely,

zij = xi · xj ∀i, j ∈ {1, . . . , N} : i > j (5)

|yki − ykj | ≤ 1− zij ∀k ∈ {1, ...,K}; ∀i, j ∈ {1, . . . , N} : i > j and σk(i) = σk(j). (6)

The introduction of variables zij and the linearization of constraints (5) and (6) would signifi-

cantly increase the model size and the difficulty of solving the problem. Fortunately, an equivalent

model can be achieved by adequate transformation and substitution of the new variables.

Theorem 3 The feasible set of the optimization model composed by (4a) - (4e) and (5) - (6) is

equivalent to the feasible set of the optimization model composed by (4a) - (4e) and the constraints

(7)-(8)

yki − ykj ≤ 2− xi − xj ∀k ∈ {1, ...,K}; ∀i, j ∈ {1, . . . , N} : i > j and σk(i) = σk(j) (7)

− yki + ykj ≤ 2− xi − xj ∀k ∈ {1, ...,K}; ∀i, j ∈ {1, . . . , N} : i > j and σk(i) = σk(j) (8)

Proof: The equivalence is easiest to show by considering the possible values of binary variables xi

and xj in a feasible solution. If at least one of the two variables has value 0, the absolute value of

yki − ykj is neither further constrained by (5) nor by (7)-(8). If both variables have value 1, both

(5) and (7)-(8) force yki and ykj to take equal values. Therefore, both sets of constraints have the

same impact on the y variables, resulting in equivalent feasible sets.

One may therefore directly optimize the assortment based on partially-ranked consumer behav-

iors without introducing new variables. While the structure of problem (4) forced the continuous

yyy variables to take binary values, adding constraints (7) and (8) breaks this structural property,

allowing the variables to take any continuous value between 0 and 1. As outlined above, these

constraints have an intuitive interpretation. They force yki and ykj to take the same value if both

products i and j are part of the assortment and have equal rank in customer behavior k. In this

case, if none of the higher ranked products is available in the assortment, each of yki for the indif-

ferent products will take value
1

|I(σ) ∩ S|
, where S is the assortment defined by variables xxx. Even

though there is a quadratic number of constraints, those are only on the size of the indifference sets.

If the indifference sets are large, one may generate those constraints on the fly, adding only those

constraints that are violated in the linear programming solution in each of the Branch-and-Bound

nodes.

4 Computational Results

We now focus on empirical experiments performed with the proposed non-parametric choice model.

In Section 4.1, we will evaluate the performance of the choice model and the assortment optimization

algorithms on synthetic data. We are particularly interested in evaluating how well those models

perform in terms of scalability and ability of learning the choice model. In Section 4.2, we show
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the usefulness of our approach in practice by performing an analysis on industrial data sets from

the clothes retail sector.

All computational experiments have been carried out on a single Intel(R) Xeon(R) X5675

3.07GHz processor, limited to 48 GByte of memory. The algorithms have been coded in Python

version 3.6.1. Mathematical models have been solved using the MIP solver of Gurobi version 7.0.2.

4.1 Numerical Results on Synthetic Data

Data Generation. We generate sales and assortment data according to a ground-truth (GT)

model. The data generated according to this GT model will be used to evaluate the performance

of the non-parametric choice models discussed so far and the corresponding algorithms proposed

in the previous sections. We choose as GT model a Mixed Multinomial Logit model with T classes

of customers. The probability distribution among the classes are drawn from the T -dimensional

simplex pt (therefore,
∑

t pt = 1 and pt ≥ 0 ∀t). Each customer class t associates an utility ut,i

with a product i and selects product i from assortment S with the following probability

P(i|S, class=t) =
eut,i

eut,0 +
∑

j∈S e
ut,j

.

The overall probability that a random customer chooses a product i is therefore given by

P(i|S) =
T∑
t=1

pt
eut,i

eut,0 +
∑

j∈S e
ut,j

.

The utilities for each customer class are generated as proposed by Bertsimas and Mǐsic (2016).

Specifically, we generate a matrix q of the same dimension as u uniformly distributed on [0, 1].

