

A POLYNOMIAL ALGORITHM FOR A

CONTINUOUS BILEVEL KNAPSACK

PROBLEM

Margarida Carvalho

Andrea Lodi

Patrice Marcotte

May 2017

DS4DM-2017-006

POLYTECHNIQUE MONTRÉAL

DÉPARTEMENT DE MATHÉMATIQUES ET GÉNIE INDUSTRIEL

Pavillon André-Aisenstadt
Succursale Centre-Ville C.P. 6079
Montréal - Québec
H3C 3A7 - Canada
Téléphone: 514-340-5121 # 3314

A polynomial algorithm for a

continuous bilevel knapsack problem

Margarida Carvalho ∗ Andrea Lodi † Patrice Marcotte ‡

submitted: 11 May, 2017

Abstract

In this note, we analyze a bilevel interdiction problem, where the follower’s program is a parametrized
continuous knapsack. Based on the structure of the problem and an inverse optimization strategy, we
propose for its solution an algorithm with worst-case complexity O(n2).

Keywords— Bilevel programming, Continuous knapsack problem, Polynomial time.

1 Model

Recently, a number of papers have been devoted to bilevel programs involving integer-valued knapsacks at

the lower level [2]–[6],[9], all of them NP-hard. A question that arises naturally is the complexity of the

continuous variants of these problems. More precisely, we consider a continuous bilevel knapsack problem

with interdiction constraints that consists in a relaxation of the problem analyzed by Caprara et al.[4], where

the goal of the leader is to minimize the value of the follower’s knapsack, through the interdiction of a subset

of items. Its mathematical formulation is

(CBK) min
(x,y)∈[0,1]n×[0,1]n

n∑
i=1

piyi (1a)

subject to

n∑
i=1

vixi ≤ Cu (1b)

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑
i=1

piyi s.t.

n∑
i=1

wiyi ≤ Cl and (1c)

yi ≤ 1− xi for 1 ≤ i ≤ n. (1d)

First, with the aim of minimizing the follower’s profit, the leader decides for each item i the fraction xi that

is interdict to the follower subject to the budget constrain (1b). Afterwards the follower reacts with the aim

of maximizing profit by selecting for each item i a fraction yi to be packed that respects constraint (1d), the

leader’s interdiction, and subject to a budget constraint (1c).

∗IVADO Fellow, Canada Excellence Research Chair, École Polytechnique de Montréal, C.P. 6128, Succursale Centre-Ville,
Montréal, QC H3C 3A7, Canada.
†Canada Excellence Research Chair, École Polytechnique de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC

H3C 3A7, Canada.
‡DIRO, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada.

1

2 DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-xx

Replacing the lower level problem by its necessary and sufficient KKT conditions, one obtains a single

level reformulation as the bilinear program (the reader is referred to [4] for details):

(CBK1) min
x∈[0,1]n, z∈[0,∞)n+1

z0Cl +

n∑
i=1

zi −
n∑

i=1

xizi (2a)

subject to

n∑
i=1

vixi ≤ Cu (2b)

wiz0 + zi ≥ pi for 1 ≤ i ≤ n, (2c)

whose worst case complexity is not obvious, given that its objective is bilinear. This question will be settled by

proposing an O(n2) algorithm, whose validity actually extends to problems involving distinct linear objectives

at both levels of decision making.

2 A polynomial algorithm

Let us focus on the follower’s knapsack, and assume that items are sorted in decreasing order of the profit-

weight ratios pi/wi. An optimal solution is then trivially obtained by selecting items in the natural order of

indices, until the budget Cl is exhausted, and declare item c critical if it corresponds to the smallest one (or

rather, its index) that does not fit entirely (see, e.g., [7]). The value of xc is then fractional or equal to 0.

For a given upper level decision x, the optimal objective of the follower’s continuous knapsack is

c−1∑
i=1

pi(1− x∗i) + pc
Cl −

∑c−1
i=1 wi(1− x∗i)

wc
,

where c is the critical item corresponding to x∗.

Conversely, if the lower level solution y is fixed, inverse (bilevel) optimization consists in optimizing the

upper level problem under the constraint that y is lower-level optimal. In our context, rather than fixing the

y vector, we only assume knowledge of the critical index c. For given c this yields the leader’s tri-knapsack

problem

(CBKc) min
x

c−1∑
i=1

pi(1− xi) + pc
Cl −

∑c−1
i=1 wi(1− xi)

wc
(3)

subject to

c−1∑
i=1

vixi ≤ Cu (4)

c−1∑
i=1

wi(1− xi) ≤ Cl (5)

wc +

c−1∑
i=1

wi(1− xi) ≥ Cl (6)

0 ≤ xi ≤ 1 for 1 ≤ i ≤ c− 1 (7)

where constraints (5) and (6) guarantee that item c is indeed critical. Algorithm CBK (Figure 1) consists in

solving CBKc for c ∈ [1, . . . , n] and retaining the best solution.

Theorem 1 Algorithm CBK computes the optimal solution of the continuous bilevel knapsack problem with

interdiction constraints in polynomial time.