If not stated otherwise, 4 of the N + 1 products from N ∪ {0} are randomly selected for each

customer class t. Those products are assumed to have high utilities for customer class t, computed

as ut,i = 10 ∗ qt,i. The utilities for the remaining N − 4 products are set to ut,i = 0.1 ∗ qt,i. The

training and test sets for the choice models consist each of M assortments. In all experiments,

M has been set to 20 to reflect a context where the number of historical observations is limited.

Assortments densities r are set to 0.5, i.e., each assortment contains N/2 products. Utilities ut,i

are translated to a vector of sales probabilities vi,m = P(i|Sm) for each product in each assortment.

Sales transactions are then randomly generated according to the sales probabilities. Recall that the

sales vector vvv is indexed by tuples (i,m). Therefore, the choice matrix Aki,m has two dimensions.

4.1.1 Training the Choice Model

In the following, we will investigate how well the proposed choice model can be trained using the

Growing Decision Tree algorithm when compared to classical approaches. We then analyze both

sparsity and concision of the generated choice models.
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Convergence and scalability. The choice model is trained by iteratively generating new

customer preference lists via column generation and solving master problem which minimizes the

estimation error based on the training data. Let AAAtr and vvvtr be the choice matrix and the sales

probabilities for the M assortments of the training set. At each iteration, we compute the current

training error as εtr =
|AAAtrλλλ− vvvtr|

2M
. The test error is computed in the same way, but using choice

matrixAAAte and sales vector vvvte based on the M assortments of the test data. The training algorithm

terminates once the training error εtr is smaller or equal to threshold ε0, which is set to 0.01, if not

stated otherwise.

Figure 3 (a) and (b) show the evolution of the training and test errors for problem instances

with N = 10 and N = 100, respectively. The curves are plotted for two training algorithms: CG-

GDT refers to the column generation approach that generates new columns based on the Growing

Decision Tree. CG-LS refers to a column generation approach based on the work of Bertsimas

and Mǐsic (2016), using a local search to find new fully-ranked preference lists. With 10 products

(see Figure 3 (a)), we notice that the training error εtr is below 1% in less than a second using

the CG-GDT, whereas the CG-LS takes about 15 seconds to achieve the same accuracy. In both

cases, the test errors (dotted lines) are slightly higher than the training errors. However, they

are strictly decreasing, which illustrates that the approaches are not affected by overfitting. For

a larger instance with N = 100 products (see Figure 3 (b)), we notice that the CG-GDT quickly

achieves a small training error, whereas the CG-LS requires more time to find the right columns

that decrease the estimation errors. In particular, in the plotted time period, the algorithm has

not been able to reduce the error below 37%, while the CG-GDT choice model achieves an error of

1, 5% in 25 seconds.

(a) Problem instance with N = 10 (b) Problem instance with N = 100

Figure 3: Learning curves (training and test error) for CG-GDT and CG-LS on example problem
instances.

To investigate the scalability of the two training approaches, we generated 10 random instances

for each N ∈ {30, 50, 100, 250, 500, 1000}. Both approaches, the CG-GDT and CG-LS, have been

limited to 12 hours computing time. The average results over the 10 instances are reported in

21

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-011



Table 1 for each of the two approaches and for different problem sizes N . The table reports the

final training error, the computing times, the number of iterations, and the final number K of

generated preference lists with non-negative probabilities λk. Problem instances that hit the 48

Gbyte memory limit have not been considered in the average values. The number of those instances

is reported in column “# inst oom”. The CG-GDT has successfully trained the choice model to

the required threshold of ε0 = 0.01 (which refers to a training error of 0.4 when M = 20) for all

instances within the given time and memory limits. In contrast, the CG-LS hits those limitations

for instances with 1,000 products, and in some cases for 500 products. Generally, the CG-GDT is

more scalable than the CG-LS, and, given the smaller number of iterations necessary to converge,

the former produces significantly sparser choice models (in the sense that the number of customer

behaviors required to explain the sales is smaller; see Farias et al. (2013)). For the CG-GDT, one

observes that the number of iterations is relatively low for large N . This is explained by the fact

that the indifference sets have a larger explanatory power in those instances, which will be further

explored in the following paragraph.

Concision and explanatory power of the indifference sets. The previous results have

suggested that the CG-GDT approach scales well even when the number of considered products

N is relatively high. We now analyze the choice model generated by this approach. As shown

above, the CG-GDT tends to produce significantly sparser choice models, i.e., it requires less

preference lists to explain the observed sales. This is a benefit in practice. Managers may further

be interested in obtaining concise preference lists, i.e., those that only require few strictly ranked

products. In Section 2, Propositions 1 and 2 have suggested that only few ranks in the preference

lists are important to explain the transaction data. We will next verify empirically whether the

computational results support these statements.

We will first explore how the training accuracy threshold ε0 impacts the produced choice models.

Table 2 shows several properties for the choice models generated by CG-GDT for different training

accuracies ε0 ∈ {0.1, 0.01, 0.001} and problem sizes N . The results are averaged over 10 random

instances and include the average size K of the choice models and the number of strictly ranked

CG-GDT CG-LS
Train. time # # inst. Train. time #

N error (sec) iter K oom error (sec) iter K

30 0.37 2.3 9.2 105.6 0 0.39 22.5 392.0 223.8
50 0.38 6.0 10.3 104.7 0 0.40 57.3 603.2 370.1

100 0.39 29.7 15.4 127.3 0 0.40 269.8 1,070.7 721.3
250 0.39 321.8 21.0 213.3 0 0.40 5,204.8 2,492.9 1,788.7
500 0.38 2,341.5 19.4 416.6 1 0.40 49,615.3 4,555.0 3,484.2

1000 0.33 5,511.2 7.0 850.2 10 - - - -

all (avg) 0.38 1,368.7 13.7 303.0 11 0.40 10,459.6 1,795.6 1,295.3

Table 1: Learning performance for CG-GDT and CG-LS algorithms with M = 20 and ε0 = 0.01
(averaged over 10 random instances)
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products (average and maximum number). The last two columns reveal information about the

explanatory power of the indifference sets, i.e., the percentage of sales that are explained by indif-

ference sets. The exact percentage for a given choice model can be computed as
∑

k∈K λk ·
numIndk

M ,

where numIndk is the number of (k,m) tuples in which at least one product from an indifference

set has a value greater than 0. In words, it is the weighted ratio between the number of assort-

ments in which a product from the indifference set has been sold and the total number of sales

(which equals the total number of assortments M , if the selection of 0 is considered a sale). This

percentage is indicated in column “exact comp.”. The last column, “theor. est.”, is linked to the

theoretical approximation of the indifference percentage in Proposition 2. In this proposition, the

exact percentage is computed for an average assortment, explicitly using the different λk values for

each preference list k. Since we are not dealing with average assortments, taking all λk into ac-

count does not make the result more informative for our case of a specific assortment. We therefore

report in column “theor. est.” the value given by the simplified formula (1 − r)avgRanked, where

avgRanked is the average value reported in column “# strictly ranked products avg” of the same

line (with r = 0.5).

The results in Table 2 indicate that, as the training is more accurate and ε0 is decreased, the

number of required GDT iterations and the size of the final choice model increase. The number

of strictly ranked items also slightly increases. However, it generally remains quite low and never

exceeds more then 6 strictly ranked products in any of the generated preference lists, which is only

a fraction of the total number of products (i.e., up to 1000). The proportion of sales explained

by products in the indifference set steadily decreases as the training accuracy is increased (i.e., ε0

is decreased). This illustrates the high explanatory power of the first few ranked products if the

choice model is well chosen. For example, with ε0 = 0.001 and N = 250 products, all preference

lists contain 4 or less strictly ranked products, which explain 64.35 % of the sales transactions, while

only 35.65 % of the transactions are explained by the remaining 246 products that are not strictly

ranked. While classical approaches using fully-ranked preference lists will always contain N strictly

ranked products, the proposed approach based on partially-ranked preference lists allows store

managers to gain valuable insights from a small list of products that have a fairly high explanatory

power. Interestingly, the theoretical estimation of this percentage is quite close to that practically

computed, which confirms our theoretical findings in Proposition 2.