Proof. Algorithm CBK enumerates over all possible critical indices. If an optimal critical index exists, the

algorithm determines the corresponding best upper level solution by solving CBKc, which is the solution of

DS4DM-2017-xx DATA SCIENCE FOR REAL-TIME DECISION-MAKING 3

the original problem. At Step 13, the algorithm checks the case when no index is critical, i.e., the budget of

the follower allows herself to pack all remaining items. In this situation, it is optimal for the leader to pack

the items according to her own utility1, i.e., by decreasing order of the ratio pi

vi
. Since exactly n + 1 linear

programs CBK must be solved, it follows that the continuous bilevel knapsack problem with interdiction

constraints is polynomially solvable.

Algorithm CBK

1: best = +∞; k = −1
2: for c = 1, . . . , n do
3: if CBKc feasible then
4: // c is the critical item
5: val := CBKc and let x∗ be the optimal solution
6: if val < best then
7: best := val
8: xbest := x∗

9: k := c
10: end if
11: end if
12: end for

13: val := min
x∈[0,1]n,

∑n
i=1 vixi≤Cu,

∑n
i=1 wi(1−xi)≤Cl

n∑
i=1

pi(1− xi) and let x∗ be the optimal solution

14: if feasible then
15: if val < best then
16: best := val
17: xbest := x∗

18: end if
19: end if
20: return (best, xbest)

Figure 1: Algorithm to solve CBK.

We next show that constraints (5) and (6) are automatically satisfied if x is upper-level optimal, hence

they can be ignored throughout Algorithm CBK. The proof relies on the following two lemmate.

Lemma 1 If for a given 1 ≤ c ≤ n and a leader’s interdiction x, it holds wc +
∑c−1

i=1 wi(1− xi) < Cl, then

k−1∑
i=c

pi +
pk
wk

(
Cl −

c−1∑
i=1

wi(1− xi)−
k−1∑
i=c

wi

)
<

pc
wc

(
Cl −

c−1∑
i=1

wi(1− xi)

)
,

where c < k ≤ n + 1 is the critical item associated with the follower’s optimal solution to x.

Proof. Since items are sorted in nonincreasing order of their prize-weight ratios, there holds

k−1∑
i=c

(
pi
wi
− pk

wk

)
wi <

k−1∑
i=c

(
pc
wc
− pk

wk

)
wi.

Since k is the critical item, we have Cl −
∑c−1

i=1 wi(1− xi) >
∑k−1

i=c wi. Those two inequalities yield

k−1∑
i=c

(
pi
wi
− pk

wk

)
wi <

(
pc
wc
− pk

wk

)(
Cl −

c−1∑
i=1

wi(1− xi)

)
.

Upon rearrangement of the terms, the result follows.
1This observation is clarified by the following example: n = 3, Cu = Cl = 2, p = {100, 60, 50}, v = {2, 1, 1}, w = {1, 1, 1}, in

which the leader’s optimal solution is x = (1
2
, 1, 0) (or x = (0, 1, 1)).

4 DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-xx

Lemma 2 If for a given 1 ≤ c ≤ n and a leader’s interdiction x, it holds
∑c−1

i=1 wi(1− xi) > Cl , then

pk
wk

(
Cl −

k−1∑
i=1

wi(1− xi)

)
<

c−1∑
i=k

pi(1− xi) +
pc
wc

(
Cl −

c−1∑
i=1

wi(1− xi)

)
,

where 1 ≤ k < c is the critical item associated with the follower’s optimal solution to x.

Proof. The proof is similar to that of Lemma 1. Since items are sorted in non-increasing order of their

prize-weight ratio, there holds

c−1∑
i=k

(
pk
wk
− pc

wc

)
wi(1− xi) <

c−1∑
i=k

(
pi
wi
− pk

wk

)
wi(1− xi).

Since k is the critical item, we have Cl −
∑k−1

i=1 wi(1− xi) <
∑c−1

i=k wi(1− xi). Those two inequalities yield(
pk
wk
− pc

wc

)(
Cl −

k−1∑
i=1

wi(1− xi)

)
<

c−1∑
i=k

(
pi
wi
− pk

wk

)
wi(1− xi).

Upon rearrangement of the terms, the result follows.

Theorem 2 The optimal solution of the continuous bilevel knapsack problem with interdiction constraints can

be solved in O(n2) time.

Proof. From Lemmate 1 and 2, it follows that constraints (5) and (6) can be ignored. Since the resulting

relaxed program is a continuous knapsack that can be solved in linear time, the overall algorithm reduces to

the solution of n + 1 continuous knapsacks. Since each knapsack can be solved in linear time [1], the results

follows.

Example 1 Consider the following instance: n = 3, Cu = 2, Cl = 3, p = {10, 8, 6}, v = {3, 1, 1} and

w = {4, 4, 4}.

• Items are sorted in non-increasing order of the ratios pi/wi.

• In accordance with Algorithm CBK, Step 2, one computes the leader’s optimal objective value consistent

with critical item c ∈ {1, 2, 3}.
• For c = 1, val = 10× 3

4 = 7.5 and the ‘if ’ at Step 3 is true. Thus, best = 7.5 and xbest = (0, 0, 0).