Recall that in the experiments above, the ground-truth model to generate the problem instances

contains, for each customer class, four products with high utilities. We now explore how the number

of products with high utilities in the underlying ground-truth model impacts the final choice model.

Table 3 summarizes the same results as in the previous table for ε0 = 0.01, but based on ground-

truth models that assume that each customer class has exactly 1, 4, 10 and 20 products with

high utilities. As the number of products with high utilities increases, the algorithm requires more

iterations to find a choice model that fits the transaction data accurately. However, the number of

preference lists with non-negative probabilities remains similar in all cases. The number of strictly

ranked products also remains surprisingly stable, indicating that a final accurate choice model is
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# # strictly % explained by
ε0 N iter K ranked products indifference sets

avg max exact comp. theor. est.

0.1 30 1.0 34.6 1.36 2 36.36 39.05
0.1 50 1.0 41.3 1.07 2 45.03 47.78
0.1 100 1.0 82.5 1.01 2 48.70 49.75
0.1 250 1.0 219.4 1.00 2 49.98 49.95
0.1 500 1.0 444.3 1.00 2 49.67 49.99
0.1 1000 1.0 913.6 1.00 1 49.74 50.00

0.1 all 1.0 289.3 1.07 2 46.58 47.57

0.01 30 10.2 105.6 2.24 4 20.28 21.22
0.01 50 11.3 104.7 1.84 4 29.69 27.85
0.01 100 16.4 127.3 1.55 3 36.35 34.17
0.01 250 22.0 213.3 1.22 3 44.76 43.07
0.01 500 20.4 416.6 1.07 3 47.78 47.69
0.01 1000 8.8 836.2 1.03 2 48.54 48.98

0.01 all 14.9 300.6 1.49 4 37.90 35.59

0.001 30 29.6 189.3 2.74 6 15.03 14.93
0.001 50 31.0 190.9 2.35 5 19.91 19.55
0.001 100 49.6 216.7 1.91 4 29.41 26.56
0.001 250 115.5 287.9 1.69 4 35.65 31.07
0.001 500 149.7 438.4 1.37 3 42.00 38.61
0.001 1000 53.3 743.9 1.10 2 46.51 46.51

0.001 all 71.5 344.5 1.86 6 31.42 27.50

Table 2: Properties of choice models generated by CG-GDT (average values over 10 random in-
stances) with different training error thresholds ε0 (M = 20).
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not more complex, but only more difficult to find. Finally, one observes that such more refined

choice models also reduce the percentage of sales transactions that are explained by the products

in the indifference sets. As before, the theoretical estimation of this percentage is close to that

practically computed.

4.1.2 Assortment Optimization

In the previous section, we have shown that the partially-ranked choice model can be accurately

learned in reasonable computing times even in contexts with large numbers of products. We

now explore the scalability of the mathematical models to optimize assortments once the choice

model has been learned. We will focus on three different approaches. The first two approaches

learn a partially-ranked choice model using the CG-GDT algorithm. The first approach performs

subsequent assortment optimization adding the indifference inequalities (7) and (8) via branch-and-

cut (referred to as AO-B&C). The second approach performs boosting to create several fully-ranked

preference lists at random and then optimizes via the classical MIP (4) based on fully-ranked lists

(referred to as AO-Boost). Finally, the third approach is based on the CG-LS with the classical

MIP (4) (referred to as AO-Compl).

In the following, we will first explore how well one may tune the boosting approach AO-Boost

to approximate the exact approach AO-B&C. Then, we focus on a direct comparison of the three

approaches.

Boosting. Even though we can add the indifference constraints (7) and (8) via branch-and-cut

to the assortment optimization MIP (4) to directly operate on a partially-ranked choice model

σ = (P (σ), I(σ)), we may attempt to complete the strictly ranked products by imposing a strict

order on the products in the indifference set I(σ). Creating several of those fully-ranked preference

lists at random is called boosting.

We define two parameters to control the total number of fully-ranked lists and to assure that

a preference list σk with high probability λk yields more fully-ranked lists than a σk with low

probability λk. We define nmin as the minimum number of lists generated for each of the original

preference lists. We also define τ as a scale parameter to control the magnitude of lists generated in

proportion to the value of λk. For each partially-ranked preference list σk, we generate nmin−1+τλk

lists in which the products in the indifference set are ordered at random.

Table 4 compares the sizes K of the generated choice models and the average revenues of the

optimized assortments for the exact approach AO-B&C and the boosting approach AO-Boost with

different values for parameter τ (with nmin = 3). In AO-B&C, the indifference constraints are

added via user callbacks by adding the first 2,500 violated constraints at each callback. Revenues

are reported as average values of the expected revenue, which refers to the objective function value

of the optimization problem, and as the revenue as evaluated by the ground-truth model. For

both revenue types, the table reports the average deviation of the revenue given by the boosting

approach from the revenue given by the exact AO-B&C approach, as well as the corresponding
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# prod. # # strictly % explained by
ε0 w/ high N iter K ranked products indifference sets

utility avg max exact comp. theor. est.

0.01 1 30 5.2 80.7 1.79 4 33.52 28.97
0.01 1 50 5.4 76.2 1.54 3 38.53 34.45
0.01 1 100 7.4 103.2 1.32 3 40.69 40.06
0.01 1 250 7.2 221.1 1.06 2 48.27 47.92
0.01 1 500 12.3 436.2 1.05 2 48.12 48.34
0.01 1 1000 6.5 879.2 1.03 2 48.55 49.09

0.01 1 avg/max all 7.3 299.4 1.30 4 42.95 40.70

0.01 4 30 10.2 105.6 2.24 4 20.28 21.22
0.01 4 50 11.3 104.7 1.84 4 29.77 27.85
0.01 4 100 16.4 127.3 1.55 3 36.35 34.17
0.01 4 250 22.0 213.3 1.22 3 44.76 43.07
0.01 4 500 20.4 416.6 1.07 3 47.78 47.69
0.01 4 1000 7.9 834.7 1.03 2 48.62 48.94

0.01 4 avg/max all 14.7 300.4 1.49 4 37.93 35.58

0.01 10 30 18.4 120.3 2.50 6 16.58 17.63
0.01 10 50 17.3 119.7 2.13 4 21.10 22.87
0.01 10 100 23.4 136.3 1.69 4 31.79 30.92
0.01 10 250 36.0 227.0 1.31 3 42.72 40.36
0.01 10 500 48.3 392.1 1.18 3 45.49 44.21
0.01 10 1000 23.5 823.8 1.04 2 48.77 48.66

0.01 10 avg/max all 27.8 303.2 1.64 6 34.41 32.04

0.01 20 30 9.3 111.0 2.09 4 24.40 23.44
0.01 20 50 16.0 119.4 2.11 4 22.66 23.14
0.01 20 100 28.4 126.3 1.87 4 24.60 27.27
0.01 20 250 47.7 214.3 1.43 3 39.08 37.12
0.01 20 500 71.6 377.8 1.26 3 43.82 41.68
0.01 20 1000 36.8 749.0 1.08 2 47.71 47.33

0.01 20 avg/max all 35.0 283.0 1.64 4 33.71 32.05

Table 3: Properties of choice models generated by CG-GDT (average values over 10 random in-
stances) with different numbers of products with high utilities in ground-truth model (M = 20,
ε0 = 0.01).
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standard deviation.