• If c = 2, val = 20
3 and the ‘if ’ in step 3 is true. Step 6 is also true, and thus, best = 20

3 and

xbest = (2
3 , 0, 0).

• If c = 3, val = 43
6 and the ‘if ’ in step 3 is true. In step 6, val > best.

• At Step 13, no item is critical, leading to val = 10 and x∗ = (0, 1, 1). However, the follower is not able

to fully pack item 1, ‘if ’ at Step 14.

• The optimal solution value is best = 20
3 with xbest = (2

3 , 0, 0).

If in this example we had v = {3, 1, 3} and w = {2, 2, 2}, Algorithm CBK would evolve as in Table 1 and

the optimal solution value would be best = 35
3 with xbest = (1

3 , 1, 0).

Critical c
1 2 3 step 13

val 15 38
3

35
3

38
3

x∗ (0,0,0) (2
3 ,0,0) (1

3 ,1,0) (1
3 ,1,0)

best 15 38
3

35
3

35
3

Table 1: Algorithm CBK computations.

DS4DM-2017-xx DATA SCIENCE FOR REAL-TIME DECISION-MAKING 5

We close this section by noting that, as Example 1 illustrates, val is not monotone either increasing or

decreasing, with respect to the critical index. This suggests that no further improvement is possible, although

we could not prove this conjecture. In the same vein, we note that the leader’s preference with respect to item

i depends on the value −pi

vi
+ pcwi

wcvi
, which in turn depends on the current iteration, so that reoptimization

with respect to previously computed preference is not trivial.

3 Generalization

In this section we extend the analysis to the case where the leader’s objective is arbitrary, say

n∑
i=1

cxi xi +

n∑
i=1

cyi yi.

Since the follower’s optimization problem is still a continuous knapsack, our line of proof still applies if one

replaces the objective function in CBKc by

n∑
i=1

cxi xi +

c−1∑
i=1

cyi (1− xi) + cyc
Cl −

∑c−1
i=1 wi(1− xi)

wc
,

which we designate by CBc. However, we note that in this more general case, constraints (5) and (6) cannot

be ignored, as the following example illustrates.

Example 2 Consider the following data: n = 7, Cu = 97, Cl = 98, cx = {0, 0, 0, 0, 0, 0, 0}, cy = {1, 1, 1, 1, 1, 1, 1},
v = {14, 37, 26, 10, 30, 49, 95} and w = {1, 2, 82, 86, 52, 57, 63}. Essentially, the leader aims at minimizing the

number of items selected by the follower, not their total value.

If constraints (5) and (6) are ignored, one of them is violated at every iteration of the algorithm,

which implies that no critical item can be found. On the other hand, if these constraints are included

(see Table 2), Algorithm CBK finds the optimal value best = 1.15 and the corresponding optimal solution

xbest = (1, 1, 0.85, 0, 0, 0, 0).

Critical c
1 2 3 4 5 6 7 step 13

val inf inf inf 1.15 1.15 1.16 1.69 2.85

best +∞ +∞ +∞ 1.15 1.15 1.15 1.15 1.15

Table 2: Algorithm CBK computations. Entries with ‘inf’ correspond to CBKc infeasible.

In summary, Theorem 1 still holds. A linear program with n variables and a fixed number of constraints

can be solved in O(n) time through multidimensional search [8, 5]. Therefore, CBc can be solved in O(n)

time for each c = 1, . . . , n + 1, since it has 3 constraints. Thus, this problem generalization can be solved in

O(n2) time.

References

[1] E. Balas, E. Zemel. An algorithm for large zero-one knapsack. Operations Research 28: 1130-1154,

1980.

[2] L. Brotcorne, S. Hanafi, R. Mansi. Dynamic programming for the bilevel knapsack problem. Operations

Research Letters 37: 215-218, 2009.

[3] L. Brotcorne, S. Hanafi, R. Mansi. One-level reformulation of the bilevel Knapsack problem using

dynamic programming. Discrete Optimization 10: 1–10, 2013.

6 DATA SCIENCE FOR REAL-TIME DECISION-MAKING DS4DM-2017-xx

[4] A. Caprara, M. Carvalho, A. Lodi, G.J. Woeginger. Bilevel knapsack with interdiction constraints.

INFORMS Journal on Computing 28: 319–333, 2016.

[5] Clarkson, K. L. Linear programming in O(n×3d
2

) time. Journal Information Processing Letters 22:

21–24, 1986.

[6] S. Dempe, K. Richter. Bilevel programming with knapsack constraints. Central European Journal of

Operations Research 8: 93-107, 2000.

[7] Martello, S., P. Toth. Knapsack problems: algorithms and computer implementations. John Wiley &

Sons, Inc., New York, NY, USA. 1990.

[8] Megiddo, N. Linear programming in linear time when the dimension is fixed. Journal of the ACM 31:

114–127, 1984.

[9] Qiu, X. and W. Kern. Improved approximation algorithms for a bilevel knapsack problem. Theoretical

Computer Science 595: 120–129, 2015.

	Model
	A polynomial algorithm
	Generalization