Expected revenu GT revenu
Gap % from Gap % from

time avg AO-B&C avg AO-B&C
K (sec) rev avg std-dev rev avg std-dev

AO-B&C 125.7 45.1 86.18 - - 86.31 - -

τ = 10 376.6 27.0 86.58 3.38 10.06 84.50 3.18 10.10
τ = 50 390.0 30.8 86.21 2.55 2.71 84.43 2.25 2.55
τ = 100 430.0 35.1 86.06 2.27 2.55 84.55 2.02 2.64
τ = 500 817.0 97.5 85.57 1.69 2.92 85.07 1.43 2.45
τ = 1, 000 1,315.4 224.9 85.42 1.57 2.85 85.37 1.25 2.48
τ = 5, 000 5,315.4 4,394.4 85.21 1.30 3.08 85.47 0.97 2.44
τ = 10, 000 10,314.5 16,860.7 85.16 1.24 3.09 85.49 0.99 2.40

Table 4: Assortment optimization approximation via boosting compared to AO-B&C algorithm
(averaged over 100 random instances; N = 100, M − 20 and r = 0.3).

As τ increases, both the expected and the GT revenus provided by AO-Boost get closer to the

exact revenus as given by AO-B&C. However, the number of fully-ranked preference lists generated

in the final choice model quickly grows (and, as a consequence, the computing times as well).

The resulting optimization models are too difficult to solve and not competitive with the exact

branch-and-cut approach AO-B&C.

Scalability. As a final study, we now investigate how well the three assortment optimization

approaches scale to large number of products. Table 5 reports, for each approach, the average

size K of the choice model, the average computing times to solve the optimization model and the

average revenue as computed by the ground-truth model. If applicable, we also report the number

of problem instances which have run out of memory (“oom”).

CG-GDT - AO B&C CG-GDT - AO-Boost CG-LS - AO-Compl
time GT # time GT # time GT

N K (min) revenu oom K (min) revenu oom K (min) revenu

30 109.9 0.1 74.5 0 386.8 0.0 74.2 0 220.0 0.0 73.6
50 113.5 0.1 82.5 0 397.9 0.1 81.9 0 379.8 0.1 81.9

100 117.8 0.8 88.8 0 407.7 0.6 86.0 0 722.0 2.0 86.3
250 211.0 7.3 90.4 0 655.5 9.5 88.9 0 1,813.1 141.3 89.7
500 438.1 113.1 94.5 0 1,321.7 249.4 92.9 10 - - -

1000 897.4 669.9 95.0 10 - - - 10 - - -

all (avg) 314.6 131.9 87.6 10 633.9 51.9 84.8 20 783.7 35.8 82.9

Table 5: Assortment optimization results for choice models generated by CG-GDT and CG-LS
(averaged over 10 random instances).

As the number of products N increases, all choice models become more complex. The CG-LS

optimization approach handles only up to 250 products within the given memory limits. The CG-
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GDT approach with boosting handles problem instances with up to 500 products. Finally, given

the moderate size of the choice models, the AO-B&C approach handles solves all problem instances

with up to 1,000 products. Remarkably, this approach does not only result in shorter computing

times, but also yields higher revenues as computed by the ground-truth model.

We conclude this section noting that the recent work of Bertsimas and Mǐsic (2017) also con-

ducted numerical experiments on the original formulation (4) for fully-ranked lists. Considering

that the more recent version of the MIP solver used in Bertsimas and Mǐsic (2017) results in

slightly faster computations, the computational results are consistent with our findings. These

authors further propose a Benders decomposition implementation, which could also be adapted to

our formulation. It has to be noted, however, that the assortment optimization MIP itself is not the

only crucial ingredient of the overall approach. Learning the choice model correctly and accurately

for large-scale problems is, as has been shown, computationally challenging and crucial to obtain

meaningful assortment optimization models and, in this concern, we believe the partially-ranked

choice model provides an efficient option.

4.2 Case Study on Industrial Retail Data

We will now discuss an industrial case study based on real world data from a North-american

clothes retailer. Two anonymized data sets have been obtained from our industrial partner JDA

Labs (2017): one for shoe stores and one for shirt stores. In the following, we will discuss the data

sets and preprocessing. Then, we will explore the converge performance of the different approaches

to train the choice models on one data set, and the outcomes of the assortment optimization under

capacity constraints on the other data set.

4.2.1 Data description and preprocessing

Both the shoe and the shirt data sets include assortment data, transaction data, characteristics of

all available products, and characteristics of the stores from August 2014 to July 2015. Assortment

information is provided for each day and each store (with information such as location, climate,

price category). Sales transaction data contains product IDs, sold quantities, sales time-stamps

and store ID. Products in the shoe dataset have characteristics given as categorical values (class,

sub-class, brand, material, color) and continuous values (average price). Products in the shirt data

set contain additional information (lifestyle, pattern, fit, sleeve length, fashion).

Based on those information, we define an assortment as the set of products offered in a par-

ticular store throughout one calendar week in a particular year. For each assortment, we link the

corresponding sales transactions and convert those into the vector of sales probabilities vvv, repre-

senting the probability of selling a certain product in a given assortment. The following describes

the entire process of data preparation. For more details, we refer to the Master thesis of Palmer

(2017).
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Store clustering. Assuming that stores in neighborhoods with similar characteristics meet the

needs of similar customer types, we need to learn separately for groups of similar stores. As a

result of the frequent discussions with JDA Labs (2017), which provided the data, we clustered the

stores according to four store features: location (state and city), climate (4 different categorical

values), price band (low, medium and high), and percentage of sales in each sub-category. The

most popular algorithm for non-supervised clustering is k-means, which requires the data values to

be continuous. However, our features contain both categorical and continuous values. We therefore

use an extension of k-means that can handle mixed categorical and continuous data (Huang, 1997).

Data preprocessing and no-purchase estimation. We arbitrarily selected a cluster from

the shoes data set that contains 10 stores and has fairly high sales. For each of these stores, we use

data during 10 consecutive weeks from Autumn 2014, which we consider a good trade-off to have

sufficient data, while not risking that store assortments changed much due to seasonal fashion. We

considered each week of store data as a proper assortment, resulting in a total of 100 assortments.

To ensure that the historical data is statistically meaningful, we only considered products that have

been sold at least 10 times, resulting in a final total of 192 different products.

Given that we did not have any information about how many customers left the store with-

out purchase, we estimated the no-purchase probabilities assuming that assortments with many

sales have lower no-purchase probabilities and assortments with few sales have higher no-purchase

probabilities. We further assume that the no-purchase probabilities of the different assortments lie

between 10% and 30%. Let v0,m be the no-purchase probability in assortment m. Let salesm be the

number of sales observed in assortment m. Let salesMIN = minm∈M{salesm} and salesMAX =

maxm∈M{salesm}. We then computed the no-purchase probability for a store m as a linear in-

terpolation between 0.1 and 0.3 according to the number of observed sales: v0,m = 0.1 + 0.2 ·
salesm

salesMAX−salesMIN
. Let salesi,m denote the number of sales of product i in assortment m. We

then compute the sales probability for any other product i as vi,m = (1 − v0,m) · salesi,msalesm
, which is

the corresponding sales proportion of product i taking into consideration the probability for the

no-purchase option.

4.2.2 Computational Results

Convergence of training the choice model. We use data from 10 stores during 10 consecutive

weeks from Autumn 2014 from the shoes data set, resulting in 100 assortments. These assortments

hold a total of 192 different products. Figure 4 plots the convergence curves for the CG-GDT and

CG-LS training approaches. We notice that the optimal training error is not 0 (as it is the case

for synthetic data), because real data is noisy, or even contradictory.1 The training error quickly

converges to 41% using the GDT choice model, while CG-LS remains at 48% after 500 seconds.

1As an example, consider two assortments S1 = {1, 2, 3} and S2 = {1, 2, 4}. We may have observed only sales of
product 1 in assortment S1, and only sales of product 2 in assortment S2. In this case, a ranking-based choice model
cannot perfectly fit the sales transactions for both assortments.
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Figure 4: Learning curves for CG-GDT and CG-LS on industrial shoe data with 192 products.

Assortment optimization with capacity constraints. In practice, retailers are typically

restraint by space limitations and carefully need to decide which products to offer to respect the

available space capacity. As already observed by Bertsimas and Mǐsic (2016), we may add the

following constraint to the MIP formulation (4) to account for capacity limitations:

n∑
i=1

xi ≤ U.

Experiments have been carried out on the shirts data sets on 7 stores and their corresponding

sales data for the months of April to July 2015. Given that the shirt data set contains significantly

more sales than the shoe data set, each assortment has been defined by the transactions occurred

during one day. This also enabled us to further split the assortments into a training and a test set.

We excluded products that were sold less than 10 times in the entire data set, considering that

such data occurrence was not sufficient to perform accurate predictions. In total, the assortments

contained 196 different products.

We first trained via CG-GDT to near-optimality. Then, we solved the assortment optimiza-

tion model with the capacity constraints above. The optimal assortment contained 91 of the 196

products. We were particularly interested to explore how smaller store capacities would impact the

revenue. Since we deal with real data, we did not have access to a ground-truth model to specify

the revenue of an assortment that has not been observed in the past. We will therefore assume that

customers behave as given by the final choice model and compute each of the predicted revenues

for the assortments in the test set. We denote by R∗test the highest revenue as computed by the

choice model among all assortments in the test set, i.e., assuming that the choice model has been

accurately trained, none of the past assortments in the test set achieves a better revenue than R∗test.

The potential revenue increase when using a new assortment can then be computed as

Rev. Incr. =
R∗GDT −R∗test

R∗test
,
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where R∗GDT refers to the predicted revenue of the optimized assortment:

We then solved the assortment optimization problem, limiting the capacities to U ∈ {25, 40, 50, 65, 100}.
The optimal solution with 91 products is found only with U = 100. For all other capacities, the

optimal assortments have been found to always contain the maximum number of products U .

However, with smaller capacities, the revenue increase is expected to be attenuated. The potential

revenue increase for each value of U is plotted in Figure 5. While the potential revenue increase is

predicted to be as high as 45%, the potential increase with only 25 products is predicted to 25%,

which is still a surprisingly significant increase.

Figure 5: Impact of the capacity constraint on the predicted revenue increase

5 Conclusion

In this work, we have focused on non-parametric rank-based choice models for assortment opti-

mization. Those choice models have several advantages. Mainly, they can be estimated in a purely

data-driven manner without relying on previous knowledge on the market structure. They also tend

to be insensitive to overfitting. Our work proposes a new methodology to estimate those choice

models, which scales to large number of products. In particular, we propose to represent customer

behaviors not by fully ordered preference lists of all products, but only a subset of them. This is a

realistic setting, which directly exploits the fact that products with low ranks have little explana-

tory power and impact in the buying behavior. Further, we show that any partially-ranked choice

model can be transformed into an equivalent fully-ranked choice model, and vice-versa. However,

the equivalent fully-ranked choice model contains a number of preference lists that is factorially

large in the number of products in the indifference sets, making it intractable for assortment op-

timization. In contrast, the partial representation of the strictly ranked products enables us to

efficiently train the choice model by gradually expanding a tree, in which each of the nodes rep-

resents partial lists of strictly ranked products. On this particular structure, new preference lists

can be found efficiently via column generation. We finally present new inequalities to adapt the

classical assortment optimization model to our partially-ranked choice models. Extensive compu-
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tational experiments have shown that instances with up to 1,000 products can be efficiently trained

and assortments can be optimized in quite low computing times, increasing by one order of mag-

nitude the capabilities of previous approaches to learn the choice model. Given that training the

partially-ranked choice model by means of a growing tree and column generation has been proven

to be very efficient in the case of assortment optimization, it may be a promising avenue to explore

it any other context in which discrete choice models are central.
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Vulcano, G., G. Van Ryzin. 2017. Technical Note - An expectation-maximization method to esti-

mate a rank-based choice model of demand. Operations Research 65(2) 396–407.

33

CERC DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-011

https://jda.com/innovation/jda-labs

	Introduction
	Relevant Literature
	Contributions
	Organization of the paper

	A Partially-Ranked Choice Model
	The Choice Model
	Learning Consumer Preferences

	Assortment optimization
	Computational Results
	Numerical Results on Synthetic Data
	Training the Choice Model
	Assortment Optimization

	Case Study on Industrial Retail Data
	Data description and preprocessing
	Computational Results


	Conclusion



